Supplementary Information

Title:

Genetic dissection of QTLs associated with spikelet-related traits and grain size in sorghum

Authors:

Hideki Takanashi^{1,*}, Mitsutoshi Shichijo¹, Lisa Sakamoto¹, Hiromi Kajiya-Kanegae^{1,#}, Hiroyoshi Iwata¹, Wataru Sakamoto², Nobuhiro Tsutsumi^{1,*}

¹Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan

²Institute of Plant Science and Resources, Okayama University, Kurashiki, Okayama 710-0046, Japan [#]Present address: Research Center for Agricultural Information Technology, National Agriculture and Food Research Organization, Chiyoda-ku, Tokyo 100-0013, Japan

*Co-corresponding authors

Supplementary Figure S1

Box and violin plots show the effects of the nearest marker genotypes for each QTL. (a) Sessile spikelet length, (b) sessile spikelet width, (c) pedicel length, (d) anther length, (e) style length, (f) stigma length, and (g) stigma width. " $15_"$ or " $16_"$ indicate cultivation in 2015 or 2016. Asterisks indicate significant differences between genotypes (Welch' s t-test, *P < 0.05, **P < 0.005).

a Dw3 (Sobic.007G163800)

C Y1 (Sobic.001G398100)

Supplementary Figure S2

The gene structures of *Dw3* (a), *Dw1* (b), and Y1 (c) in NOG and their mutations in BTx623. Navy boxes represent coding exons. Primers used in study are listed in Supplementary Table S2.

Supplementary Figure S3

Phenotypic correlations for the nine spikelet-related and six grain-related traits measured in this study. Pearson' s correlation coefficients for each trait measured in the RIL population. Purple and green colors represent positive and negative correlations (r) between traits, respectively. SSL; sessile spikelet length, SSW; sessile spikelet width, PSL; pedicellate spikelet length, PEL; pedicel length, ANL; anther length, STYL; style length, STIL; stigma length, STIW; stigma width, STIP; stigma pigmentation, GRL; grain length, GRW; grain width, GRT; grain thickness, GLWR; grain length/width ratio, GLTR; grain length/thickness ratio, and GWTR; grain width/thickness ratio. For the spikelet-related traits, "15_" or "16_" indicate the results of 2015 or 2016. *P < 0.001, **P < 0.0001.

Supplementary Figure S4

Relationships between the dwarf genes (*Dw3* and *Dw1*) and grain size in sorghum. (a) Box and violin plots show the effects of the nearest marker genotypes of *Dw3* and *Dw1* to the grain-related traits (GRL; grain length, GRW; grain width, GRT; grain thickness) and plant height. Different letters denote significant differences according to the Tukey-Kramer test (P < 0.05). Asterisks indicate significant differences between genotypes (Welch' s t-test, *P < 0.05, ***P < 0.0005). (b) The table shows average values and standard deviations (SD, in parentheses) of the population with the mutated allele and that of the functional allele for each dwarf gene. †The ratio of the average value of the population with the mutated allele to that of the functional allele (%). ‡Data of the plant height (PH) were taken from the results obtained by our previous study using the same population (47).

	OTI	QTLs detected in this study							Related QTLs reported in other studies						
Chr	cluster		LOD	PVE (%)	Nearest marker	Marker int	terval (bp) ^b	Interval (bp)		Trait	Population –	QTL (bp) ^d	Interval (bp)	Reference
		Q				Start	end				DT 000//000000	Start	end		
1		16 gANL1	4.34	8.35	Chr01.65134709	64,608,936	65,571,022	962,086	QPLEN1.10	Panicle length	B1x623/IS3620C	64,461,975	66,222,235	1,760,260	Brown et al 2006
								· · · · · · · · · · · · · · · · · · ·	QDMGR1.16	Dry matter growth rate	Diversity set (biomass) (n=194)	65,297,392	65,404,496	107,104	Fiedler et al 2014
		15_qSTIP1	50.62	68.83	Chr01.67767009	67,509,497	68,618,079	1,108,582	QGCOL1.39	Grain color	R890562/ICSV745	67,939,567	68,014,675	75,108	Mace and Jordan 2010
									QGPRAT.19	Proantnocyanidins	Diverse set	68,038,010	68,077,541	39,531	Rhodes et al 2014
	-	15_qSSW1 15_qANL1	6.21	0.01	Chr01.73492838 Chr01.78907937	72,086,062 77,228,064	74,542,240	2,456,178 1,994,453		Fresh biomass	Shinong 137/L- Han	71,558,611	74,007,396	2,448,785	Guan et al 2011
			0.51	9.01						Baniala width	Sorgnum Association Paner (SAP)	73,957,740	74,039,407	401 571	Hort et al 2001
											B1X023/1330200 Rod Kafir/Takakibi (E2)	77 174 549	20 272 672	2 704 120	Shohzad and Okuna 2015
			5.10	9.48						Depiele length	Red Kafir/Takakibi (F2)	77,174,540	00,070,070	2 704 120	Shehzad and Okuna 2015
										Paniele width	Divorso sot	77,174,340	70 617 065	1 020 290	Zhang of al 2015
		15_qSTIL1	5.76	9.64	Chr01.80075044	78,907,937	80,451,024	1,543,087	OFRMS1 1/	Fresh biomass	Shihong137/L-Tian	78 9/9 693	80 878 678	1,929,209	Wang et al 2015
-										Height (plant height)	Nested Association Manning set LIS	66 /67 661	67 569 058	1 101 307	Bouchet et al 2017
2	-	16_qSTYL2	5.35	8.71	Chr02.67908557	67,181,119	68,205,478	1,024,359	OPI EN2 17	Panicle length	Diversity research set $(n-107)$	68 082 309	68 502 429	420 120	Sakhi et al 2013
3									OSLEN3.2	Shoot length	Sorahum Association Panel (SAP)	757 282	1 882 419	1 125 137	Chopra et al 2017
	-	15_qSTIW3	9.59	14.51	Chr03.1014391	196,942	1,842,334	1,645,392	OPLEN3 1	Panicle length	Sorghum Association Panel (SAP)	838 142	1 887 393	1 049 251	Morris et al 2013
		15 aSTIL3	12 71	23 14	Chr03 73116039	72 187 849	73 272 999	1 085 150	OSTHK3 20	Stem circumference	Sorghum Association Panel (SAP)	71 997 455	72 258 061	260,606	Zhao et al 2016
	-	15_qPSL6	6.50	16.87	Chr06.46819000	45,449,430	47,716,228	2,266,798	QHGHT6.48	Height (plant height)	FamilyD: SC1038/(LandracexBTx40	45.391.187	45.542.964	151.777	Higgins et al 2014
									QPLEN6.7	Panicle length	M35-1/B35	46.063.454	46.863.224	799.770	Reddy et al 2013
									QHGHT6.52	Height (plant height)	296B/IS18551	46,449,918	47.615.779	1.165.861	Madhusudhana and Patil 2013
•	QC6	16 aSSW6	6.59	12.13	Chr06.47921285	47.546.161	48.677.734	1.131.573	QHGHT6.57	Height (plant height)	296B/IS18551	47.028.784	48.266.492	1.237.708	Madhusudhana and Patil 2013
6		15 gSTIW6	6.35	9.24	Chr06.48086748	47,740,711	49,157,376	1,416,665	QFBMS6.1	Fresh biomass	Shihong137/L-Tian	47,686,626	50,991,177	3,304,551	Wang et al 2014b
		16 aSTYL6	9.42	16.12	Chr06.48086748	47,921,285	48,677,734	756,449	QPLEN6.12	Panicle length	654/LTR108	48,090,340	50,925,400	2,835,060	Zou et al 2012
		16 aSSL6	3.92	7.09	Chr06.48677734	48,086,748	50,250,487	2,163,739	QHGHT6.88	Height (plant height)	Nested Association Mapping set US	49,724,186	50,568,221	844,035	Bouchet et al 2017
		16 qPSL6	5.34	11.73	Chr06.49336636	48,086,748	50,331,377	2,244,629	QPLEN6.1	Panicle length	Diversity research set (n=107)	49,774,659	50,674,052	899,393	Witt Hmon et al 2014
	QC7	15_qPEL7	11.38	24.21	Chr07.59727807	59,407,685	60,042,098	634,413	QPLEN7.12	Panicle length	296B/IS18551	58,858,415	59,547,856	689,441	Srinivas et al 2009
									QHGHT7.72	Height (plant height)	Shihong137/L-Tian	58,866,126	59,546,987	680,861	Wang et al 2016
7		15_qSTYL7	6.69	12.36	Chr07.59727807	59,407,685	60,042,098	634,413	QHGHT7.28	Height (plant height)	BTx623/Rio	59,100,515	59,540,617	440,102	Murray et al 2008
									QHGHT7.75	Height (plant height)	Nested Association Mapping set US	59,529,297	59,532,773	3,476	Bouchet et al 2017
	-	15_qSSW7 4	1 63	7.03	Chr07.64706648	63,878,301	65,440,280	1,561,979	QPLEN7.16	Panicle length	M35-1/B35	63,191,529	65,460,255	2,268,726	Reddy et al 2013
			4.00	7.00					QGYLD7.3	Grain yield	M35-1/B35	63,221,926	65,460,255	2,238,329	Reddy et al 2013
9	QC9	16_qSSW9	6.83	12.62	Chr09.56571248	55,806,970	57,681,027	1,874,057	QHGHT9.30	Height (plant height)	BTx3197/Rio	55,353,960	57,947,320	2,593,360	Felderhoff et al 2012
		16_qSTIW9	7.63	11.69	Chr09.57166357	56,467,290	57,681,027	1,213,737	QHGHT9.19	Height (plant height)	IS8525/R931945-2-2	55,625,467	57,924,294	2,298,827	Wang et al 2014a
		16_qSSL9	8.87	17.03	Chr09.57166357	56,467,290	57,917,278	1,449,988	QHGHT9.11	Height (preflag leaf heigh	t Sorghum Association Panel (SAP)	56,779,950	57,194,940	414,990	Brown et al 2008
		16_qANL9	5.92	11.60	Chr09.57166357	56,571,248	57,917,278	1,346,030	QHGHT9.12	Height (plant height)	ICSV745/R890562-1-2	56,942,211	57,292,395	350,184	Wang et al 2014a
		15 qPEL9	5.12	9.93	Chr09.57599415	56,571,248	58,014,412	1,443,164	QHGHT9.31	Height (plant height)	MS138B/74LH3213	57,091,740	57,916,828	825,088	Takai et al 2012
^a When	overlappe	d QTLs were de	etected b	etween yea	ars, the one with the	smallest marke	r interval was o	lescribed as the r	epresentative Q	L. Marker intervals were es	stimated based on confidence intervals (2.0-	LOD). CQTL ID	provided by QTL	atlas (https://au	ussorgm.org.au/sorghum-qtl-
atlas/). ^d QTL positions estmimated by QTL atlas.															

Supplementary Table S1. QTL correspondence with other studies

Supplementary Table	e S2. Primers used in this study							
Primer name	Sequence	Comment						
Dw1-F	TGTCTTCCCTTCCAGATGCG	Used to amplify entire Dw1						
Dw1-R								
Dw1-SeqF1								
DWI-SeqRI								
Dw1-SeqF2								
Dw1-Seqn2								
Dw1 SogP2								
Dw1-SeqF3								
Dw1-SeqF4	GTCTTCCAATGGGCAGGAGG	Sequencing of Dw1						
Dw1-SeqF5	TCTGGTGGTTCAGGACTCCA							
Dw1-SeqR5	GCCATCTTTAGCGTAGGCAC							
Dw1-SeqF6	CAGCGGCATCTGCTCAATTC							
Dw1-SegB6								
Dw1-SegE7	CGCTTGGACGTGTTCAAAGG							
Dw1-SegB7	CAGCCTACATCATCAGTAAGACCA							
Dw3-F1	GGCTCTCCTGTTCTTCCGTC							
Dw3-R1	TGGTGCAGCGGTTCTACGAG							
Dw3-F2	CTACTTCACCGTCTTCTGCTGCTA							
Dw3-R2	ACTTACAAGGAAGGATCAATTCCCA	Used to amplify entire Dw3						
Dw3-F3	ACTACATGGCCACCTTCGTG							
Dw3-R3	CATGCACTACCTTCATTTTTCTGGT							
Dw3-Seq1F	GCCAAGCTCTCCTCCAGGA							
Dw3-Seq1R	CGACGGGTACGCGAAGTC							
Dw3-Seq2F	TCTGTGTGTGTGTGGATCGC							
Dw3-Seq2R	GCTCCAAGCATTCACTTCTTCA							
Dw3-Seq3F	TCGAGAGGTTCTACGACCCC							
Dw3-Seq3R	GCAAAATCGATACGGCAGCA							
Dw3-Seq4F	TGGTCATGCATTCACACAGC							
Dw3-Seq4R	CAGCAGCAGGTTCTCCTTGA							
Dw3-Seq5F	TTGAGCCTTGACCGACTGAC	Sequencing of Dw3 from even I to IV						
Dw3-Seq5R	GCGACGCATGAATGGAGATG	Sequencing of Dwo hold exolt to tv						
Dw3-Seq6F	CACGCAGGTCCGTATCGTAT							
Dw3-Seq6R	CCATTCATCTCCCTCTGCCC							
Dw3-Seq7F	AGGGATGGGAGAGCAATTGC							
Dw3-Seq7R	TGTGGCCCATATCCCATGTG							
Dw3-Seq8F	TGATCCCAGTGCAAGCAAGA							
Dw3-Seq8R	AGTACCACTCCTCCAGCATA							
Dw3-Seq9F	TGGTCGAAATTGACGAGACGA							
Dw3-Seq9R	GGATCAGCTTGGCGTAGGTG							
Dw3-Seq10F								
Dw3-Seq10R	GGIGCCCAICICGGAGAC							
Dw3-Seq11F	GGGCAGAGCAGCGCATC							
DW3-Seq11R	GTAGTAGACGCTGAGCACGG							
DW3-Seq12F								
Dw3-Seq12R								
Dw3-Seq13F								
Dw3-Seq13R								
Dw3-Seq14F		Sequencing of Dw3 exon V						
Dw2 Sog15E								
Dw2 Seq15P								
Dw3-Seq16E								
Dw2 Soci6P								
Dw2 Soc17E								
Dw3-Seq17B	GCTTCAGCTTCCTCATCCATC							
Dw3-Seq18E								
Dw3-Seq18B	TCTGCCGCTGAAAATCGAGA							
Y1-F1*								
Y1-B1*	GACGTCGGCCCGAAGGTAGTTGATCC	Used to amplify Y1 from exon I to exon II						
Y1-F2*								
Y1-B2*	AGTACAGTACATGTGAAGAAG	Used to amplify Y1 exon III						
Sobic 004G237000 Ew	GTCCACACACACACCTTC							
Sobic.004G237000 By	AGGAGCTAAAGTGAGGAGGC	Used to amplify and sequence Sobic.004G23700						
Sobic.004G247000 Fw	AGGTCGAGTAGGGTGTAGGT							
Sobic.004G247000 Rv	CCACCCACTAACCATTCCCT	Used to amplify and sequence Sobic.004G24700						
Sobic.004G247000 S1	GTTACTACAAACACGTCTTG							
Sobic.004G247000 S2	ACCTAGTTAGTACATGATTG	Used to sequence Sobic.004G247000						
Sobic.004G247000 S3	AATAATAATAGGGACCACTC							
Sobic.004G247700 Fw	TCAGCCAAATGTCCAGACCT	Licod to amplify and approace Schip 004004770						
Sobic.004G247700_Rv	CACCCCTGTAGATCGATCGA	Used to ampiny and sequence Sobic.004G24/70						
MSD2_Fw	GTCCTCACTTGCTCCCAGTC	Lised to amplify and sequence MSD2						
MSD2_Rv	ATCGGTACCGCGAGAGACTA	USED TO AMPINY AND SEQUENCE MODZ						
MSD2_S2	ATTTTACTTACGCCTGGCG							
MSD2_S3	CTAACATTTCGTCACGCACG	Lised to sequence MSD2						
MSD2_S4	CCACTGCTCGCTCATCTCAC	Used to sequence MODZ						
MSD2_S5	CAGATCAATCAATCACATGA							
'Y1 alleles for BTx623 and NOG were checked using previously reported primers (Ibraheem et al. 2010)								