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Figure S1. PAF Expression in Lung Cancer, Related to Figure 1. 
 
(A) Transcriptional upregulation of PAF in human cancer. Oncomine analysis of PAF expression in 
human cancer. The numbers in parentheses represent the total number of analyzed data sets between 
normal versus indicated cancers. PAF expression is highly upregulated in lung cancer (15 of 37 analyses, 
40.54%; gene rank > top 10%, fold change > 2; P-value < 0.0001; compared to normal tissues).  
 
(B) Kaplan–Meier (KM) survival curves for non-small cell lung cancer (NSCLC), lung adenocarcinoma 
(LUAD), and lung squamous cell carcinoma (LUSC) by PAF expression (different probe [202503_s_at] 
for cDNA microarrays). Data sets including 1926 NSCLC, 720 LUAD, and 524 LUSC patients were 
analyzed using the publicly available tool KM plotter.  
 
(C) KM survival curves for 504 LUAD and 495 LUSC patients based on PAF expression. (KM plotter; 
RNA-Seq ID: PCLAF).  
 
(D) KM survival curves for 488 LUSC patients in the TCGA database by PAF expression. The lowest 
quartile was used as the cutoff for dividing PAF-low and PAF-high groups (GEPIA; TCGA).  
 
(E and F) Transcript variants of PAF. (E) The PAF (PCLAF/KIAA0101) gene is transcribed into two 
variants, variant 1 (Var. 1) and variant 2 (Var. 2). PAF Var. 1 includes a conserved PCNA-interacting 
motif (PIP-motif: 62Q-69F) (Emanuele et al., 2011). Two ubiquitination modification residues in PAF are 
located at lysines 15 (K15) and 24 (K24), which is essential for PCNA interaction in S phase (Povlsen et 
al., 2012). (F) Expression of transcript variants of PAF. PAF Var. 1 showed higher expression in two 
LUAD cell lines (A549, H1792); qRT-PCR.  
 
(G) Expression of Paf in KrasLSL-G12D/+ lung tumors. Co-immunostaining of Paf and Pcna in lung tumors 
of KrasLSL-G12D/+ mice (4 mo after Ad-Cre induction); scale bars = 20 μm.  
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Figure S2. Suppression of Lung Tumorigenesis by Paf KO, Related to Figure 2. 
 
(A and B) Paf expression in proliferating mouse lung tumor cells. Black-and-white images of Figures 2A 
and 2B. Co-immunostaining of (A) Paf/Ki67 and (B) Paf/Pcna in KP mouse lung tumors; scale bars = 50 
μm.  

(C and D) Suppression of lung tumorigenesis by Paf KO. (C) Micro-CT analysis of lungs from KP and 
PKP mice. KP (3 mo after Ad-Cre injection, n = 6) and PKP (3 mo; tumor undetected: n = 4, detected: n 
= 2, and 8 mo; n = 3) mice were analyzed. Scale bars = 2 mm; H: heart; asterisk: tumor lesion. (D) 
Representative H&E staining images of PKP lungs at the endpoint of observation (dead at 11 mo; n = 1); 
scale bars = 2 mm for whole lung sections and 100 μm for magnified images of tumors. 
 
(E) Decreased cell proliferation on Paf KO background. Representative Ki67 staining of KP and PKP lung 
tumors; scale bars = 50 μm. 
 
(F and G) No impact of Paf KO on cell death. (F) Immunofluorescent (IF) staining of cleaved caspase-3 
in KP and PKP lung tumors. Scale bars = 50 μm. (G) Quantification of cleaved caspase-3 staining of KP 
and PKP lung tumors. At least 15 fields of 200´ magnified images from KP (n = 4), and PKP (n = 9) lung 
tumors were analyzed; error bars: SD; n.s.: not significant.  
 
(H) H&E staining images of lungs from Paf-/-; KrasLSL-G12D/+ (PK) mice at 22 months after Ad-Cre induction; 
scale bar = 2 mm for whole lung sections and 100 μm for magnified images of tumors.  
 
(I) Paf KO reduced cell proliferation in KrasG12D/+-driven lung tumors. Ki67 staining of KrasLSL-G12D/+ (K) 
and Paf-/-; KrasLSL-G12D/+ (PK) lung tumors; scale bars = 50 μm.  
 
(J and K) No effect of Paf KO on apoptosis of KrasG12D/+-driven lung tumors. (J) Cleaved caspase-3 
staining of K and PK lung tumors; scale bar = 50 μm. (K) Quantification of cleaved caspase-3 staining of 
K and PK lung tumors. More than 15 fields of 200× magnified images from K (n = 4) and PK (n = 5) lung 
tumors were analyzed; n.s.: not significant. 
 
(L and M) No effects of Paf KO on Cre-loxP recombination in KrasLSL-G12D/+ and Paf-/-; KrasLSL-G12D/+ lungs. 
(L) Staining of KrasG12D with anti- RasG12D antibody in K and PK lungs 10 days after Ad5-CMV-Cre 
infection (1 × 109 PFU); scale bar = 50 μm. (M) Quantification of KrasG12D-expressing cells near the 
bronchiole region of K and PK lungs. More than 10 fields of 200× magnified images from K (n = 3) and 
PK (n = 3) lungs were analyzed; n.s.: not significant. 
 
Representative images are shown. 
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Figure S3. PAF Depletion Induced Cell Quiescence and Growth Arrest in Lung Cancer Cells,  
Related to Figure 3. 
 
(A) The establishment and validation of mouse KP lung cancer cell lines. Three mouse lung cancer cell 
lines were established from lung tumors from three independent KP mice (mouse ID numbers KP836, 
KP952, and KP944). Recombinant alleles of KrasG12D and deletion of Trp53 were confirmed by genomic 
DNA PCR. Kras WT: 622 bp, KrasLSL-G12D: 500 bp, recombinant KrasG12D: 650 bp, WT Trp53: 288 bp, 
Trp53floxed/floxed: 370 bp, Trp53D/D : 612 bp. 
 
(B) Bright-field and fluorescent (GFP) images of KP mouse lung cancer cells infected with control shRNA 
(pLenti-shGPF) and two Paf-knockdown shRNAs (pLenti-shPaf-GFP; #1 and #2). Scale bars = 50 μm. 
 
(C-F) IB analysis of PAF knockdown by shPAFs in mouse and human LUAD cell lines. Depletion of 
endogenous Paf by shPafs (#1 and #2) in KP cells, confirmed by IB of stably transduced KP cells (C) 
and its rescue by ectopic PAF expression (D). IB analysis of PAF knockdown by shPAFs in human A549 
LUAD cells (E) and its rescue by ectopic PAF expression (F).  
 
(G) PAF rescue experiment of PAF-depleted human A549 LUAD cells. Cumulative population doublings 
of cells stably expressing shRNAs or PAF. Two-way ANOVA with Tukey post hoc test. 
 
(H and I) No increased cell death by PAF depletion. (H) Immunohistochemistry (IHC) analysis of cleaved 
caspase-3 (CC3) in control (shCtrl) versus PAF KD (shPAF) lung cancer cells (A549 and H1792). (I) 
Quantification of CC3-positive cells in control versus PAF KD lung cancer cells; error bars: SEM. Scale 
bars = 20 μm. 
 
(J) Quantification of cell cycle phases in KP and human lung cancer cells (control and Paf KD) in Figures 
3F and 3G. PI staining with FACS analysis. 
 
(K) Monitoring of G0/G1 cell cycle arrest using a DHB-Venus reporter system in control (shCtrl) versus 
PAF KD (shPAF) H1792 lung cancer cells. Each cell (marked with a number) was monitored for 24 h. 
shCtrl cells (labeled with 1 and 2) showing nuclear DHB-Venus at 0 h underwent release from the G0/G1 
phase at 24 h. However, PAF-depleted cells exhibited G0/G1 arrest (indicated by nuclear localization of 
DHB-Venus) at 0 and 24 h. Scale bars = 50 μm. 
 
(L and M) PAF-PCNA binding is not required for PAF depletion-induced cell quiescence and growth arrest. 
(L) PAF mutPIP rescues PAF-depletion induced cell growth arrest. Cumulative population doublings of 
cells stably expressing shRNAs with GFP or PAF mutPIP. Two-way ANOVA with Tukey post hoc test. 
(M) Ectopic expression of PCNA-binding deficient PAF mutants (FLAG epitope-tagged PAFK15R, PAFK24R, 
or PAFK15R/K24R) rescues PAF depletion-induced growth inhibition in A549 cells; cumulative population 
doublings. Two-way ANOVA with Tukey post hoc test. 
 
Representative images are shown; error bars: SEM; *P < 0.05; **P < 0.01. 
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Figure S4. Correlated Expression of PAF and DREAM Complex Targets in Lung Adenocarcinoma, 
Related to Figure 4. 
 
(A) Hierarchically clustered heatmap of common differentially expressed genes (DEGs) (n = 122) in 
control versus PAF-depleted mouse (KP) and human lung cancer (H1792) cells. DEGs were analyzed 
by RNA-Seq. Mean values are shown (n = 2). 

(B) Heatmaps showing comparative analyses of the expression of PAF and PAF-DREAM target genes 
in the Oncomine data sets (normal lungs and lung adenocarcinomas); PAF (KIAA0101) and 19 
representative PAF-DREAM targets were analyzed; each horizontal row represents an individual patient 
sample, and the vertical boxes represent the relative expression level of the indicated gene. Of note, PAF 
is barely expressed in normal lung samples. Three representative data sets are shown, (Landi Lung 
[normal tissue = 49, LUAD = 58], Selamat Lung [normal tissue = 56, LUAD = 58], and Okayama Lung 
[normal tissue = 20, LUAD = 226]); heatmaps show log2 median-centered intensity.  
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Figure S5. DREAM Complex Mediates PAF Depletion-Induced Cell Quiescence and Growth Arrest 
of Lung Cancer Cells, Related to Figure 5. 
 
(A and B) Treatment with harmine, an inhibitor of DYRK1A, rescues the G0/G1 arrest of PAF-depleted 
KP and LUAD (A549 and H1792) cells. The cell cycle distribution of each cell line was analyzed by PI 
staining and FACS. (A) Cell cycle distribution of harmine-treated control (shCtrl) and PAF KD (shPaf) KP 
cells and (B) quantification.  

(C) Cell cycle distribution of harmine-treated control (shCtrl) A549 and H1792 cells. 

(D) Harmine treatment rescued G0/G1 arrest caused by PAF depletion with shPAF#1 in A549 and H1792 
cells, as with shPAF #2 (see Figure 5A and 5B).  
 
(E) Harmine treatment reduced the G0/G1 arrest induced by PAF KD in three other lung cancer cell lines 
(H23, H358, and H1355); Cell cycle phases in indicated conditions were analyzed by PI staining and 
FACS; Represent images of at least two times experiments (n>2). Similar rescue responses were 
observed.  
 
(F and G) Depletion of DYRK1A rescues the G0/G1 arrest induced by PAF depletion. The density scatter 
plot shows cell cycle phases in shDYRK1A-GFP–transfected PAF KD H1792 cells (H1792 shPAF). (G) 
The cell cycle phases were analyzed in GFP-positive (sh-DYRK1A-GFP with shPAF) and GFP-negative 
(shPAF) cells by 7-AAD staining with FACS. (G) Quantification of cell cycle phases. 
 
Representative images are shown; error bars: SEM; *P < 0.05; **P < 0.01. 
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Figure S6. Analysis of the Interaction between PAF and RBBP4/DREAM Complex, Related to 
Figure 6. 
 
(A and B) Interaction of PAF with RBBP4. A549 cells were transfected with indicated plasmids and 
analyzed by co-IP and IB. Interaction of endogenous RBBP4 with FLAG-PAF (upper panel); Binding of 
endogenous PAF to FLAG-RBBP4 (lower panel). (B) Endogenous interaction between Paf and Rbbp4 in 
KP cells. Paf-IP (upper panel) and Rbbp4-IP (lower panel). Two different anti-PAF antibodies (ab56773 
and G-11) were used for co-IP-IB (upper panel). Immunoglobulin G (IgG): negative control for IP. PAF is 
shown as doublet-bands, consistent with the previous studies (Povlsen et al., 2012).  

(C-F) Interaction of PAF with DREAM complex components. (C) A549 and KP cells stably expressing 
FLAG-PAF were used for co-IP and IB analyses. Co-IP showed that FLAG-PAF interacts with LIN9 and 
LIN54 but not with p130-E2F4 and FOXM1. (D-F) Endogenous interaction between PAF and DREAM 
complex components. Co-IP detected that endogenous PAF interacts with LIN54 and BMYB (D and E). 
IP using PAF antibody detected endogenous LIN54 and LIN9 (F). 

(G) Protein structures of PCNA-PAF complex and RBBP4. PAF (blue) binds to PCNA (green) via R149-
D156 AAs of PCNA (De Biasio et al., 2015) (upper panel). We located the putative PAF binding region 
in the extruded loop of the RBBP4 protein (D346-D361 AAs; dotted boxes) (lower panel). Each protein 
structure (PCNA-PAF: 6gws; RBBP4: 4pby) was modified from the Protein Data Bank in Europe (PDBe; 
http://www.ebi.ac.uk/pdbe/). 
 
(H-J) Analysis of RBBP4-PAF interaction. (H) Protein sequence alignment of RBBP4 (UniProtKB - 
Q09028) and PCNA (UniProtKB - P12004). BLASTp analysis 
(https://blast.ncbi.nlm.nih.gov/Blast.cgi?PAGE=Proteins). (I) The PAF-binding region in PCNA is marked 
in pink. Protein structure of PCNA-PAF complex (PDBe: 6gws). Protein structure of RBBP4 (PDBe: 4pby). 
(J) The potential binding region for PAF in RBBP4’s extruded region is marked in yellow. The amino acids 
in purple indicate the binding region for histone H4.   
 
(K) Enrichment of DREAM components on target gene promoters in mouse LUAD cells. The promoter 
occupancy of p130, Rbbp4, and Lin54 on the representative DREAM complex target gene promoters 
(Ccnb1, Top2a, Plk1, and Ube2c) was analyzed by ChIP-qPCR in mouse (KP; control versus shPaf) cells. 
ChIP-qPCR.  

(L) Enrichment of PAF with DREAM complex components on DREAM complex target gene promoters. 
PAF showed co-occupancy with RBBP4, LIN54, and BMYB in the DREAM target gene promoters 
(CCNB1 and PLK1); Sequential ChIP-analysis. 1st

 
ChIP for FLAG-PAF (anti-FLAG antibody) was 

followed by 2nd ChIP for the DREAM complex components (anti-p130, RBBP4, LIN54, and phosphor-
BMYB antibodies). No-antibody condition and ACTB promoter were used as negative control; A549 cells.  
 
(M and N) Interaction of PAF binding-deficient RBBP4 mutant with DREAM complex. (M) Co-IP results 
showed the interaction of RBBP4 mutants with p130 and LIN9. The Ctrl vector or PAF binding-deficient 
RBBP4 mutant (Δ347-362 AAs; FLAG-tagged at the N-terminus) was transiently expressed in A549 cells 
and subjected to co-IP assays for FLAG, followed by IB for p130 and LIN9. (N) The enrichment of the 
RBBP4 Δ347-362 mutant on DREAM complex target gene promoters; ChIP analysis. 
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(O) PAF mutPIP rescues the G0/G1 arrest induced by PAF depletion. The cell cycle phases were 
analyzed in A549 shPAF cells that stably expressed GFP (control), PAF mutPIP, or PAF mutPIP, 
mutRBM. PI staining with FACS analysis. Quantification of cell cycle phases shown in Figure 6P. 

Representative images are shown; error bars: SEM; *P < 0.05; **P < 0.01. 
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Figure S7. Screening and Validation of Candidate Compounds Mimicking the PAF-Depleted 
Transcriptome, Related to Figure 7. 
 
(A) Cell cycle analysis of mouse lung cancer cells (KP) treated with 11 drug candidates. KP cells were 
treated with each drug candidate (total n = 13, pitavastatin and CsA are shown in Figure 7C) for 24 h, 
followed by PI staining and FACS analysis. Chemicals that induced G0/G1 arrest (more than 5%; colored 
in red) compared to vehicle-treatment were selected for further analysis. PI staining and FACS (n = 
20,000 cells).  
 
(B) Gene expression analysis of DREAM target genes by qRT-PCR; KP cells were treated with each 
drug candidate for 48 h, followed by qRT-PCR analysis. *P < 0.05. Downregulation of DREAM target 
genes was prominently induced by pitavastatin (1 μM, 48 h) and by CsA (5 μM, 48 h). 
 
(C and D) LUAD cell growth inhibition by pitavastatin or CsA in a dose-dependent manner. (C) Crystal 
violet staining images and (D) quantification of cell growth at each dose of pitavastatin or CsA treatment 
in human (H1792, H23, and A549) and mouse (KP836 and KP952) LUAD cells. OD values (OD590) of 
crystal violet staining at the endpoint (3 to 6 days after treatment) were used to calculate GI50 (50% of 
growth inhibition) values (n = 3). 

(E) Harmine treatment reduces the G0/G1 arrest induced by pitavastatin or CsA treatment. Quantification 
of the cell cycle distributions shown in Figures 7F and 7G; PI staining with FACS analysis.  

(F) Pitavastatin or CsA treatment reduced PAF expression and proliferation in H1792 xenografts. 
Representative images of PAF and Ki67 immunostaining; endpoint tumors were used (n = 3). 
Quantification of Ki67-positive cells is presented in Figures 7J and 7L.  

Representative images are shown; error bars: SEM; *P < 0.05; **P < 0.01. 
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Rank P-value Fold Change Gene Reporter
62 8.58E-21 2.86 CCNB1

125 2.96E-18 3.99 MELK
149 8.15E-18 2.58 UBE2C
165 1.48E-17 2.15 ECT2
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432 4.07E-14 2.71 BUB1
461 5.67E-14 3.04 NEK2
605 7.52E-13 3.37 KIF4A
619 8.78E-13 3.13 CDC20
703 2.26E-12 3.27 NUF2
733 3.45E-12 2.68 AURKA
736 3.50E-12 3.65 TPX2

1272 2.98E-10 1.60 RACGAP1
1671 3.12E-9 1.98 PRC1
2187 4.41E-8 2.75 CENPE
2196 4.60E-8 3.14 FOXM1
2480 1.43E-7 2.64 PBK
4197 2.75E-5 1.37 NCAPD2
4753 1.03E-4 1.99 PLK1

228729_at
204825_at
202954_at
219787_s_at
201292_at
202503_s_at
209642_at
204641_at
218355_at
202870_s_at
223381_at
204092_s_at
210052_s_at
222077_s_at
218009_s_at
205046_at
202580_x_at
219148_at
201774_s_at
202240_at

normal lung (20)

LUAD (226)

Okayama Lung, Cancer Res, 2012

Over-expression in Normal lung vs Lung adenocarcinoma
(Log2 median-centered intensity)

Not measured

Rank P-value Fold Change Gene Reporter Gene

38 2.13E-24 5.71 TOP2A ILMN_1686097 TOP2A

95 3.68E-21 4.61 CDC20 ILMN_1663390 CDC20

106 1.03E-20 2.77 AURKA ILMN_1680955 AURKA

155 1.16E-19 2.68 PRC1 ILMN_1728934 PRC1

184 4.02E-19 5.89 UBE2C ILMN_2301083 UBE2C

313 3.97E-17 2.42 MELK ILMN_2212909 MELK

363 1.19E-16 2.44 PAF ILMN_2285996 KIAA0101

401 2.70E-16 2.26 ECT2 ILMN_1717173 ECT2

531 6.31E-15 1.71 BUB1 ILMN_2202948 BUB1

587 1.64E-14 2.03 TPX2 ILMN_1796949 TPX2

677 7.25E-14 1.95 FOXM1 ILMN_2344971 FOXM1

698 8.89E-14 1.53 KIF4A ILMN_1799667 KIF4A

727 1.39E-13 1.65 CCNB1 ILMN_1712803 CCNB1

828 6.16E-13 2.19 NEK2 ILMN_2051373 NEK2
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1044 9.41E-12 1.65 NCAPD2 ILMN_1775008 NCAPD2

1462 3.69E-10 1.26 PLK1 ILMN_1736176 PLK1
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2150 3.46E-8 1.28 CENPE ILMN_1716279 CENPE

3239 7.17E-6 1.13 NUF2 ILMN_1658695 NUF2

normal lung (56) LUAD (58)

Selamat Lung, Genome Res, 2012

Rank P-value Fold Change Gene Reporter Gene
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89 1.90E-19 3.19 CDC20 202870_s_at CDC20
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752 5.53E-11 2.41 PBK 219148_at PBK
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- - - NUF2 - NUF2

normal lung (49) LUAD (58)

Landi Lung, PLoS One, 2008
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