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Supplementary Note 1: Uncorrelated P(k,F) in Erdős-Rényi networks

We construct networks with the degree distribution pk = e−cck/k!, and independently we draw a feature value for each
node from the distribution p(F) = (α − 1)F−α , with F ≥ 1 and α > 1. Recall that k is discrete and F is continuous,
although it is straightforward to repeat the calculations assuming F discrete as well. The considered occupation probability is
φF = θ(−(F−F0)).

The joint distribution P(k,F) is separable, thus the k and F contributions in the generating functions can be computed
separately. On the one hand we have∫
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Combining both results, we get
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The criticality condition 1 = ∂zg1(z)|z=1 yields
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Results comparing the analytical curves and the simulations are shown in 1, finding a good agreement between theory and
simulations.

Supplementary Note 2: Uncorrelated P(k,F) in scale-free networks
We consider networks with degree distribution pk = k−γ/ζ (γ), k ≥ 1. The feature distribution is the same as before. Noting
that 〈k〉= ζ (γ−1)/ζ (γ), where ζ (γ) is the zeta Riemann function, the topological part of the generating functions read
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Supplementary Figure 1. Feature-based percolation in Erdős-Rényi networks with uncorrelated degree and feature. On the
left, the size of giant component as a function of the network parameter. On the right, the size of giant component as a function
of the feature parameter. Network size is N = 2000, averaged over 100 realizations.
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where Liγ(u) is the polylogarythm function. Thus, we have
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The condition for the critical point is given by

ζ (γ−1) = (1−F1−α

0 )
[
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]
. (12)

Isolating the exponent of feature distribution we get
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log(F0)

log
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1− ζ (γ−1)
Liγ−2(1)−Liγ−1(1)

)
. (13)

For the discussion of the behavior of αc we provide in 2 the plots of the special functions involved in the condition of criticality.
Note that Liλ (1) diverges when λ = 1 and 2, and ζ (λ ) does so when λ = 1. Therefore, at these points the critical point does
not exist and S is finite for any value of α , as far as α > 1. What does occur in the range λ ∈ (1,2)? It turns out that in
this region ζ (λ )> Liλ−1(1)−Liλ (1), condition that makes the argument of the logarithm in Supplementary Equation (13)
negative. Setting λ = γ−1, we conclude then that the order parameter does not have a finite αc in γ ∈ [2,3].

Following similar argument we can shed light on the critical behavior feature-based percolation in scale-free networks with
degree exponent γ ∈ (1,2) and γ > 3. In the former, one finds that ζ (γ−1)< 0 and Liγ−2(1)−Liγ−1(1)> 0. Since 1−F1−α

0
is always positive, the criticality condition is not hold, therefore there is no valid αc. In the latter case, there is a small region, up
to γ ≈ 3.478, for which ζ (γ−1)> Liγ−2(1)−Liγ−1(1), implying a finite critical value αc. For larger values of γ , the critical
point does not exist.

Results comparing the analytical curves and the simulations are shown in 2. The agreement between theory and simulations
is good. Let us remark the surprising effect that feature-enriched percolation has on scale-free networks, that is, for graphs
with very broad degree distribution (γ ≤ 3) and for any value of the feature threshold F0 and feature exponent α , their giant
component is always macroscopic. Put otherwise, these graphs are ultra-resilient to feature-based attacks. For the same type of
attacks –equal F0– and same α , vulnerability increases with the exponent of the degree distribution, since we find a region
where the network can be completely dismantled. However, αc does not increase indefinitely with the degree exponent λ , but
from a certain point γ ≈ 3.478, independent of F0, we are back to the situation where αc does not exist.
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Supplementary Figure 2. Feature-based percolation in scale-free networks. On the left, we plot the behavior of the special
functions that appear on both sides of the equation of the criticality condition (Supplementary Equation (12)). In the middle,
we show the size of the giant component S as a function of the parameter related to the topology, the exponent of the degree
distribution. We fix the other parameters to F0 = 2 and α = 2.75 On the right, it is displayed S as a function of the parameter
related to the feature, the exponent of the power-law feature distribution. Two curves are shown, one for which αc does not
exist in the valid domain of α , even though S(α)→ 0 for α → 1, and other for which αc exists. F0 = 2 here as well. Network
size is N = 20000 and each point is averaged over 100 realizations.

Supplementary Note 3: Critical exponents in the independent case

Here we sketch the steps to obtain the critical exponents associated to the size of the giant component1. The starting point is
main text’s Equation (5). We change u = 1− ε and a = ac +δ and expand for ε → 0 and δ → 0, to get
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0
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ε +
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c
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2− 2
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Dividing both sides by ε and noticing that

−1 =
(
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0
) 2ac

ac−1
, (15)

we obtain that, at first order, ε ∼ 2/3a−2
c δ . Now we proceed as before, substituting u = 1− ε and a = ac +δ in main text’s

Equation (1) and Taylor expanding around ε → 0 and δ → 0:
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]
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Keeping first-order terms and using the linear relation between ε and δ we obtain that

S(a) =

(
3−2F1−α

0

)2

3
δ ∼ (a−ac). (17)

Therefore, we conclude that βa = 1. The procedure to obtain βα is exactly the same, although it becomes a bit more tedious
because the variable α appears as an exponent. Applying carefully the same steps, we arrive at βα = 1.

Supplementary Note 4: Collapses in uncorrelated P(k,F)

We haven shown analytically and numerically that the geometric network pk = (1−a)ak with uncorrelated feature distribution
p(F) = (α−1)F−α have the same critical exponents as those in standard mean-field percolation. To support this result in
an alternative way, we show that finite-size collapses correctly overlap when using the predicted exponents βa = βα = 1 and
νa = να = 3, see 3.

Supplementary Note 5: Limit α → 1 for the positively correlated model
Here we show why S(α)→ 0 when α → 1 for the network model of main text’s Equation (10) when nodes with feature larger
than F0 are removed. Starting from the generating functions, main text’s Equations (12), the probability u that a node does not
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Supplementary Figure 3. Data collapses for the uncorrelated network model studied in the main text. SN standard for the size
of the largest component in simulations with networks of size N. On the top we show the analysis as a function of the feature
parameter α and below as a function of the topological parameter a. In all simulations is used F0 = 3 and averages are
computed between over 5000 realizations (smallest system sizes) and over 100 (largest system sizes).

belong to the giant component via one neighbor is given by the transcendent equation

u = 1− 1
ζ (α)−ζ (α +1)

[ζ (α,2)−ζ (α +1,2)−ζ (α,F0 +1)+F0ζ (α +1,F0 +1)

−Φ(u,α,2)+Φ(u,α +1,2)+Φ(u,α,F0 +1)−F0Φ(u,α +1,F0 +1)]. (18)

Both ζ (α) and ζ (α,F0 +1) diverge for α → 1, so it seems that we encounter an indetermination. Luckily, they diverge at the
same pace, so limα→1 ζ (α,F0 +1)/ζ (α) = 1. Applying the limit to the entire equation we obtain that u = 1. By definition, S
is vanishes for u = 0, but one can take the appropriate limits to the expression of the giant component to see that the approach is
continuous. Taking u→ 1 and α → 1 in

S(u,α,F0) = 1− ζ (α +1,F0 +1)+Φ(u,α +1,2)−uΦ(u,α +1,F0 +1)
ζ (α +1)−1

(19)

we obtain 0, as shown in 3.

Supplementary Note 6: Universality classes for correlated P(k,F)

We proceed in this section to numerically check whether the correlated and anticorrelated models scenarios proposed in main
text’s Equations (10) and (14) belong to the mean-field percolation class, as it occurs with the uncorrelated case, main text’s
Equations (6).

Let us first focus on the positively correlated case. We show in 4(a) that the theoretical order parameter approaches linearly
to the critical point, hence the critical exponent β = 1. Simulating the percolation process for different sizes we obtain SN
(4(b)), which neatly overlap when applying the finite-size scaling (4(c)) with β = 1 and να = 3. Therefore we conclude that
the type of positive degree-feature correlations studied in the main text does not change the mean-field critical properties.
Repeating the same procedure for the randomized version of the model, we confirm that it also belongs to the mean-field
percolation class, see the bottom row of 4.
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Supplementary Figure 4. Exploring the critical exponents of the positively correlated case. In (a), points correspond to the
numerical solution of the theoretical order parameter, as a function of the distance to the critical point. To guide the eye, the
dashed line (αc−α)β with β = 1. In (b), results for the size of the largest connected component from simulations with
different network sizes, indicated in the legend. Each point is computed by averaging at least 1000 realizations. The solid line
is the theoretical solution. In (c), same data applying the finite-size scaling with β = 1 and να = 3. In (d), (e) and ( f ) we
show the same analysis for the randomized version of the model.

Supplementary Figure 5. Exploring the possible critical behavior the positively correlated case close to α = 1. In (a), points
correspond to the numerical solution of the theoretical order parameter, as a function of the distance to the point of interest. To
guide the eye, two power laws are incorporated, the dashed line (α−1)β with β = 1. In (b), results for the size of the largest
connected component from simulations with different network sizes, indicated in the legend. Each point is computed by
averaging at least 1000 realizations. The solid line is the theoretical solution. In (c), same data applying the finite-size scaling
with β = 1 and να = 3.

We see that positive correlations make S→ 0 as α → 1 (3(a)). However, α = 1 is outside the range of valid values of the
control parameter. It is instructive to study what happens in the vicinity of that value in order to see if we find any signature of
criticality. This is explored in 5. Studying the behavior of theoretical solution, we observe that not only there is no clear power
law decay (5(a)), hence not verifying the scaling hypothesis, but also the decay occurs very abruptly. Proceeding similarly as
before, we simulate the process for small-to-intermediate system sizes (5(b)) and apply the scaling transformation. In 5(c) we
confirm that the curves do not overlap, if using the mean-field exponents. The collapse also fails if we employ the greater β

values suggested in 5, for any value of να , see the Supplementary Movies 1 and 2. All these results offer strong evidence that
there is no critical behavior in the vicinity of α = 1 even though S→ 0.

To close this section we study the universality class of the negatively correlated model, proceeding as before. The first
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Supplementary Figure 6. Critical exponents in the negatively correlated model. In (a), points correspond to the numerical
solution of the theoretical order parameter, as a function of the distance to the critical point. Two power laws are shown, one
with the mean-field exponent, which deviates from the theoretical solution, and another that fits better the data. In (b), results
for the size of the largest connected component from simulations with different network sizes, indicated in the legend. Each
point is computed by averaging 4000 realizations. The solid line is the theoretical solution. In (c), same data applying the
finite-size scaling with the exponent β obtained in (a) and να = 3. In (d), (e) and ( f ), same plots for the randomized case.

observation is that, for both the anticorrelated and randomized cases, the exponent β is slightly higher than its mean-field value
1 (6(a) and (d)). The simulated data (6(b) and (e)) overlaps well if using the value of β obtained from the theoretical solution
and employing να = 3. We cannot discard, however, that the true value of the exponent of the correlation length να is different
but close to its mean-field value 3. This requires further analysis, such as obtaining the expression of a quantity from which we
can extract analytically and independently other critical exponents, e.g., the mean cluster size, and from there apply the scaling
relations between critical exponents. It also remains open the question why positive correlations do not change the universality
class but negative correlations do.

Supplementary Note 7: Joint degree-feature probability function for Random Geometric
Graphs

Here we show how to compute the proper joint distribution P(k,dmin), where the feature dmin is taken as the distance between a
node and its closest neighbor. The steps to follow are conceptually very simple: first we compute the degree distribution pk
and the conditional feature-degree distribution P(dmin|k) by employing purely geometrical arguments and basic probabilistic
relations, and then, by definition, we readily obtain the joint distribution P(k,dmin) = P(dmin|k)pk.

Let us start with the degree distribution. In a two-dimensional random geometric graph of neighborhood radius r, with
periodic boundary conditions, the number of nodes k distance r from a randomly chosen node follows the binomial distribution
with the area of circle of interaction as a parameter, i.e.,

pk =

(
N−1

k

)
(πr2)k(1−πr2)N−1−k. (20)

Its mean degree is 〈k〉= (N−1)πr2, as expected.
The computation of P(dmin|k) is much trickier. The probability that a randomly chosen neighbor is located at a distance

between d and d +dd from a node is given by

P(d) =
2d
r2 . (21)
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Assume we have k neighbors randomly distributed following Supplementary Equation (21). Then the probability P(dmin|k)
that the closest neighbor is at distance dmin can be obtained by employing the fact that C(dmin|k) = 1− (1−C(dmin))

k, where
C(dmin|k) and C(dmin) are the cumulative functions of the conditional probability P(dmin|k) and of P(dmin). We immediately
obtain that

C(dmin|k) = 1−
(

1− d2
min
r2

)k

, (22)

which leads to

P(dmin|k) =
2dmin

r2 k
(

1− dmin

r2

)k−1

. (23)

In principle, the product of Supplementary Equation (20) and Equation (23) was our goal. However, note that Equation (23)
is well-normalized to unity for all degrees but k = 0. This is because these nodes, that occur with a finite probability
p0 = (1−πr2)N−1, do not have a minimum distance dmin to the closest neighbor because they do not have neighbors. We
overcome this problem by manually assigning dmin = 0 when k = 0, that will not affect the percolation properties since k = 0
never contribute to the giant component, but will modify the distributions making it correctly normalizable to unity.

We have now two contributions in the probability distribution, one with discrete support at 0 and the other in a continuous
support [0,r]. The probability function is given by P(dmin) = δ (dmin)pk=0 +∑

N−1
k=1 P(dmin|k)pk, where δ (·) is Dirac’s delta.

The correctly normalized distributions are then

P(dmin|k) = δk,0δ (dmin)+
(
1−δk,0

)[2dmin

r2 k
(

1− dmin

r2

)k−1
]
,

C(dmin|k) = δk,0 +
(
1−δk,0

)[
1−
(

1− d2
min
r2

)k
]
,

P(dmin) = δ (dmin)
(
1−πr2)N−1

+2π(N−1)dmin
(
1−πd2

min
)N−2

,

C(dmin) = 1−
(
1−πd2

min
)N−1

+
(
1−πr2)N−1

,

(24)

where we have used, moreover, the Kronecker delta to differentiate the cases k = 0 and k > 0. We finally can write the correct
joint probability distribution

P(k,dmin) = δk,0δ (dmin)(1−πr2)N−1 +
(
1−δk,0

)(N−1
k

)
(πr2)k(1−πr2)N−1−k 2dmin

r2 k
(

1− dmin

r2

)k−1

. (25)

Notice that the joint distribution Supplementary Equation (25) is indeed well normalized to unity, and that the term accompanied
with the δ -functions is necessary to be so.

Supplementary Note 8: Output functions of the Bayesian Machine Scientist
Here we write down the functions given by the BMS that have been used to compute the joint degree-feature distribution
when analysing the dynamical models on the real topologies, main text’s Equation (21) . For the mutualistic dynamics, 6(a),
the mean value is µF(k) = a11 + a12ka13 and height of the probability peaks is h(k) = a21 sin(a22ka23), with a11 = 0.0019,
a12 = 0.0022, a13 = 0.9996, a21 = 0.0193, a22 = 1.12 ·10−38 and a23 = 14.4823. For the population dynamics, 6(b), we obtain
µF(k) = b11 log

(
2k+b12k2

)2 and h(k) = b21 +b22k+kb23 with b11 = 0.0114, b12 = 0.0158, b21 = 0.0024, b22 =−2.87 ·106

and b23 =−3.5861. Finally, for the biochemical dynamics, 6(c), µF(k)= c11+c12 tan(k)+kc13 , σF(k)= ckc22+tan(k)/c23
21 −µF(k)

and h(k) = (c31 + c31/(c32 + k))/k with c11 = −0.109, c12 = −0.002, c13 = −0.4088, c21 = 0.795, c22 = 0.6029, c23 =
49.7377, c31 = 0.15 and c32 =−13.087. In (a) and (b), since the standard deviation σF(k) is approximately constant, instead
of finding it by means of the BMS we set manually the value of 0.01. The range of degrees where these functions are defined
are [290,452] for the mutualistic dynamics, [16,826] for the population dynamics and [1,271] for the biochemical dynamics.

Notice that some of the values of the constants given by the BMS are considerably small or large. Owing to the stochastic
nature of the algorithm, the values and the functions shown above are not always stable under the repetition of the experiment.
In spite of this, even if the values of the parameters and the functions cannot be guaranteed to be the same from realization
to realization, the approach of using the BMS to feature-enriched percolation is still valid because we are just looking for an
approximate P(k,F) and the outputs will capture very well the trends in the data fed to the algorithm.
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