
REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): 

see the attachment (page 34 of this file) 

Reviewer #2 (Remarks to the Author): 

Remarks to the Author: 
The manuscript titled ‘Percolation on feature-enriched interconnected systems’ by Artime and 

collaborators deals with a novel framework of the percolation transition in networks. Instead of looking 
at the behavior of "standard" percolation by the degree distribution, the authors focus their attention 
on the feature-enriched percolation. They developed an analytical expression for the size of the giant 

component (or the order parameter) by using the generating function method, and then applied their 
theory into spatial networks and dynamical processes on networks in which the features have 

physical meanings. 

Overall, the work is original and interesting. 

There are however several aspects of the paper that require revisions/clarifications. My major 
concerns are: 

(1) The analytical expression for the feature-enriched percolation is indeed based on the standard 

generating function method which was widely used in percolation theory. For example, Eqs. (1) and 
(5) are the same as the classical one, the only difference is the occupation probability. The feature 

enrichment does not add any new information in terms of connectivity. It means that this theory is still 
heavily relied on the degree distribution. I do not find any novel parts in the theory. 

(2) For the percolation process: how to attack the (all) nodes if their features are larger than a given 
threshold? By randomly or depending on their features values. 

(3) For the independent case: I really do not understand why the authors chose the network having an 
exponential degree distribution [Eq. (6)]. I suggest they use the Erd˝os-R´enyi model or scale free 

model. 

(4) For the universality class: the authors “conclude that the critical properties are the same as the 
mean-field percolation process, even though if the feature distribution is scale-free.” I do not agree 
this point, since the universality class do not only depend on the degree distribution [see Cohen, et al. 

Phys. Rev. E 66, 036113] but also the removal or adding progress [see Achlioptas, et al. Science 323, 
1453–1455]. 

Do the authors consider the universality class for the Positively correlated case and Negatively 

correlated case? 

(5) Why the feature is a M dimensional but not N dimensional vector? 

(6) In Figure 2 (c), each point is computed by averaging over 100 independent realizations, and the 

bars are the error bars, am I right? If it is (the error bar is indeed very large, the system size is indeed 
not large enough), how the authors can obtain the critical exponents with a high precision, for 
example, 0.347+-0.015. 

(7) In Figure 3, it seems that the max value of S is about 0.5. Which means that half of the nodes are 
not belonged to the largest cluster. Why can it not be reached to 1? 

(8) Generally, the generating function method is only valid for an infinite system. I notice that the 



authors introduced the system size N into the generating functions [see Eq. (17)]. If N is small, the 
theory may be wrong. This can be used to explain the inconsistent which is shown in Fig. 4 (N = 150). 

Minor remarks: 

(1) What do the black line stand for in Fig.1 (a-c)? 

(2) In page 2, the authors should cite [Physical review E 64 (2), 026118] in the theory (generating 
function) part. 

(3) Before Eq. (22), the authors should cite [Phys. Rev. E 66, 036113]. 

Reviewer #3 (Remarks to the Author): 

Report on "Percolation on feature-enriched interconnected systems" by Oriol Artime and Manlio De 

Domenico 

The paper propose a mathematical framework to dismantle networks combining topological properties 

and non- 
topological features. 

I find the contribution original and worth publishing, after the author addressed 
the following issues: 

* P1, p3. "This has catastrophic consequences for the security of real-world networks, since most of 
them display such degree distributions." 

> I suggest "several" instead of "most". 

* Fig1a (Age vs k): There are two dots at age ~ 0 and at least one dot if at k~2 with frequency > 1. 
> If these dots are not mistakes I think they deserve to be commented. 

* About the formalism, they define P(k,F) as the density of nodes with degree k and features between 
[F,F+dF] andmphi(k,F) as the occupation probability of nodes with degree k and features between 

[F,F+dF]. 
> I do not see the differences between these two functions. 

* The article is new in the sense of taking the feature of nodes into account for the attacks. 
In featureless attacks there is vast bibliography on the subject, some of which were already cited in 

this MS. 
> However, I suggest the authors to refer at least to these two articles on standard attacks on general 
networks 

1) Influence maximization in complex networks through optimal percolation 

by Morone & Makse, Nature 524, 65 (2015) 
The paper reportedly find, analytically, the optimal set to fragment a network according to the 

collective index (CI). 

2) Empirical determination of the optimal attack for fragmentation of modular networks 

by de Abreu, Goncalves & da Cunha, Physica A 563, 125486 (2020) 
This other addresses the attack of networks in what they call brute force attack, this is finding by 

exhaustion the set of nodes that reduce the original graph to its smallest component. 
It is shown, by the way, that CI is not generally the best strategy. 

> I wonder how the proposed formalism could be compared and checked in performance against CI 
or the brute force approach when it is reduced to networks with the same feature.



In “Percolation of feature-enriched interconnected systems”, authors added a new dimension of 
node for percolation, and called it  feature. With this additional dimension, authors proposed a  
math framework to calculate the size of giant component. Based on this framework, authors studied 
the size of the giant component when feature distribution is independent of degree, positively 
correlated with degree and negatively correlated with degree. The analytical solutions are given for 
some cases. Then authors applied their method to random geometric graphs and concluded “for 
certain values of the link density the feature-based description works reasonably well”. At last 
authors applied their method to network dynamical process (SIS model on C. elegans network). 
Aided with Bayesian Machine Scientist (to estimate joint probability distribution), authors found that 
the agreements between theory and simulation are well for eq. 21, eq. 22 and eq. 23.  

I appreciate the concept of feature related percolation. My main concern is that although authors 
proposed a new theoretical percolation framework with nodes features beyond the network 
structure, they failed to show the advantages of this framework. To be honest, I am not very sure 
there is any advantage of this framework, because it looks that all the features related percolation 
cases can be solved well using the version of degree-correlated percolation.  

So I think this manuscript does not meet the criterion of NC paper. The authors need to show the 
uniqueness of feature-enriched percolation, or demonstrate that feature-enriched percolation is 
superior to degree-correlated percolation in some important way. 

Main comments 

1）The authors gave a good perspective, but need to put it into practice. They discussed the impact 
of non-topological features on percolation, and Figs. 1 a-c show that feature distributions are non-
trivial. However, the examples of percolation based on real features, as well as the benefits and 
applications, are not shown. Although authors used C. elegans network in section Features related to 
a dynamical process, the results are actual simulated data. They didn’t have any empirical study to 
support their method, therefore the necessity to introduce the new dimension is not very strong. In 
the three dynamic models of this section, i.e., SIS, birth-death processes and biochemistry, the 
features are all simulation results, which are determined by topological structure. Therefore, these 
examples are essential the topology-based model. In short, the idea of the manuscript is very good, 
but the results are not exciting. I'm expecting that the authors can show some uniqueness of their 
framework, or demonstrate the feature-enriched percolation is superior to the previous percolation 
theory.  

2）The mathematical solution of the feature-enriched percolation is very important for the 
manuscript, however it is not impressive. The generating function of Eq.2 is the key of the solution, 
however it can be simplified to ∑ ܲ(݇)߶෨(݇)ݖ , where ߶෨(݇) =   ,ி, meaning the߶(݇|ܨ)ܲ ܨ݀
probability that a node with degree k is present in the network. By this simple transformation, the model 
can be solved in a degree-based percolation. I agree there are some theoretical contributions, however 
these contributions are not significant.  

Other comments 

1) In page 6 authors point out the existence of “double phase transition as alpha approaches 1”. 
It seems to be an interesting and important result. However, the explanation is short and 
not clear to me. Given that 1 is outside of allowed exponent, a picture of S(a) in the vicinity 
of 1 is helpful to understand the nature of this double phase transition. 
 



2) In case of random geometric graphs (RGGs), author claim that “tree-like approximations in 
general are not as accurate as in the case of infinite-dimensional networks” and “for certain 
values of the link density the feature-based description works reasonably well”. And I think 
this is an important point to justify their framework. However, authors only gave a figure to 
show the agreements between simulation and their method. A comparison between their 
theory and the-state-of-the-art is necessary to back their claim and the limitation is also 
worth a discussion. For example, what’s the low bound of link density for their method to 
work? 

3) Author didn’t discuss the implication of their method for improving robustness of complex 
system: how can these finds help us to design a better system? In most cases, feature is out 
of our control (like the age in figure 1) and we can only change the topology of network. 
When should we do that and why? 

 



Dear Reviewers, 
 

Thank you very much for your insightful comments, which certainly have given us the              
opportunity to improve the quality of the manuscript. Please find below our response.             
First we give a list of changes that were not required by you but we deemed necessary                 
to better convey our message and to better organize the structure of the article.              
Afterwards we offer a point-by-point response to your comments. 
  



 

 
List of changes not reported in the point-by-point response 
 

1. We have reformatted the article in order to comply with the Nature            
Communications’ formatting guidelines. The main sections now are Introduction,         
Results and Discussion, and the old subsection have been redistributed among           
these 3. We have followed the instructions indicated in         
https://www.nature.com/documents/ncomms-formatting-instructions.pdf. 

2. A Supplementary Information file has been included, where we offer a deeper            
discussion on the universality classes. We also provide some analytical          
expressions of the models studied and some calculations. We have decided to            
move the appendices of the old version into this file, as well.  

3. Two videos are supplied to support some of the new results reported in the              
Supplementary Information. 

4. Panels of Fig. 2 have been resized to the same dimension and fitted in one row.  
5. Figure 4 has been complemented with a sketch that aims to explain the proposed              

removal mechanism in the context of random geometric graphs (now Fig. 4a). 
6. Solved typos in Eq. 12, in Eq. SI17, which was Eq. 27 in the old version, and in                  

the feature definition in the caption of Fig. 6. 
7. Several typos corrected, scattered throughout the text. 
8. We have added a paragraph at the beginning of the discussion section, in order              

to make the transition between the Results and Discussion smoother and provide            
a sort of short introduction to the Discussion. 
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Response to Reviewer #1 
 
In “Percolation of feature-enriched interconnected systems”, authors added a new          
dimension of node for percolation, and called it feature. With this additional dimension,             
authors proposed a math framework to calculate the size of giant component. Based on              
this framework, authors studied the size of the giant component when feature            
distribution is independent of degree, positively correlated with degree and negatively           
correlated with degree. The analytical solutions are given for some cases. Then authors             
applied their method to random geometric graphs and concluded “for certain values of             
the link density the feature-based description works reasonably well”. At last authors            
applied their method to network dynamical process (SIS model on C. elegans network).             
Aided with Bayesian Machine Scientist (to estimate joint probability distribution), authors           
found that the agreements between theory and simulation are well for eq. 21, eq. 22               
and eq. 23. 
 
I appreciate the concept of feature related percolation. My main concern is that although              
authors proposed a new theoretical percolation framework with nodes features beyond           
the network structure, they failed to show the advantages of this framework. To be              
honest, I am not very sure there is any advantage of this framework, because it looks                
that all the features related percolation cases can be solved well using the version of               
degree-correlated percolation. 
 
We would like to thank the referee for reviewing our paper and for his/her insightful               
comments. The depth of the comments motivated us to critically revise some parts of              
our work and better explain why our framework is novel, more general and more useful               
than existing ones.  
 
So I think this manuscript does not meet the criterion of NC paper. The authors need to                 
show the uniqueness of feature-enriched percolation, or demonstrate that         
feature-enriched percolation is superior to degree-correlated percolation in some         
important way. 
 
Main comments 
 
1)The authors gave a good perspective, but need to put it into practice. They discussed               
the impact of non-topological features on percolation, and Figs. 1 a-c show that feature              
distributions are non-trivial. However, the examples of percolation based on real           
features, as well as the benefits and applications, are not shown. Although authors used              
C. elegans network in section Features related to a dynamical process, the results are              
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actual simulated data. They didn’t have any empirical study to support their method,             
therefore the necessity to introduce the new dimension is not very strong. In the three               
dynamic models of this section, i.e., SIS, birth-death processes and biochemistry, the            
features are all simulation results, which are determined by topological structure.           
Therefore, these examples are essential the topology-based model. In short, the idea of             
the manuscript is very good, but the results are not exciting. I'm expecting that the               
authors can show some uniqueness of their framework, or demonstrate the           
feature-enriched percolation is superior to the previous percolation theory. 
 
We thank the reviewer for the comment and for raising these concerns which, of course,               
deserve to be adequately addressed. To this aim, we would like to answer in two               
blocks, first referring to the second half of his/her comment, and later to the first part.  
 
The reviewer asks us to show the uniqueness or superiority of our framework with              
respect to the classical percolation theory. This work is built upon the simple and useful,               
yet surprisingly overlooked, idea of bringing together for first time topological information            
and node metadata, i.e., non-topological information, in the study of network           
robustness. This idea is put forward by (i) justifying its need by looking at non-trivial               
degree-feature patterns of 3 real networked systems (and proposing there scenarios in            
which feature-enriched percolation can be relevant), (ii) modeling the phenomenon we           
aim to describe with easily parsable mathematics, and (iii) giving 8 applications of             
increasing complexity (3 ad hoc P(k,F), RGG, and 4 cases with dynamical features)             
where the analytical predictions are tested.  
It is crucial to remark here that these examples, along with many other applied problems               
that one can envision, could not even be conceptualized within previous           
percolation frameworks, therefore we do think our article offers uniqueness in that            
direction. (Added some comments on this in the last paragraph of the Discussion). 
 
Regarding the requested superiority of our framework, it is not clear to us if by “superior”                
the reviewer is referring to the fact that our framework should be more general than               
previous percolation frameworks, or if he/she understands “superior” in a quantitative           
way, where feature-based approaches should be able to faster dismantle the networks,            
or to better protect the networks. If it is the former, we have already argued that                
feature-enriched percolation is more flexible than approaches based purely on          
topological information. If it is the latter, we think that such analyses can be performed               
but it is difficult to draw general conclusions because, as already shown in some parts,               
the type and strength of the feature-degree correlation have an enormous impact on the              
response of the system.  
In other words, comparing performances of feature-enriched percolation against         
classical versions is doable, and surely for certain P(k,F) our framework can outperform             

3 



 

existing methods (at the end, it is a generalization that takes an extra degree of freedom                
to tune), but we believe that providing such a systematic/general analysis is far from              
trivial, falls out of the scope of the present work and it would be more suitable for a more                   
technical journal. 
 
The referee also points out that we do not have any empirical study to support our                
method.  
First, we would like to highlight that real-world examples are a key piece of the article:                
the 3 degree-features patterns of Fig. 1 and the 3 real topologies where the dynamics               
run (not only the C. elegans, as the referee points out), Fig. 7. The former is used to                  
motivate our work, demonstrating that empirical systems display non-trivial         
patterns worth to be taken into consideration in the percolation process. The latter             
is used to show that our framework actually adapts well in real architectures, even              
if P(k,F) is not known or cannot be calculated analytically.  
Second, we interpret the referee’s comment as he/she would expect an extra            
application of the theory dealing with both empirical topology and empirical features,            
and we imagine he/she requests it because it can be seen as the most general case                
where our framework could be applied. If this is so, we have to respectfully disagree               
with this point of view and in the following we would like to argue why, after briefly                 
introducing our point of view.  
In fact, models in physics are useful representations of reality, whose main goal is to               
accurately reproduce the empirical observations, often at a global scale, by proposing a             
set of rules among microscopic constituents, often at a local scale. Models have free              
parameters, as well as initial/boundary conditions, that make them adaptable to           
describe the same system in a variety of different regimes or scenarios. Assuming right              
the epistemic principle that all systems can be described, more or less accurately, by              
models, then we believe it is much more interesting to provide a dynamical model as               
input for our framework than an empirical system with fixed topology and fixed features              
which would be rather limited in scope and can be seen as nothing more than particular                
case of the underlying, general model. Notice that we do not impose any constraints on               
the dynamical models we have chosen as examples, hence providing a much broader             
applicability of our framework. 
We are confident that the referee will agree with us that a plethora of works, nowadays,                
published in network science are based on a similar perspective:  
 

1) models for scale-free networks are routinely used instead of empirical ones           
because the underlying power-law connectivity distribution (and its deviations)         
are well suited to account for some ubiquitous properties of complex systems            
even if higher-order topological correlation are overlooked by those models; 
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2) stochastic block models are widely used to represent systems exhibiting a           
mesoscale organization even if those models, as in the previous case, are based             
on some ubiquitous feature (i.e., modular structure) and neglect many other           
topological features;  

3) Small-world models such as Watts-Strogatz’s are still used nowadays, after more           
than 20 years since their introduction, to reproduce another salient feature of            
complex systems: the existence of shortcuts connecting remote sides of the           
network thus reducing the average characteristic length of the system, as well as             
the tendency of real networks to exhibit triadic closure. 

 
Therefore, in comparison with the above cases, we opted to work with the equivalent of               
a “scale-free model” rather than “a specific empirical scale-free network characterized           
by a specific scaling exponent and a given amount of global clustering”. 
We hope that it is more clear that we do not imply that we do not find interesting                  
applying our theory to systems with empirical topology and empirical features. We are             
certain that this can be done, and we hope that the referee is convinced that our paper                 
provides compelling evidence that our framework can work properly in these cases.            
However, we believe that such analysis falls out of the scope of a methodological paper               
like ours – where the main novelty is related to the new framework and its broad                
applicability – and it is better suited for technical journals, where one can explore in               
depth the implications of feature-enriched percolation for particular systems in order to            
draw system-specific conclusions. Since we agree with the reviewer that this is very             
interesting, we plan to explore this possibility in a future study and we are grateful to the                 
reviewer for raising this point, which now should be better clarified in the revised              
manuscript.  
 
2)The mathematical solution of the feature-enriched percolation is very important for the 
manuscript, however it is not impressive. The generating function of Eq.2 is the key of               

the solution, however it can be simplified to , where ,        P (k)ϕ(k)z  Σk
k   (k) FP (F |k)ϕϕ = ∫

 

 
d k,F  

meaning the probability that a node with degree k is present in the network. By this                
simple transformation, the model can be solved in a degree-based percolation. I agree             
there are some theoretical contributions, however these contributions are not significant. 
 
We agree with the referee that his/her change of variable results into the equation of               
degree-based percolation. However, he/she is considering an indefinite integral, so          
he/she is missing the fact that the limits of the integral may depend on the feature                
threshold as well, hence adding an extra dependence on the feature in his/her that             (k)  ϕ   
makes degree-based and feature-based approaches not equivalent.  
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This lack of equivalence can be seen in the following terms, as well. Mathematically,              
one cannot recover our equations departing from a description that only takes into             
account the degree. Put otherwise, degree-based percolation is a particular case of            
feature-based percolation. Beyond mathematical considerations, the two approaches        
are quite different for the actual physical realization of the process of percolation.             
Simple targeting protocols based on features, such as the one considered throughout,            
are mapped to cumbersome removal protocols in degree-based criteria. That is why it is              
practically impossible to physically obtain/observe the consequences of feature-based         
percolation directly from degree criteria alone.  
To be even more precise, let us use some of the examples studied. The degree-based               
occupation probability for the simple feature-based occupation probability        

in the positively correlated and negatively correlated cases areθ(− F ))  ϕk,F =  ( − F 0           

and , respectively. In our(k) [(k ) ]  ϕ = (1 )+ k 1+α + 1 1+α − (k )+ F 0
1+α   (k)  ϕ = [1 ]− ( )k+1

kF +10
α −1

    
opinion, it is extremely difficult to justify the choice of such occupation probabilities in              
the context of degree-based percolation if one does not know . By extension, it is           ϕk,F      
difficult then to devise a physically meaningful degree-based protocol that reproduces           
the phenomenology of very simple feature-based protocols. 
 
We hope that the above arguments allow the reviewer to reconsider his concern on this               
point. 
 
Other comments 
 
1) In page 6 authors point out the existence of “double phase transition as alpha               
approaches 1”. It seems to be an interesting and important result. However, the             
explanation is short and not clear to me. Given that 1 is outside of allowed exponent, a                 
picture of S(a) in the vicinity of 1 is helpful to understand the nature of this double phase                  
transition. 
 
We thank the reviewer for motivating us to further explore the critical behavior of the               
model in the vicinity of . We found that there is no scaling whatsoever close to that     α ~ 1             
point, and since the region is not attainable because would lead to a     α ≤ 1          
non-normalizable , it is not accurate to talk about a double phase transition. We (k, )P F              
have also offered an alternative derivation of the continuous approach to 0 of the order               
parameter in this limit, using the generating functions instead of the criticality condition             
(old Eq. 13), which we believe is much clearer. 
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We have added in the Supplementary Information the aforementioned analysis, and we            
have deleted from the main text the references to the double phase transition. Thanks              
once again for this insightful comment. 
 
2) In case of random geometric graphs (RGGs), author claim that “tree-like            
approximations in general are not as accurate as in the case of infinite-dimensional             
networks” and “for certain values of the link density the feature-based description works             
reasonably well”. And I think this is an important point to justify their framework.              
However, authors only gave a figure to show the agreements between simulation and             
their method. A comparison between their theory and the-state-of-the-art is necessary           
to back their claim and the limitation is also worth a discussion. For example, what’s the                
low bound of link density for their method to work? 
 
Thank you for the comment. The section of random geometric graphs has been             
extended by introducing a quantity (Eq. 19 in the new version) that allows us to show                
that there are no abrupt changes in the error between theory and simulations, but the               
discrepancy steadily decreases as the link density grows (Fig. 4c). Therefore, a lower             
bound where our method starts to fail does not exist, in the sense that the convenience                
for using our framework on RGG will depend on the error (now quantifiable and              
comparable) each specific application is willing to tolerate.  
 
3) Author didn’t discuss the implication of their method for improving robustness of             
complex system: how can these finds help us to design a better system? In most cases,                
feature is out of our control (like the age in figure 1) and we can only change the                  
topology of network. When should we do that and why? 
 
Thank you for pointing out this certainly relevant missing piece of information. We have              
added the last paragraph in the Discussion section, where we address this issue and              
we thank you once again for the overall and insightful comments which motivated us to               
enhance the results and the presentation of our work 
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Response to Reviewer #2 
 
The manuscript titled ‘Percolation on feature-enriched interconnected systems’ by         
Artime and collaborators deals with a novel framework of the percolation transition in             
networks. Instead of looking at the behavior of "standard" percolation by the degree             
distribution, the authors focus their attention on the feature-enriched percolation. They           
developed an analytical expression for the size of the giant component (or the order              
parameter) by using the generating function method, and then applied their theory into             
spatial networks and dynamical processes on networks in which the features have            
physical meanings. 
 
Overall, the work is original and interesting. 
 
We thank the reviewer for his/her positive comments regarding the originality and            
worthiness of our work. 
 
There are however several aspects of the paper that require revisions/clarifications. My            
major concerns are: 
 
(1) The analytical expression for the feature-enriched percolation is indeed based on the             
standard generating function method which was widely used in percolation theory. For            
example, Eqs. (1) and (5) are the same as the classical one, the only difference is the                 
occupation probability. The feature enrichment does not add any new information in            
terms of connectivity. It means that this theory is still heavily relied on the degree               
distribution. I do not find any novel parts in the theory. 
 
We thank the referee for his/her comment. We would like to point out that we agree with                 
the fact that the structure of Eqs. (1) and (5) reminds those found in featureless               
percolation. This is somehow expected because we rely on the generating function            
methodology to conduct the calculations. Alternative mathematical frameworks that deal          
with percolation could have been used, such as [I. Kryven. Bond percolation in coloured              
and multiplex networks. Nature Communications, 10(1), 1-16 (2019)] or [Hamilton &           
Pryadko. Tight lower bound for percolation threshold on an infinite graph. PRL, 113(20),             
208701 (2014)], and the resulting equations encompassing the feature dimension would           
resemble to some extent their featureless counterparts as well. That said, we would like              
to highlight that in this article we are not merely looking for mathematical novelty per se,                
and we do not claim to do so, but rather we believe that our contribution positions itself                 
as a pioneering and systematic exploration of the overlooked relation between           
topological and non-topological information in the modelling of network robustness.  
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We respectfully disagree with some parts of the comment, which we would like to              
clarify. Note that a key and novel quantity is the degree-feature distribution, which is              
present throughout the article. Taking into account this quantity is a difference with             
respect to classical percolation. Therefore, we believe that it is not accurate to claim that               
“the only difference is the occupation probability”, since the equations depend on P(k,F),             
combining in this way the topological and metadata dimensions. For similar reasons, we             
do not share the statement that “It means that this theory is still heavily relied on the                 
degree distribution”. Besides the simplest case of uncorrelated degree and feature, all            
the other examples of the application of the theory are discussed on the basis of the                
feature dimension, and its relation with the topology.  
 
(2) For the percolation process: how to attack the (all) nodes if their features are larger                
than a given threshold? By randomly or depending on their features values. 
 
We are afraid that we are not sure of understanding this comment. However, we are               
answering what we believe the reviewer is referring to. In case he/she is not satisfied               
with the answer, we kindly ask him/her to rephrase it, so we can address it properly.  
 
Our framework allows one to consider the most general removal strategy that            
simultaneously depends on the degree and feature. This is encoded in the occupation             
probability , and represents a generalization of both classical percolation and  ϕk,F           
degree based attacks. The former is recovered by setting , where         ϕ  ϕk,F =    0, ].  ϕ∈ [ 1  
For degree-based attacks, the most frequent scenarios studied in the literature are            
either the removal of nodes having a degree above or below a certain threshold , that              k0   
can be recovered if or , respectively. Among the    θ(− k ))  ϕk,F =  ( − k0   θ(k )  ϕk,F =  − k0     
infinite possible choices of occupation probabilities , we decided to focus primarily       ϕk,F       
on the one that removes nodes with feature value above a certain threshold, i.e.,              

, and has been chosen for the sake of illustration, exploring itsθ(− F ))  ϕk,F =  ( − F 0             
effects in the different settings discussed (random geometric graph, dynamical          
processes, etc.). Thus, answering the reviewer’s question, with this occupation          
probability we can attack – i.e., remove – the nodes having a feature larger than All              F . 0   
the nodes with this condition are removed simultaneously. Note that, given the same             
undamaged network, the application of this removal protocol will always result in the             
same perturbed network. Put otherwise, there is nothing stochastic in the removal            
process (once the topology is given), unlike in classical percolation. 
 
(3) For the independent case: I really do not understand why the authors chose the               
network having an exponential degree distribution [Eq. (6)]. I suggest they use the             
Erd˝os-R´enyi model or scale free model. 
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We thank the reviewer for his/her suggestion. We acknowledge that Erdös-Rényi and            
scale-free networks are ubiquitous in most network science applications. We decided to            
use a network with an exponential degree distribution for two main reasons: (i) it is not                
strange in the study of network percolation (see, e.g. the chapter on Percolation in the               
famous M. Newman’s book Networks (2nd edition, 2018)) and, (ii) more importantly, it is              
an example whose complexity lies between the Erdos-Renyi (too “simple” since all the             
generating functions are the same) and scale-free models (too “complicated” since the            
generating functions depend on special functions, and non-trivial behaviors appear          
depending on the exponent of the degree distribution, which is something we believed             
that, if included, could obscure the discussion since it is not directly related to features).  
 
For these reasons, we have decided to keep the analysis of the network with              
exponential degree distribution, and offer in the Supplementary Information file, for the            
interested reader, an analysis of the two mentioned models, where we give the             
generating functions and the critical points, and show the good agreement between            
theory and simulations.  
 
We are confident that the reviewer will appreciate this extension and we thank him/her              
again for this comment. 
 
(4) For the universality class: the authors “conclude that the critical properties are the              
same as the mean-field percolation process, even though if the feature distribution is             
scale-free.” I do not agree this point, since the universality class do not only depend on                
the degree distribution [see Cohen, et al. Phys. Rev. E 66, 036113] but also the removal                
or adding progress [see Achlioptas, et al. Science 323, 1453–1455]. 
 
We completely agree with the referee. The message we wanted to convey here is that               
power-law degree distributions can change the universality class of percolation, as           
reported in [Cohen, et al. Phys. Rev. E 66, 036113] (article already cited), but the fact                
of having power-law feature distributions does not seem to modify the mean-field critical             
properties (understanding mean-field as the properties observed in lattice percolation          
for dimensions d>=6).  
 
This has been clarified at the beginning of the paragraph, when we talk for the first time                 
about mean-field percolation. We have cited [Achlioptas, et al. Science 323,           
1453–1455] as well. 
 
Many thanks for this comment, since it allowed us to better explain our point. 
 
Do the authors consider the universality class for the Positively correlated case and             
Negatively correlated case? 
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We thank the reviewer for asking this question. We have analyzed the critical behavior              
of the correlated models and their randomized counterparts, finding that i) there is no              
critical behavior at for the positively correlated case, ii) the positively correlated   α ~ 1+          
case and its randomized version belong to the classical percolation universality class,            
but iii) the negatively correlated case and its randomized version do not. Based on              
these results, we have removed all the references to the “double phase transition”             
phenomenon of the positively correlated case. 
 
The analysis has been reported in detail in the Supplementary Information file. 
 
Once again, many thanks for this comment, since it allowed us to better explain our               
point. 
 
(5) Why the feature is a M dimensional but not N dimensional vector? 
 
M corresponds to the number of features defined in each node, while N is the system                
size of the network. M and N are totally independent one from the other. The reason to                 
define an M-dimensional vector of features for each node is simply because we aimed              
to present the theoretical derivations in a setting as general as possible. Note however              
that from the Applications Section onward, we stick to the case of M=1 for simplicity. 
 
(6) In Figure 2 (c), each point is computed by averaging over 100 independent              
realizations, and the bars are the error bars, am I right? If it is (the error bar is indeed                   
very large, the system size is indeed not large enough), how the authors can obtain the                
critical exponents with a high precision, for example, 0.347+-0.015. 

    
Exactly, for each system size we compute 100 independent realizations, resulting in the             
marker (average value) and the error bar. However, the deviation from the mean value              
(i.e. the size of the error bar) is barely dependent on the number of realizations, as far                 
as the sample is high enough. The deviation is related, though, with the stochastic              
nature of the process, that induces normally distributed values of S around the mean              
value. The error bars are not symmetric because of the log-log axes. 

We acknowledge that proper critical exponent fitting is a quite hard task. One must be               
very careful on how to do it, especially when the goal is to obtain critical exponents with                 
high accuracy, as some strands of research do when analytical predictions are not             
available (e.g., in the three-dimensional Ising model). In our case, the goal is more              
modest: to verify that feature-based percolation in networks with uncorrelated degree           
and feature belongs to the ordinary percolation universality class. 

Following that, at the critical point, and , we take the      (a, )  S N = N −β /νa a   (α, )  S N = N −β /να α     
logarithm on both sides of the relations and fit a straight line to the resulting values. The                 
slope is the ratio of critical exponents, and its error, indicated in the paper, it is the error                  
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of the slope. They have been obtained with the ordinary least square (OLS) method and               
its covariance matrix, respectively. 

Let us explain the rationale behind our procedure, which is based on two reasons. The               
first one is statistical: OLS assumes homoscedasticity (same variance for all points in             
the graph), which is approximately true in our data. When one is far from this regime                
(heteroscedasticity), there are several ways to fit the data and to obtain the errors:              
bootstrap methods [M. R. Chernick, Bootstrap methods: A guide for practitioners and            
researchers. John Wiley & Sons (2011)], weighted least square algorithms [M. Krystek,            
& M. Anton, Measurement Science and Technology, 18(11), 3438 (2007)], etc. The            
heteroscedasticity of our data could lead to larger estimates of the error, and this is               
related with the second reason we were mentioning, which is more physical. Since our              
objective is to verify the universality class, it suffices to fit the data with a method that                 
can produce estimates smaller than the one that takes into account more assumptions             
(heteroscedasticity, asymmetric errors, etc.). If, with our more restrictive method, we           
verify the hypothesis we are looking for, then there is no need to fit with more                
complicated, subtle methods. We believe that the level of description given in the article              
is enough to convince the reader that we are dealing with the percolation universality              
class. 

An alternative way to proceed, which we report in the Supplementary Information, is to              
compute the order parameter for different system sizes and apply to them finite-size             
scaling relations in order to collapse the curves. We show that using the mean-field              
percolation exponents the curves collapse well, verifying the results that we reported in             
the first version of the article.  

We would like to thank the referee once again for this valuable comment. 
 
(7) In Figure 3, it seems that the max value of S is about 0.5. Which means that half of                    
the nodes are not belonged to the largest cluster. Why can it not be reached to 1? 

    
In Fig. 3 it is shown the dependence of the giant component S as a function of , the                 α   
exponent of the degree-feature distributions introduced in Eqs. 10 and 14. The removal             
of nodes, however, it is based on their feature value according to            θ(− F ))  ϕk,F =  ( − F 0  
with , as indicated in the caption. Nothing guarantees that, under this removal, S F 0 = 3              
should reach 1 for a certain value of , since we are always removing those nodes with        α          
a feature value greater than 3. Actually, S would be 1 only in two (related) cases: i)                 F 0 
is larger than the maximum allowed feature, or ii) p(F) is cut off at .F 0  
 
The observed maximum value of S, close to 0.5, is circumstantial to the value ,              F 0 = 3  
and changes when other values of are used. To highlight that not only the maximum      F 0          
but the entire curve changes with the feature threshold, and hence the effect induced by               
the correlations might grow or diminish, we have added insets in both panels of Fig. 3 to                 
better understand the role of . This is related to a newly introduced quantity, Eq. 13     F 0            
in the new version. 
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(8) Generally, the generating function method is only valid for an infinite system. I notice               
that the authors introduced the system size N into the generating functions [see Eq.              
(17)]. If N is small, the theory may be wrong. This can be used to explain the                 
inconsistent which is shown in Fig. 4 (N = 150). 
 
We could not agree more with the comment of the reviewer. The introduction of the               
“system size” (between quotation marks because it should not be understood as the             
system size in networks not embedded in physical spaces, but more like a link density)               
in the generating functions is made by setting the maximum degree that a node can               
have, , and cutting the sums (Eqs. 2 and 4) at that value. This is necessary N − 1                
because we are dealing with spatial networks in bounded domains, hence the            
thermodynamic limit of the graph is ill-defined due to this boundedness, as far  N → ∞             
as the interaction radius r is finite. 

We have added a new panel in Fig. 4, in order to address the accuracy of the results as                   
a function of the system size. As pointed out by the referee, the general tendency is to                 
observe larger discrepancies between theory and simulations as N decreases. We           
discuss this behavior in the text. This analysis is related to the newly introduced quantity               
in Eq. 19. 
 
Minor remarks: 
 
(1) What do the black line stand for in Fig.1 (a-c)? 
 
We want to thank the referee for identifying this missing piece of information. The black               
line corresponds to the mean value of the data as a function of the degree. This                
information has been added in the caption of Figure 1. 
 
(2) In page 2, the authors should cite [Physical review E 64 (2), 026118] in the theory                 
(generating function) part. 
 
We thank the reviewer for pointing out this seminal article of Newman and collaborators              
that was oversought in the first version. It is cited in the new version in the The Model                  
section. 
 
(3) Before Eq. (22), the authors should cite [Phys. Rev. E 66, 036113].  
 
Thank you for the suggestion. We believe, though, that in this raised point he/she made               
a mistake with the Equation number. Eq. 22 gave the time evolution of the state variable                
x(t) for the population dynamics model, while the suggested article [Phys. Rev. E 66,              
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036113] deals with the calculation of the critical exponents of scale-free networks as a              
function of the degree exponent. 
 
The paper that the reviewer suggests was already cited in the Introduction, but we              
imagine that here the reviewer is maybe referring to Eq. 24 in the appendix (old               
version). We have added a citation to the suggested paper right before Eq. 24 (now in                
the new version it is Eq. SI-14), but we kindly ask the reviewer to let us know if he/she                   
was considering another part of the article for the citation of [Phys. Rev. E 66, 036113]. 
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Response to Reviewer #3 
 
The paper propose a mathematical framework to dismantle networks combining          
topological properties and non-topological features. I find the contribution original and           
worth publishing, after the author addressed the following issues: 
 
We thank the reviewer for the time devoted in reviewing our work and for his/her               
positive comments regarding its originality and worthiness. 
 
* P1, p3. "This has catastrophic consequences for the security of real-world networks,             
since most of them display such degree distributions." 
> I suggest "several" instead of "most". 
 
We thank the referee for this suggestion.  
 
We acknowledge that there is an active and on-going debate on whether real networks              
are scale-free or not. The most constricted criterion, based on statistical tests [Broido &              
Clauset. (2019). Scale-free networks are rare. Nature Communications, 10(1), 1-10],          
finds that up to 75% of the large number of networks analyzed in the paper show some                 
level of scale-freeness. Networks with long-tailed distributions, the ones we are talking            
about in the paragraph, can be considered as displaying some level of scale-freeness.             
On this basis we believe that using “several” could be misleading, since it can be               
interpreted as “more than two but fewer than many”. Instead of “most”, though, that we               
agree that could be interpreted as an overestimation, we have used “many”. We have              
cited the article of Broido & Clauset to offer more context. 
 
* Fig1a (Age vs k): There are two dots at age ~ 0 and at least one dot if at k~2 with                      
frequency > 1. 
> If these dots are not mistakes I think they deserve to be commented. 
 
We confirm that these points are not a mistake from our side and that they do appear in                  
the dataset that we downloaded. We have contacted the curator of the dataset (Anna              
Evtushenko) asking if she had any clue about the origin of these points. Her response is                
that the points were present as well in the raw data she used to construct the dataset,                 
but she believes they are a bug and removed them from her analyses.  
 
We have proceeded similarly and have removed them. There were so few of them, in               
comparison to the total number of directors (164 out of 195615), that their removal is               
barely perceptible in the mean curve. 
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* About the formalism, they define P(k,F) as the density of nodes with degree k and                
features between [F,F+dF] and phi(k,F) as the occupation probability of nodes with            
degree k and features between [F,F+dF]. 
> I do not see the differences between these two functions. 
 
The joint degree-feature distribution is the probability that a node has    (k, )P F         k  
connections to other nodes in the networks, and an internal feature with value within the               
interval . On the other hand, the occupation probability is the F , F ][ F + d         (k, )  ϕ F    
probability that a node with degree and feature value has not been removed from      k     F       
the network. Their main difference is that the former is a probability density and needs               
to be normalized to unity, while the latter is just a two-variable function with the only                
requirement that its image lies within the unit interval. The occupation probability            (k, )  ϕ F  
can be seen as the proportionality factor between the original degree-feature distribution            
of the original network and the degree-feature distribution of the percolated structure.  
 
We have clarified in the text that corresponds to the probability that a node has       (k, )  ϕ F          
not been removed from the original network, many thanks for pointing this out. 
 
* The article is new in the sense of taking the feature of nodes into account for the                  
attacks. In featureless attacks there is vast bibliography on the subject, some of which              
were already cited in this MS. 
> However, I suggest the authors to refer at least to these two articles on standard                
attacks on general networks 
 
1) Influence maximization in complex networks through optimal percolation by Morone &            
Makse, Nature 524, 65 (2015) The paper reportedly find, analytically, the optimal set to              
fragment a network according to the collective index (CI). 
 
2) Empirical determination of the optimal attack for fragmentation of modular networks            
by de Abreu, Goncalves & da Cunha, Physica A 563, 125486 (2020) This other              
addresses the attack of networks in what they call brute force attack, this is finding by                
exhaustion the set of nodes that reduce the original graph to its smallest component. It               
is shown, by the way, that CI is not generally the best strategy. 
 
Thank you for the suggestions. We have included both references in the text. 
 
> I wonder how the proposed formalism could be compared and checked in             
performance against CI or the brute force approach. when it is reduced to networks with               
the same feature. 
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Certainly, taking into account the node features opens the door to devise new attack              
strategies that can be systematically compared against the metric of Collective           
Influence, the brute force approach, or any other removal protocol based on topological             
descriptors. Regarding the comparison of performances, we believe that it is hard to             
draw general statements about how feature-based attacks compare to purely          
topological-based ones since the type of degree-feature correlation will significantly          
influence the response of the system. However, we would like to notice that in a similar                
way to what it is done for featureless networks, the quest for the optimal set of nodes is                  
valid in feature-enriched systems as well. Actually, combining the information of which            
nodes are in the optimal set and what are the values in the feature space of these                 
nodes can lead to a better understanding of the robustness and resilience of empirical              
systems beyond their topology. 

We have added a short reference to optimal percolation and to the performance of the               
feature-based attacks in the discussion section. 

 
 

17 



REVIEWERS’ COMMENTS: 

Reviewer #1 (Remarks to the Author): 

According to the authors’ response, I reevaluate this manuscript and think it could be published in NC. 
The authors show some advantages of the feature-enriched percolation in dealing with percolation 

problems, and the feature-enriched percolation also has intuitive physical picture. It looks that it is 
much suitable to deal with data-driven percolation model. 

Hope the following suggestion could be useful for the author. 
Maybe it is good to put the additional discussion on independent case in the SI, because independent 
case is essentially equivalent to randomly removing node, and the relevant parameters only control 

the number of nodes removed. It is a little bit trivial. There is no need to discussion in the main text. 
Fig5 a and b are redundant and perhaps only Fig. 5a is enough. 

Regarding Fig1Bottom, the three network figures are very similar. Especially the last two figures, I 
cannot see any distinct difference between each other if we swap positions. 

Fig2c, ‘(c)’ should be outside the figure box. 

Reviewer #3 (Remarks to the Author): 

The author have solved all the issues I pointed out in the first version, so I recommend the publication 
for the present MS.



Reviewer #1: 
 
According to the authors’ response, I reevaluate this manuscript and think it could be published               
in NC. The authors show some advantages of the feature-enriched percolation in dealing with              
percolation problems, and the feature-enriched percolation also has intuitive physical picture. It            
looks that it is much suitable to deal with data-driven percolation model. 
 
We would like to thank the reviewer for his/her time in reviewing our manuscript and for his/her                 
positive comments. 
 
Hope the following suggestion could be useful for the author. 
Maybe it is good to put the additional discussion on independent case in the SI, because                
independent case is essentially equivalent to randomly removing node, and the relevant            
parameters only control the number of nodes removed. It is a little bit trivial. There is no need to                   
discussion in the main text. 
Fig5 a and b are redundant and perhaps only Fig. 5a is enough. 
Regarding Fig1Bottom, the three network figures are very similar. Especially the last two figures,              
I cannot see any distinct difference between each other if we swap positions. 
Fig2c, ‘(c)’ should be outside the figure box. 
 
Thank you for the suggestions. We have decided to implement some of them. For the ones that                 
we have decided to keep, in the following we justify our reasons. Going point-by-point: 

● We have modified the bottom panel of Fig. 1, so now the ‘Degree’ and the ‘Feature’                
cases display completely different deleted nodes, while before two out of the four             
deleted nodes were shared.  

● We have placed the ‘(c)’ outside the frame in Fig. 2c. 
● Regarding the Fig. 5b, we agree that it shows the same data as Fig. 5a, but we believe                  

that offers a much clearer detail of the shapes of the curves for degrees that are not                 
small ( ), needed to justify the Gaussian approximation of Eq. 21. We think that it is 0k ≥ 1                
a good idea to keep it.  

● Regarding the suggestion of transferring the “Independent case” section to the SI file, we              
agree that, at practical effects, independent degree-feature distributions are very similar           
to random percolation. Despite this fact, we believe it is helpful to provide this first simple                
example instead of directly starting with the positively and negatively correlated cases            
because they are more difficult to interpret: generating functions depending on special            
functions, no closed expressions for the critical points, non-trivial critical behavior, etc.            
Therefore, we think that for the general reader of Nature Communications the presence             
of that part in the main text is beneficial. 

 
Reviewer #3 (Remarks to the Author): 
 
The author have soved all the issues I pointed out in the first version, so I recommend the                  
publication fo the present MS.  
 



Thank you to the reviewer for his/her time devoted to revising our manuscript and for the                
positive recommendation. 


