1 <u>Supplemental Figures:</u>

3 Figure S1:

- 4 Domains of Mce-domain containing proteins of A. mycobacterial Mce proteins and B. E. coli
- 5 Mla, YebT/LetB and PqiB proteins. The Mce domain was identified by PFam02470 and the

Individual *mce4*, *mam4*, and *omamA* and *omamB M*. *smegmatis* mutants and complemented strains do not have a growth defect compared to WT when growing on Glucose and Glycerol carbon sources. **A-E.** Growth of 10^4 colony forming units (cfu) of *M*. *smegmatis* strains on glucose and glycerol as the sole carbon sources was measured over time using resazurin reduction as a fluorescent readout of metabolic activity (2, 3). Glucose and Glycerol growth curves measured by resazurin reduction of **A**. $\Delta mce4A$ and complemented strains **B**. $\Delta mce4E$, $\Delta mce4E^{polar}$ and complemented strains **C**. $\Delta mam4A^{polar}$ and complemented strains **D**. $\Delta omamA$,

23	$\Delta omamB$, and complemented strains E . $\Delta omamCD$ and $\Delta omamEF$ mutants and F . $\Delta mce4E$ with
24	Mce4E ^{C16A} complementation strains of <i>M. smegmatis</i> strains are depicted. Mutant strains contain
25	empty vectors (EV) as indicated.
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	

43 Figure S3:

Localization of Mce4A and Mce4E proteins. A. Immunoblots of Mce4A and B. Mce4E proteins 44 show that Mce4A and Mce4E antibodies are specific and do not cross react with other Mce 45 proteins. Arrow indicates Mce4A band to distinguish it from the higher species cross-reacting 46 band. Mutant strains contain empty vectors (EV) as indicated. C. Localization of Mce4A and 47 Mce4E protein in WT *M. smegmatis*. Subcellular fractions were isolated using 48 49 ultracentrifugation, during which clarified whole cell lysate (WCL) was separated into cell wall (CW), membrane (MEM), and soluble (SOL) fractions. Fractions were separated by SDS-PAGE 50 and were immunoblotted for Mce4A and Mce4E proteins. The total amount of CW, MEM, and 51

52	SOL fractions shown is equivalent to the amount of WCL loaded. WCL from a <i>M. smegmatis</i>
53	strain lacking all six Mce systems ($\Delta 6X mce$) acts as a control for Mce4A and Mce4E antibody
54	specificity (5). Loading controls for the various fractions include the SecA1 ATPase (MEM and
55	SOL) (6), the SecY translocation permease (MEM) (7), the MspA porin protein (CW and SOL)
56	(8), and the GroEL chaperone protein (SOL) (8). Quantification of D. Mce4A and E. Mce4E
57	proteins in subcellular fraction western blots using ImageJ software (9). * indicates p<0.001 and
58	error bars indicate the standard error of the mean of at least three independent experiments.
59	
60	
61	
62	
63	
64	
65	
66	
67	
68	
69	
70	
71	

73 Figure S4:

Mce4A-HA and Mce4E-HA expression plasmids complement the mutant phenotypes of $\Delta mce4A$ and $\Delta mce4E$ strains. **A-E.** Growth of 10⁴ colony forming units (cfu) of *M. smegmatis* strains with

76	cholesterol or glucose and glycerol as the sole carbon source(s) was measured over time using
77	resazurin reduction as a fluorescent readout of metabolic activity (2). Cholesterol growth curves
78	measured by resazurin reduction of A. $\Delta mce4A$ and $mce4A$ -HA multicopy expression strains C.
79	$\Delta mce4E$ and $mce4E$ -HA multicopy expression strains E. $\Delta mce4A$ and $mce4A$ -HA single copy
80	expression strains G. $\Delta mce4E$ and $mce4E$ -HA single copy expression strains of M. smegmatis
81	strains are depicted. Glucose and Glycerol growth curves (cfu) of B . <i>Amce4A</i> and <i>mce4A-HA</i>
82	multicopy expression strains D . $\Delta mce4E$ and $mce4E$ -HA multicopy expression strains F . $\Delta mce4A$
83	and <i>mce4A-HA</i> single copy expression strains H. $\Delta mce4E$ and <i>mce4E-HA</i> single copy expression
84	strains of <i>M. smegmatis</i> strains are depicted. Mutant strains contain empty vectors (EV) as
85	indicated.
86	
87	
88	
89	
90	
91	
92	
93	
94	
95	

96 Supplemental Tables

- **Table S1:** Percent identity between *M. smegmatis* Mce4 proteins determined with the NCBI
- 98 BLAST Two-sequence Alignment function, using the BLOSUM62 matrix (10)

	Mce4A	Mce4B	Mce4C	Mce4D	Mce4E	Mce4F
Mce4A	100	22.87	26.04	22.14	24.71	21.26
Mce4B	22.87	100	21.68	23.02	18.97	24.18
Mce4C	26.04	21.68	100	23.19	25.00	21.76
Mce4D	22.14	23.02	23.19	100	21.13	22.73
Mce4E	24.71	18.97	25.00	21.13	100	24.39
Mce4F	21.26	24.18	21.76	22.73	24.39	100

109 Table S2: <i>Mycol</i>	bacterium smegmatis	strains
-----------------------------------	---------------------	---------

Mycobacterium smegmatis	Genotype and/or	Source or reference
Strain	description	
$mc^{2}155$	Wildtype (WT)	Snapper et al., 1990 (11)
$\Delta mce4A$	$\Delta MSMEG_5900$	This study
$\Delta mce4E$	ΔMSMEG_5896	This study
$\Delta mce4E^{polar}$	Δ MSMEG_5896 with polar	This study
	effects that disrupt	
	MSMEG_5895	
$\Delta mam4A^{polar}$	Δ MSMEG_5894 with polar	This study
	effects that disrupt	
	MSMEG_5893	
$\Delta omamA$	$\Delta MSMEG_0235$	Perkowski et al., 2016 (3)
∆omamB	$\Delta MSMEG_0236$	This study
∆omamCD	ΔMSMEG_4771-4770	This study
∆omamEF	ΔMSMEG_2864-2865	This study
$\Delta 6X mce$	$\Delta mce1, \Delta mce3, \Delta mce4,$	Klepp et al., 2012 (5)
	$\Delta mce5$, $\Delta mce5b$, and $\Delta mce7$	

descriptionpMV261Mycobacterial multicopy plasmid with hsp60 promoter; Kan ^R Stover et al., 1991 (12)pLL2Mycobacterial single copy plasmid that integrates at the tweety attB site; Hyg ^R Ligon et al., 2013 (7)pJSC77pMV261 with a cloning site for generating HA tagged fusions; Kan ^R Glickman et al., 2000 (13)pUC19E. coli cloning vector; Carb ^R New England BiolabspCR2.1 - TOPOCloning vector for topo cloning; Amp ^R and Kan ^R InvitrogenpMP62 (also referred to as pYUB657)Allelic exchange suicide vector containing sacB counterselection marker; Hyg ^R Pavelka et al., 1999 (14)pMP1064pBluescript KS res1-hyg-res1 cassette flanked by SmaI sitesMartinelli and Pavelka, 2016 (15)pJV53Mycobacterial multicopy plasmid encoding recombineering proteins gp60 and gp61; Kan ^R Sanders AN et al., 2014 (17)pMP854Mycobacterial multicopy plasmid encoding resolvase; Kan ^R Sanders AN et al., 2014 (17)	Plasmids	Genotype and/or	Source or reference
pMV261Mycobacterial multicopy plasmid with hsp60 promoter; Kan ^R Stover et al., 1991 (12)pLL2Mycobacterial single copy plasmid that integrates at the tweety attB site; Hyg ^R Ligon et al., 2013 (7)pJSC77pMV261 with a cloning site for generating HA tagged fusions; Kan ^R Glickman et al., 2000 (13)pUC19E. coli cloning vector; Carb ^R New England BiolabspCR2.1 - TOPOCloning vector for topo cloning; Amp ^R and Kan ^R InvitrogenpMP62 (also referred to as pYUB657)Allelic exchange suicide vector containing sacB counterselection marker; Hyg ^R Pavelka et al., 1999 (14)pMP1064pBluescript KS res1-hyg-res1 cassette flanked by SmaI sitesMartinelli and Pavelka, 2016 (15)pJV53Mycobacterial multicopy plasmid encoding recombineering proteins gp60 and gp61; Kan ^R Sanders AN et al., 2014 (17)pMP854Mycobacterial multicopy plasmid encoding resolvase; Kan ^R Sanders AN et al., 2014 (17)		description	
plasmid with hsp60 promoter; Kan ^R plasmid with hsp60 promoter; Kan ^R pLL2Mycobacterial single copy plasmid that integrates at the tweety attB site; Hyg ^R Ligon et al., 2013 (7)pJSC77pMV261 with a cloning site for generating HA tagged fusions; Kan ^R Glickman et al., 2000 (13)pUC19E. coli cloning vector; Carb ^R New England BiolabspCR2.1 - TOPOCloning vector for topo cloning; Amp ^R and Kan ^R InvitrogenpMP62 (also referred to as pYUB657)Allelic exchange suicide vector containing sacB counterselection marker; Hyg ^R Pavelka et al., 1999 (14)pMP1064pBluescript KS res1-hyg-res1 cassette flanked by SmaI sitesMartinelli and Pavelka, 2016 (15)pJV53Mycobacterial multicopy plasmid encoding recombineering proteins gp60 and gp61; Kan ^R Sanders AN et al., 2014 (17)pMP854Mycobacterial multicopy plasmid encoding resolvase; Kan ^R Sanders AN et al., 2014 (17)	pMV261	Mycobacterial multicopy	Stover et al., 1991 (12)
Kan ^R pLL2Mycobacterial single copy plasmid that integrates at the tweety attB site; Hyg ^R Ligon et al., 2013 (7)pJSC77pMV261 with a cloning site for generating HA tagged fusions; Kan ^R Glickman et al., 2000 (13)pUC19E. coli cloning vector; Carb ^R New England BiolabspCR2.1 - TOPOCloning vector for topo cloning; Amp ^R and Kan ^R InvitrogenpMP62 (also referred to as PYUB657)Allelic exchange suicide vector containing sacB counterselection marker; Hyg ^R Pavelka et al., 1999 (14)pMP1064pBluescript KS res1-hyg-res1 cassette flanked by SmaI sites and gp61; Kan ^R Martinelli and Pavelka, 2016 (16)pMP854Mycobacterial multicopy plasmid encoding recombineering proteins gp60 and gp61; Kan ^R Sanders AN et al., 2014 (17)		plasmid with <i>hsp60</i> promoter;	
pLL2Mycobacterial single copy plasmid that integrates at the tweety attB site; HygRLigon et al., 2013 (7)pJSC77pMV261 with a cloning site for generating HA tagged fusions; KanRGlickman et al., 2000 (13)pUC19E. coli cloning vector; CarbRNew England BiolabspCR2.1 - TOPOCloning vector for topo cloning; AmpR and KanRInvitrogenpMP62 (also referred to as pYUB657)Allelic exchange suicide vector containing sacB counterselection marker; HygRPavelka et al., 1999 (14)pMP1064pBluescript KS res1-hyg-res1 cassette flanked by Smal sitesMartinelli and Pavelka, 2016 (15)pJV53Mycobacterial multicopy plasmid encoding recombineering proteins gp60 and gp61; KanRSanders AN et al., 2014 (17)pMP854Mycobacterial multicopy plasmid encoding resolvase; KanRSanders AN et al., 2014 (17)		Kan ^R	
plasmid that integrates at the tweety attB site; HygRGlickman et al., 2000 (13)pJSC77pMV261 with a cloning site for generating HA tagged fusions; KanRGlickman et al., 2000 (13)pUC19E. coli cloning vector; CarbRNew England BiolabspCR2.1 - TOPOCloning vector for topo cloning; AmpR and KanRInvitrogenpMP62 (also referred to as pYUB657)Allelic exchange suicide vector containing sacB counterselection marker; HygRPavelka et al., 1999 (14)pMP1064pBluescript KS res1-hyg-res1 cassette flanked by SmaI sitesMartinelli and Pavelka, 2016 (15)pJV53Mycobacterial multicopy plasmid encoding recombineering proteins gp60 and gp61; KanRVan Kessel and Hatful, 2007 (16)pMP854Mycobacterial multicopy plasmid encoding resolvase; KanRSanders AN et al., 2014 (17)	pLL2	Mycobacterial single copy	Ligon et al., 2013 (7)
tweety attB site; HygRpJSC77pMV261 with a cloning site for generating HA tagged fusions; KanRGlickman et al., 2000 (13)pUC19E. coli cloning vector; CarbRNew England BiolabspCR2.1 - TOPOCloning vector for topo cloning; AmpR and KanRInvitrogenpMP62 (also referred to as pYUB657)Allelic exchange suicide vector containing sacB counterselection marker; HygRPavelka et al., 1999 (14)pMP1064pBluescript KS res1-hyg-res1 cassette flanked by SmaI sitesMartinelli and Pavelka, 2016 (15)pJV53Mycobacterial multicopy plasmid encoding recombineering proteins gp60 and gp61; KanRVan Kessel and Hatful, 2007 (16)pMP854Mycobacterial multicopy plasmid encoding resolvase; KanRSanders AN et al., 2014 (17)		plasmid that integrates at the	
pJSC77pMV261 with a cloning site for generating HA tagged fusions; Kan ^R Glickman et al., 2000 (13)pUC19E. coli cloning vector; Carb ^R New England BiolabspCR2.1 - TOPOCloning vector for topo cloning; Amp ^R and Kan ^R InvitrogenpMP62 (also referred to as pYUB657)Allelic exchange suicide vector containing sacB counterselection marker; Hyg ^R Pavelka et al., 1999 (14)pMP1064pBluescript KS res1-hyg-res1 cassette flanked by SmaI sitesMartinelli and Pavelka, 2016 (15)pJV53Mycobacterial multicopy plasmid encoding recombineering proteins gp60 and gp61; Kan ^R Van Kessel and Hatful, 2007 (16)pMP854Mycobacterial multicopy plasmid encoding resolvase; Kan ^R Sanders AN et al., 2014 (17)		tweety <i>attB</i> site; Hyg ^R	
for generating HA tagged fusions; Kan ^R New England BiolabspUC19E. coli cloning vector; Carb ^R New England BiolabspCR2.1 - TOPOCloning vector for topo cloning; Amp ^R and Kan ^R InvitrogenpMP62 (also referred to as pYUB657)Allelic exchange suicide vector containing sacB counterselection marker; Hyg ^R Pavelka et al., 1999 (14)pMP1064pBluescript KS res1-hyg-res1 cassette flanked by SmaI sitesMartinelli and Pavelka, 2016 (15)pJV53Mycobacterial multicopy plasmid encoding recombineering proteins gp60 and gp61; Kan ^R Van Kessel and Hatful, 2007 (16)pMP854Mycobacterial multicopy plasmid encoding <i>resolvase</i> ; Kan ^R Sanders AN et al., 2014 (17)	pJSC77	pMV261 with a cloning site	Glickman et al., 2000 (13)
fusions; Kan ^R pUC19E. coli cloning vector; Carb ^R New England BiolabspCR2.1 - TOPOCloning vector for topo cloning; Amp ^R and Kan ^R InvitrogenpMP62 (also referred to as pYUB657)Allelic exchange suicide vector containing sacB counterselection marker; Hyg ^R Pavelka et al., 1999 (14)pMP1064pBluescript KS res1-hyg-res1 cassette flanked by SmaI sitesMartinelli and Pavelka, 2016 (15)pJV53Mycobacterial multicopy plasmid encoding recombineering proteins gp60 and gp61; Kan ^R Van Kessel and Hatful, 2007 (16)pMP854Mycobacterial multicopy plasmid encoding resolvase; Kan ^R Sanders AN et al., 2014 (17)		for generating HA tagged	
pUC19E. coli cloning vector; Carb ^R New England BiolabspCR2.1 - TOPOCloning vector for topo cloning; Amp ^R and Kan ^R InvitrogenpMP62 (also referred to as pYUB657)Allelic exchange suicide vector containing sacB counterselection marker; Hyg ^R Pavelka et al., 1999 (14)pMP1064pBluescript KS res1-hyg-res1 cassette flanked by SmaI sitesMartinelli and Pavelka, 2016 (15)pJV53Mycobacterial multicopy plasmid encoding recombineering proteins gp60 and gp61; Kan ^R Van Kessel and Hatful, 2007 (16)pMP854Mycobacterial multicopy plasmid encoding <i>resolvase</i> ; Kan ^R Sanders AN et al., 2014 (17)		fusions; Kan ^R	
pCR2.1 - TOPOCloning vector for topo cloning; Amp ^R and Kan ^R InvitrogenpMP62 (also referred to as pYUB657)Allelic exchange suicide vector containing sacB counterselection marker; Hyg ^R Pavelka et al., 1999 (14)pMP1064pBluescript KS res1-hyg-res1 cassette flanked by SmaI sitesMartinelli and Pavelka, 2016 (15)pJV53Mycobacterial multicopy plasmid encoding recombineering proteins gp60 and gp61; Kan ^R Van Kessel and Hatful, 2007 (16)pMP854Mycobacterial multicopy plasmid encoding <i>resolvase</i> ; Kan ^R Sanders AN et al., 2014 (17)	pUC19	E. coli cloning vector; Carb ^R	New England Biolabs
cloning; Amp ^R and Kan ^R pMP62 (also referred to as pYUB657)Allelic exchange suicide vector containing sacB counterselection marker; Hyg ^R Pavelka et al., 1999 (14)pMP1064pBluescript KS res1-hyg-res1 cassette flanked by SmaI sitesMartinelli and Pavelka, 2016 (15)pJV53Mycobacterial multicopy plasmid encoding recombineering proteins gp60 and gp61; Kan ^R Van Kessel and Hatful, 2007 (16)pMP854Mycobacterial multicopy plasmid encoding <i>resolvase</i> ; Kan ^R Sanders AN et al., 2014 (17)	pCR2.1 - TOPO	Cloning vector for topo	Invitrogen
pMP62 (also referred to as pYUB657)Allelic exchange suicide vector containing sacB counterselection marker; HygRPavelka et al., 1999 (14)pMP1064pBluescript KS res1-hyg-res1 cassette flanked by SmaI sitesMartinelli and Pavelka, 2016 (15)pJV53Mycobacterial multicopy plasmid encoding recombineering proteins gp60 and gp61; KanRVan Kessel and Hatful, 2007 (16)pMP854Mycobacterial multicopy plasmid encoding resolvase; KanRSanders AN et al., 2014 (17)		cloning; Amp ^R and Kan ^R	
pYUB657)vector containing sacB counterselection marker; HygRpMP1064pBluescript KS res1-hyg-res1 cassette flanked by SmaI sitesMartinelli and Pavelka, 2016 (15)pJV53Mycobacterial multicopy plasmid encoding recombineering proteins gp60 and gp61; KanRVan Kessel and Hatful, 2007 (16)pMP854Mycobacterial multicopy plasmid encoding resolvase; KanRSanders AN et al., 2014 (17)	pMP62 (also referred to as	Allelic exchange suicide	Pavelka et al., 1999 (14)
counterselection marker; Hyg ^R counterselection marker; Hyg ^R pMP1064pBluescript KS res1-hyg-res1 cassette flanked by SmaI sitesMartinelli and Pavelka, 2016 (15)pJV53Mycobacterial multicopy plasmid encoding recombineering proteins gp60 and gp61; Kan ^R Van Kessel and Hatful, 2007 (16)pMP854Mycobacterial multicopy plasmid encoding <i>resolvase</i> ; Kan ^R Sanders AN et al., 2014 (17)	pYUB657)	vector containing <i>sacB</i>	
HygRpMP1064pBluescript KS res1-hyg-res1 cassette flanked by SmaI sitesMartinelli and Pavelka, 2016 (15)pJV53Mycobacterial multicopy plasmid encoding recombineering proteins gp60 and gp61; KanRVan Kessel and Hatful, 2007 (16)pMP854Mycobacterial multicopy plasmid encoding <i>resolvase</i> ; KanRSanders AN et al., 2014 (17)		counterselection marker;	
pMP1064pBluescript KS res1-hyg-res1 cassette flanked by SmaI sitesMartinelli and Pavelka, 2016 (15)pJV53Mycobacterial multicopy plasmid encoding recombineering proteins gp60 and gp61; KanRVan Kessel and Hatful, 2007 (16)pMP854Mycobacterial multicopy plasmid encoding <i>resolvase</i> ; KanRSanders AN et al., 2014 (17)		Hyg ^ĸ	
cassette flanked by SmaI sites(15)pJV53Mycobacterial multicopy plasmid encoding recombineering proteins gp60 and gp61; Kan ^R Van Kessel and Hatful, 2007 (16)pMP854Mycobacterial multicopy plasmid encoding <i>resolvase</i> ; Kan ^R Sanders AN et al., 2014 (17)	pMP1064	pBluescript KS res1-hyg-res1	Martinelli and Pavelka, 2016
pJV53Mycobacterial multicopy plasmid encoding recombineering proteins gp60 and gp61; Kan ^R Van Kessel and Hatful, 2007 (16)pMP854Mycobacterial multicopy plasmid encoding <i>resolvase</i> ; Kan ^R Sanders AN et al., 2014 (17)		cassette flanked by SmaI sites	(15)
plasmid encoding recombineering proteins gp60 and gp61; Kan ^R (16)pMP854Mycobacterial multicopy plasmid encoding <i>resolvase</i> ; Kan ^R Sanders AN et al., 2014 (17)	pJV53	Mycobacterial multicopy	Van Kessel and Hatful, 2007
recombineering proteins gp60 and gp61; Kan ^R recombineering proteins gp60 and gp61; Kan ^R pMP854 Mycobacterial multicopy plasmid encoding <i>resolvase</i> ; Kan ^R Sanders AN et al., 2014 (17)		plasmid encoding	(16)
pMP854 Mycobacterial multicopy plasmid encoding <i>resolvase</i> ; Kan ^R Sanders AN et al., 2014 (17)		recombineering proteins gp60	
pMP854 Mycobacterial multicopy plasmid encoding <i>resolvase</i> ; Kan ^R		and gp61; Kan ^K	
plasmid encoding <i>resolvase</i> ; Kan ^R	pMP854	Mycobacterial multicopy	Sanders AN et al., 2014 (17)
K an ^r		plasmid encoding <i>resolvase</i> ;	
		Kan ^K	
pLR62; $\Delta mce4A$ allelic pMP62 containing upstream This study	pLR62; <i>Amce4A</i> allelic	pMP62 containing upstream	This study
exchange suicide vector and downstream fragments of	exchange suicide vector	and downstream fragments of	
$mce4A$ (MSMEG_5900);		$mce4A$ (MSMEG_5900);	
		Hyg ^r	
$pBM44; P_{hsp60}-mce4A_{ms}-HA \qquad pJSC / / containing mce4A \qquad Miller et al., 2019 (18)$	$pBM44; P_{hsp60}$ -mce4A _{ms} -HA	pJSC// containing <i>mce4A</i>	Miller et al., 2019 (18)
multicopy	multicopy	DM44 mith II'm dIII aita	
pLR101; P _{hsp60} -mce4A _{ms} pBM44 with Hindill site I his study	pLR101; P _{hsp60} -mce4A _{ms}	pBM44 with Hindill site	This study
liceted at the Unel site to	пинсору	lighted in by Klenow and Self-	
remove the UA tog from		ingaled at the Hpar site to	
$\frac{1}{mca/4}$		mcoAA	
$\mathbf{PIP}_{\mathbf{A}} = \mathbf{PI}_{\mathbf{A}} + P$	pI P 111. P. c. magda UA	meedA HA from nDMAA	This study
$\frac{p_{LX111}, 1 h_{sp_{00}} - m_{ce4} A_{ms} - 11A}{m_{ce4} A - 11A} \text{ from pDW144} \text{ from study}$	p_{LK111} , r_{hsp60} -mce4 A_{ms} - ΠA	cloned into pL I 2 out with	This study
NotLand EcoRV	Singlecopy	NotLand EcoRV	
nI P112: AmcadE precursor Unstream and downstream This study	pI P 112: AmendE productor	Lipstream and downstream	This study
recombineering plasmid fragments of $mce4F$	recombineering plasmid	fragments of $mce4F$	

	(MSMEG_5896) with an	
	EcoRV site at the junction	
	cloned into pUC19 cut with	
	EcoRI and HindIII	
pLR113; <i>∆mce4E</i>	Hygromycin resistance	This study
recombineering plasmid	cassette from pMP1064 was	
	cloned into pLR112 cutwith	
	EcoRV	
pLR142; <i>mce4E</i> TOPO	mce4E in PCR-2.1 TOPO	This study
intermediate	vector	
pLR106; P <i>hsp60-mce4Ems</i>	<i>mce4E</i> from pLR142	This study
multicopy	(MSMEG_5896) cloned into	
	pMV261 cut with EcoRI and	
	HindIII restriction sites	
pLR93; P _{hsp60} -mce4E _{ms} -HA	pJSC77 containing mce4E	This study
multicopy	(MSMEG_5896) cloned into	
	MscI and HindIII restriction	
	sites	
pLR116; P <i>hsp60-mce4Ems</i> -HA	<i>mce4E-HA</i> from pLR93	This study
singlecopy	cloned into pLL2 cut with	
	NotI and EcoRV	
pLR114; P _{hsp60} -mce4 E^{C16A}_{ms}	Site Directed Mutagenesis of	This study
multicopy	pLR106 to construct <i>mce4E</i>	
	C16A	
pMB250; <i>∆mce4EF</i> precursor	Upstream and Downstream	This study
recombineering plasmid	fragments of <i>mce4E</i>	
	(MSMEG_5896) with an	
	EcoRV site at the junction	
	cloned into pUC19 cut with	
	EcoRI and HindIII	
pLR97; <i>∆mce4EF</i>	Hygromycin resistance	This study
recombineering plasmid	cassette from pMP1064	
	cloned into pMB250 cut with	
	EcoRV	
pLR110; P $_{hsp60}$ -mce4EF $_{ms}$	pMV261 containing mce4EF	This study
multicopy	(MSMEG_5896 and	
	MSMEG_5895) cloned into	
	MscI and HindIII restriction	
	sites	
pLR96; <i>∆mam4AB</i> precursor	Upstream and Downstream	This study
recombineering plasmid	fragments of mam4A	
	(MSMEG_5894) with an	
	EcoRV site at the junction	
	cloned into pUC19 cut with	
	EcoRI and HindIII	

pLR98; <i>Amam4AB</i>	Hygromycin resistance	This study
recombineering plasmid	cassette from pMP1064	
	cloned into pLR96 cut with	
	EcoRV	
pLR143; mam4A TOPO	<i>mam4A</i> in PCR2.1 TOPO	This study
intermediate	vector	
pLR107; P $_{hsp60}$ -mam4A $_{ms}$	pMV261 containing <i>mam4A</i>	This study
multicopy	(MSMEG_5894) from	
	pLR143 cloned into pmv261	
	cut with EcoRI and HindIII	
1 D 100 D 44	restriction sites	
pLR130; P $_{hsp60}$ -mam4A $_{ms}$	mam4A from pLR10/ cloned	This study
singlecopy	into pLL2 cut with Notl and	
	ECORV	
pLR120; P hsp60-mam4Bms	(MSMEC 5802) along dinto	This study
пинсору	(MSMEG_3893) cloned linto	
	sites	
pI R132: P hand 0-mam4Barra	mam4B from pL R126 cloped	This study
singlecopy	into pLL2 cut with NotI and	This study
singlecopy	EcoRV	
pLR124: P hsp60-mam4ABms	pMV261 containing mam4AB	This study
multicopy	(MSMEG 5894 and	5
1.7	MSMEG_5893) cloned into	
	MscI and HindIII restriction	
	sites	
pEP139; P _{<i>hsp60</i>} -omamA _{ms}	pMV261 containing omamA	Perkowski et al., 2016 (3)
multicopy	(MSMEG_0235)	
pLR128; <i>∆omamB</i> precursor	Upstream and Downstream	This study
recombineering plasmid	fragments of <i>omamB</i>	
	(MSMEG_0236) with an	
	EcoRV site at the junction	
	cloned into pUC19 cut with	
	EcoRI and HindIII	This starter
pLR129; <i>DomamB</i>	Hygromycin resistance	This study
recombineering plasmid	classe internet pMP 1004	
	with EcoPV	
pI R141. Pt. co-omamR	nMV261 containing omem R	This study
multicony	(MSMFG 0236) cloned into	This study
mancopy	MscI and HindIII restriction	
	sites	
pLR134: AomamCD	Upstream and Downstream	This study
precursor recombineering	fragments of <i>omamCD</i>	
plasmid	(MSMEG 4771-4770) with	
	an EcoRV site at the junction	

	cloned into pUC19 cut with	
	EcoRI and HindIII	
pLR135; <i>∆omamCD</i>	Hygromycin resistance	This study
recombineering plasmid	cassette from pMP1064	
	cloned into pLR134 cut with	
	EcoRV	
pLR138; <i>AomamEF</i> Upstream and Downstream		This study
precursor recombineering	fragments of <i>omamEF</i>	
plasmid	(MSMEG_2864-2865) with	
	an hpaI site at the junction	
	cloned into pUC19 cut with	
	EcoRI and HindIII	
pLR140; <i>∆omamEF</i>	Hygromycin resistance	This study
recombineering plasmid	cassette from pMP1064	
	cloned into pLR138 digested	
	with HpaI	

134 Table S4: Primers

Primer	plasmid	Sequence (5'-3')	Description
	the		
	primer		
	was used		
	to make		
Mce4A_UPflank_forward	pLR62	ACTAGTATGATCG	Amplification of flank
		GCGGCACTGTCG	Upstream of <i>mce4A</i>
Mce4A_UPflank_reverse	pLR62	GCCCGGGTTTGGC	(MSMEG_5900) for
		GTTTCCGTTCGAC	cloning into pMP62
			(ApaI)
Mce4A_DWNflank_forward	pLR62	GATATCGCGTTCG	Amplification of flank
		CGGAAAGGGACG	Downstream of <i>mce4A</i>
Mce4A_DWNflank_reverse	pLR62	ATAGGGCCCGAC	(MSMEG_5900) for
		GCGAGCGGTTCG	cloning into pMP62
		ATGG	(ApaI)
Mce4E_UPflank_forward	pLR112	CAGCTATGACCAT	Amplification of flank
		GATTACGCCACTA	Upstream of <i>mce4E</i>
		GTGTGGGGCAAGC	(MSMEG_5896) for
		TCGCCGACTTCAC	cloning into pUC19
Mce4E_UPflank_reverse	pLR112	CGGCGGCCTGAT	(EcoRI, HindIII)
		ATCCGCCGCTGCC	
		GATCGCCAGGGT	
		G	
Mce4E_DWNflank_forward	pLR112	AGCGGCGGATAT	Amplification of flank
		CAGGCCGCCGAC	Downstream of <i>mce4E</i>
		CCGTTCAAGATC	(MSMEG_5896) for
Mce4E_DWNflank_reverse	pLR112	GTAAAACGACGG	cloning into pUC19
		CCAGTGTCTAGA	(EcoRI, HindIII)
		GGGACTTGCTGTA	
		GATGAC	
Mce4E_pmv261_forward	pLR142	CGGAATTCTGACC	Amplification of
		TAAGGAGGTGAA	mce4E
		CGGGTGCGCACC	(MSMEG_5896) for
		CTGGC	cloning into PCR2.1
Mce4E_pmv261_reverse	pLR142	CGAAGCTTCTACG	ТОРО
		GCCCCTCGTGCTG	
Mce4E_pJSC77_forward	pLR93	CGGAGGAATCAC	Amplification of
		TTCGCAATGGCCA	mce4E
		CCGTGCGCACCCT	(MSMEG_5896) for
		GGCGATC	cloning into pJSC77
Mce4E_pJSC77_reverse	pLR93	CGTAGTCCGGCA	(MscI-HindIII)
		CGTCGTACGGGT	
		AAGCTTGCGGCC	

		CCTCGTGCTGCGT	
MoodE ^{C16A} SDM forward	pI D111		Site Directed
	pLK114	GAGCGCCCGCAA	Mutagenesis of
		GCAGCA	$m_{co} \Delta F^{C16A}$
McadE ^{C16A} SDM reverse	pI P114	TGCTGCTTGCGGG	mce4L
	pLR114	CGCTCAGTTCGGT	
		GGTC	
Mce4FF LIPflank forward	pMB250	CAGCTATGACCAT	Amplification of flank
Weeth _of hank_for ward	philb250	GATTACGCCACTA	Upstream of $mce4E$
		GTGTGGGGCAAGC	(MSMEG 5896) for
		TCGCCGACTTCAC	cloning into pUC19
Mce4EF UPflank reverse	pMB250	GATCATCTACGG	(EcoRI, HindIII)
	F	GATATCCATGTTG	
		AGCGAGTTGAGA	
		С	
Mce4EF_DWNflank_forward	pMB250	CAACATGGATAT	Amplification of flank
		CCCGTAGATGATC	Downstream of <i>mce4E</i>
		GACCGGCTGAC	(MSMEG_5896) for
Mce4EF_DWNflank_reverse	pMB250	GTAAAACGACGG	cloning into pUC19
		CCAGTGTCTAGA	(EcoRI, HindIII)
		GGGACTTGCTGTA	
		GATGAC	
Mce4EF_pmv261_forward	pLR110	CGGAGGAATCAC	Amplification of
		TTCGCAATGGCCA	mce4EF
		CCGTGCGCACCCT	(MSMEG_5896 and
		GGCGATC	MSMEG_5895) for
Mce4EF_pmv261_reverse	pLR110	ACTACGTCGACAT	cloning into pmv261
		CGATATCAAGCCT	(Mscl-HindIII)
	LDOC	GCCTTGGATCCA	
Mam4AB_UPflank_forward	pLR96	GTTGTAAAACGA	Amplification of flank
		CGGCCAGIGACT	Upstream of <i>mam4A</i>
		AGITGCCGCCCA	(MSMEG_5894) for
		ACAAGIICCUGAI	(EaoDI HindHI)
Mam (AR LIPflank roverse	pI P06	U TCAGTTGATATCG	
Main4Ab_OFIIank_levelse	pLK90	ATCGTGTCCACC	
		GCTCACTGCT	
Mam4AB DWNflank forward	nLR96	ΑΓΓΑΤΓΓΑΤΑΤΓΑ	Amplification of flank
	PLICE	ACTGATGCGCTCC	Downstream of $mam \Delta \Delta$
		AAGCTCGTC	(MSMEG 5894) for
Mam4AB DWNflank reverse	pLR96	GCTATGACCATG	cloning into nUC19
		ATTACGCCATCTA	(EcoRI, HindIII)
		GAGCACGATCCG	()
		CGCCCGCTCAAC	
		AC	

Mam4A pmv261 forward	pLR143	CGGAATTCTGACC	Amplification of
_1	1	TAAGGAGGTGAA	mam4A
		TAGTGAGCAGTG	(MSMEG 5894) for
		AGCCGCTGG	cloning into PCR2.1
Mam4A pmy261 reverse	pLR143	CGAAGCTTAGCTT	ТОРО
	P=111.0	GGAGCGCATCAG	
		TTACC	
Mam4B pmy261 forward	pLR126	CGGAGGAATCAC	Amplification of
	plittle	TTCGCAATGGCCA	mam4R
		CCATGCGCTCCAA	(MSMEG 5893) for
		GCTCGTC	cloning into pmy261
Mam/IB pmy/261 reverse	pI R126		(MscI-HindIII)
Mani+D_pinv201_ieverse	pLR120	CGATACTAGATC	
		GGCTTGATGGCGT	
		CGATCAG	
Mam4AB pmy261 forward	pI D124	CCGAATTCTGACC	Amplification of
Main4AB_pinv201_101 ward	pLK124		Ampinication of
		TAGTGAGCAGTG	(MSMEC 5804 and
		ACCCCCTCC	(MSMEG_3894 and MSMEC_5802) for
Manu AAD anno 261 anno 2		AGCCGCTCCACAT	MSMEG_3893) 101
Mam4AB_pmv261_reverse	plk124	ACTACGICGACAT	(Maal HindHI)
		CGATACIAGAIC	(MISCI-HINDIII)
		GGUTIGATGGCGT	
	1.0.100		
OmamB_UPflank_forward	pLR128	AAACGACGGCCA	Amplification of flank
		GIGICIAGACCCG	Upstream of <i>omamB</i>
		ACATICITCCAGA	(MSMEG_0236) for
	1.0.100		cloning into pUC19
OmamB_UPflank_reverse	pLR128	CCGGGCGTACGT	(EcoRI-HindIII)
		CGICGGATATCA	
		AGGCCAGCACGC	
		GCAACCGG	
OmamB_DWNflank_forward	pLR128	GCGTGCTGGCCTT	Amplification of flank
		GATATCCGACGA	Downstream of <i>omamB</i>
		CGTACGCCCGGC	(MSMEG_0236) for
		CCACTC	cloning into pUC19
OmamB_DWNflank_reverse	pLR128	GACCATGATTAC	(EcoRI-HindIII)
		GCCAACTAGTGG	
		TCGCTGGCGGTGT	
		TGGAG	
OmamB_pmv261_forward	pLR141	CGGAGGAATCAC	Amplification of
		TTCGCAATGGCCA	omamB
		CCTGGAGCCCATC	(MSMEG_0236) for
		CGATGAGGAAC	cloning into pmv261
OmamB_pmv261_reverse	pLR141	ACTACGTCGACAT	(MscI-HindIII)
		CGATAGCTCAGC	

		GGGAGTGGGCCG	
		GGCGTAC	
OmamCD_UPflank_forward	pLR134	AAACGACGGCCA	Amplification of flank
		GTGTCTAGAAACT	Upstream of <i>omamC</i>
		CATCCGGCGCATC	(MSMEG_4771) for
		CAC	cloning into pUC19
OmamCD_UPflank_reverse	pLR134	CGTCGATCTTGGG	(EcoRI-HindIII)
		ATATCCGTTGATC	
		ACGGGCAACGTA	
		GG	
OmamCD_DWNflank_forward	pLR134	CCGTGATCAACG	Amplification of flank
	-	GATATCCCAAGA	Downstream of
		TCGACGGCAACT	omamD
		G	(MSMEG_4770) for
OmamCD_DWNflank_reverse	pLR134	GACCATGATTAC	cloning into pUC19
	-	GCCAACTAGTGG	(EcoRI-HindIII)
		GTGAGTTCGTCGT	
		TTAC	
OmamEF_UPflank_forward	pLR138	AAACGACGGCCA	Amplification of flank
	-	GTGTCTAGAGAC	Upstream of omamE
		GAGCTGTGCGGG	(MSMEG_2864) for
		CTAC	cloning into pUC19
OmamEF_UPflank_reverse	pLR138	AGTTCCCATCGGT	(EcoRI-HindIII)
	-	TAACTCGGTACCC	
		ACTCGTTCAGTCG	
		TGCTCAG	
OmamEF_DWNflank_forward	pLR138	GTGGGTACCGAG	Amplification of flank
		TTAACCGATGGG	Downstream of <i>omamF</i>
		AACTGGCTGATCT	(MSMEG_2865) for
		С	cloning into pUC19
OmamEF_DWNflank_reverse	pLR138	GACCATGATTAC	(EcoRI-HindIII)
		GCCAACTAGTAG	
		GCATACGACCGG	
		GTGTTC	

142 **<u>References:</u>**

143	1.	El-Gebali S, Mistr	y J, Bateman A, Eddy	SR, Luciani A, Potter SC, C	Qureshi M, Richardson
-----	----	--------------------	----------------------	-----------------------------	-----------------------

144 LJ, Salazar GA, Smart A, Sonnhammer ELL, Hirsh L, Paladin L, Piovesan D, Tosatto SCE,

145 Finn RD. 2019. The Pfam protein families database in 2019. Nucleic Acids Res 47:D427–

146 D432.

147 2. Hayden JD, Brown LR, Gunawardena HP, Perkowski EF, Chen X, Braunstein M. 2013.

148 Reversible acetylation regulates acetate and propionate metabolism in *Mycobacterium*

150 3. Perkowski EF, Miller BK, McCann JR, Sullivan JT, Malik S, Allen IC, Godfrey V, Hayden

JD, Braunstein M. 2016. An orphaned Mce-associated membrane protein of *Mycobacterium*

tuberculosis is a virulence factor that stabilizes Mce transporters. Mol Microbiol 100:90–

153 107.

Feltcher ME, Gibbons HS, Ligon LS, Braunstein M. 2013. Protein export by the
mycobacterial SecA2 system Is determined by the preprotein mature domain. J Bacteriol
195:672–681.

Klepp LI, Forrellad MA, Osella AV, Blanco FC, Stella EJ, Bianco MV, Santangelo M de la
P, Sassetti C, Jackson M, Cataldi AA, Bigi F, Morbidoni HR. 2012. Impact of the deletion of
the six mce operons in *Mycobacterium smegmatis*. Microbes Infect 14:590–599.

161	6.	Guo XV, Monteleone M, Klotzsche M, Kamionka A, Hillen W, Braunstein M, Ehrt S,
162		Schnappinger D. 2007. Silencing essential protein secretion in Mycobacterium smegmatis by
163		using tetracycline repressors. J Bacteriol 189:4614–4623.
164	7.	Ligon LS, Rigel NW, Romanchuk A, Jones CD, Braunstein M. 2013. Suppressor analysis
165		reveals a role for SecY in the secA2-dependent protein export pathway of mycobacteria. J
166		Bacteriol 195:4456–4465.
167	8.	Rengarajan J, Murphy E, Park A, Krone CL, Hett EC, Bloom BR, Glimcher LH, Rubin EJ.
168		2008. Mycobacterium tuberculosis Rv2224c modulates innate immune responses. Proc Natl
169		Acad Sci 105:264–269.
170	9.	Rasband, W.S., ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA,
171		https://imagej.nih.gov/ij/, 1997-2018.
172	10.	Alstchul SF, Gish W, Miller Q, Myers EW, Lipman DJ. 1990. Basic local alignment search
173		tool. J Mol Bio. 215:403-41.
174	11.	Snapper SB, Melton RE, Mustafa S, Kieser T, Jacobs WR. 1990. Isolation and
175		characterization of efficient plasmid transformation mutants of Mycobacterium smegmatis.
176		Mol Microbiol 4:1911–1919.
177	12.	Stover CK, de la Cruz VF, Fuerst TR, Burlein JE, Benson LA, Bennett LT, Bansal GP,
178		Young JF, Lee MH, Hatfull GF. 1991. New use of BCG for recombinant vaccines. Nature
179		351:456–460.

180	13.	Glickman MS, Cox JS, Jacobs WR. 2000. A novel mycolic acid cyclopropane synthetase is
181		required for cording, persistence, and virulence of Mycobacterium tuberculosis. Mol Cell
182		5:717–727.
183	14.	Pavelka MS, Jacobs WR. 1999. Comparison of the construction of unmarked deletion
184		mutations in Mycobacterium smegmatis, Mycobacterium bovis bacillus Calmette-Guérin,
185		and Mycobacterium tuberculosis H37Rv by allelic exchange. J Bacteriol 181:4780–4789.
186	15.	Martinelli DJ, Pavelka MS. 2016. The RipA and RipB Peptidoglycan endopeptidases are
187		individually nonessential to Mycobacterium smegmatis. J Bacteriol 198:1464–1475.
188	16.	van Kessel JC, Hatfull GF. 2007. Recombineering in Mycobacterium tuberculosis. Nat
189		Methods 4:147–152.
190	17.	Sanders AN, Wright LF, Pavelka MS. 2014. Genetic characterization of mycobacterial L,D-
191		transpeptidases. Microbiol Read Engl 160:1795–1806.
192	18.	Miller BK, Hughes R, Ligon LS, Rigel NW, Malik S, Anjuwon-Foster BR, Sacchettini JC,
193		Braunstein M. 2019. Mycobacterium tuberculosis SatS is a chaperone for the SecA2 protein
194		export pathway. eLife 8:e40063.