

Supplementary information, Fig. S8| Norepinephrine competition curves of the human $\beta_1 AR$ and $\beta_2 AR$ mutations.

a, The norepinephrine competition curves of single mutations of the $\beta_1 AR$. b, The norepinephrine competition curves of multiple mutations (containing 2-6 mutations) of the β_1 AR. c,The norepinephrine competition curves of single mutations of the β_2 AR. d, The norepinephrine competition curves of multiple mutations (containing 2-6 mutations) of the β_2 AR. Data are given as mean ± SEM of 3 – 12 independent samples. The concentration of $[^{3}H]$ -DHA used for competition binding is 2 nM. The $\beta_{2}AR$ -Y174W and $\beta_{2}AR$ -D300R single mutations showed increased norepinephrine affinity compared to wild type β_2AR , however, the corresponding mutations in the β_1AR only show small (β_1AR -W199Y) or no (β_1AR -R351D) decreases on norepinephrine affinity. While the β_1 AR-K347H and β_1 AR-F359Y showed decreased norepinephrine affinity compared to the wild type $\beta_1 AR$; the corresponding mutations (β_2 AR-H296K or β_2 AR-Y308F) did not show any increase in norepinephrine affinity. Furthermore, although the β_1 AR-F359Y showed the largest decrease on norepinephrine affinity among the 6 single mutations of the $\beta_1 AR$ a, a triple mutant ($\beta_1 AR$ -3mut-3) without the F359Y mutation showed a comparable effect in decreasing norepinephrine affinity as the β_1 AR-6mut b, The complex behaviors of the mutants suggest that norepinephrine selectivity is determined by a combination of residues that cooperate to form the ligand binding pathway.