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Figure S1. GraphSCI identifies cell types in simulated data with six cell groups (SIM-T6), Related 
to Figure 3. (A) The comparison of clustering performances of scRNA-seq, scImpute, SAVER, DCA, 
DeepImpute and GraphSCI, measured by ARI, CA and SC. (B) The two principle components by t-
SNE from simulated scRNA-seq data, imputed matrix by scImpute, SAVER, DCA, DeepImpute and 
GraphSCI. Each cell is colored by cell groups.  



 

  

Figure S2. The image of gene expression matrix (X) before and after imputation (𝑿") in our 
simulated experiments, Related to Figure 3. The X axis represents cells and arranges the same cell 
types are nearby and the Y axis represents genes and similar genes nearby. (A) The comparison of 
gene expression matrix (X) before and after imputation (𝑋$) on Sim-T2. (B) The comparison of gene 
expression matrix (X) before and after imputation (𝑋$) on Sim-T6. After imputation using GraphSCI, 
we could find that the original cell-types can be recovered effectively both in the Sim-T2 and the 
Sim-T6 datasets. The cells of the same cell types are effectively clustered. This result verifies the 
effectiveness of our algorithm.  



 

 
  

Figure S3. The performances on 10k Brain Cells from an E18 Mouse dataset, Related to Figure 5. 
(A) shows the t-SNE visualization reproduced from DCA, DeepImpute and GraphSCI from left to right. 
(B) The comparison of clustering performances of scRNA-seq, DCA, DeepImpute and GraphSCI, 
measured by ARI, CA and SC. 



 

 
  

Figure S4. The performances of differential expression analysis, Related to Figure 7. The expression 
for signature genes (NANOG, SOX2, DNMT3B, POU5F1, ZFP42; GATA6, CER1, EOMES, LEFTY1, 
CXCR4) of H1 and DEC cells, respectively. 



 

  

Figure S5. The analysis of different PCC cut-offs to construct the input gene-to-gene relationships, 
Related to Figure 1-2. We vary the cut-off of Pearson Correlation in {0.2, 0.3, 0.4, 0.5} to investigate 
their influences on the overall results. We could see that all relatively large cut-offs could achieve 
convergence, but the middle two could obtain better results. One possible reason is that the highest cut-off 
of Pearson Correlation might lead to a sparse adjacency matrix while the small cut-offs lead to more false-
positive edges. It makes sense since a sparse adjacency matrix or an adjacency matrix with many false-
positive edges would prevent our model from obtaining better results. It also proves that our algorithm 
could achieve stable final results if the cut-off is in a proper range. 



 

  

Figure S6. The comparison of different methods to construct gene-to-gene relationships (PCC and 
PIDC), Related to Figure 1-2. From the visualization and the clustering performance, we could find that the 
gene regulatory network inference tools such as PIDC could facilitates the imputation of scRNA-seq data using 
GraphSCI. We attribute the remarkable improvement to the accuracy of the input gene-to-gene relationships. 



 

 
  

Figure S7. The comparison of different dimensional reduction algorithms and clustering approaches, 
Related to Figure 3. (A) We examined the influence of different cell visualization algorithms among 
UMAP, t-SNE, and PHATE from left to right. We could find that t-SNE showed better display results with 
closer inner-group distance and larger between-group distances. (B) We compared different clustering 
approaches (PCAreduce, SC3 and KMeans) through the clustering performance (ARI). We observed that 
GraphSCI consistently yields better performance with different clustering approaches, showing that our 
algorithm could achieve stable and better results under the same conditions. It again illustrates the 
rationality and effectiveness of our algorithm. 



 

 

  

Figure S8. The runtimes for imputation with different numbers of cells down-sampled from 1.3 
million mouse brain cells, Related to Figure 1-2. We analyzed the largest scRNA-seq data set in our 
experiments, which consists of 1.3 million mouse brain cells from 10X Genomics. The 1.3 million cell 
data matrix was down-sampled to 1,000, 2,000, 5,000, 10,000 and 100,000 cells and each subsampled 
matrix was imputed, and the runtime measured. We could find that the runtime of DCA and GraphSCI 
scaled linearly with the number of cells and the other methods took hours to impute 100,000 cells. It 
makes sense since DCA and GraphSCI are the neural network-based method that could be accelerated by 
GPU and the other methods failed to run due to the memory limitations on the large dataset. 



 

  

Figure S9. The optimization of our method, Related to Figure 1-2. We utilized the Adam optimizer 
with an initial learning rate of 0.01 and allowed it to decay exponentially with decay_rate = 0.9 and 
decay_steps = 50  during learning. The calculation of decayed learning rate in each step is: 
decayed_learning_rate = learning_rate	 ∗ 	𝑑𝑒𝑐𝑎𝑦_𝑟𝑎𝑡𝑒(BCDE/GDHIJ_BCDEB). The green line represents the 
decay trend of learning rate during training. The blue line illustrates the trend of total loss during training. 



 

  

Figure S10. The exploration of Hyper-parameters, Related to Figure 1-2. During training, we 
randomly sampling 10% samples of each dataset as validation data and evaluate them in each iteration. 
The loss function of our method could be divided into two parts, one of which is the ZINB loss of gene 
expressions and the other is the cross entropy of gene-to-gene relationships. Due to the limitation of 
cluster metrics, we just utilize the losses of expressions and relationships on validation set to explore 
hyper-parameters in experiments. (a) is the ZINB loss of expressions on validation set with different size 
of hidden layers. (b) is the cross entropy of adjacency in validation with different size of hidden layers. 
(c) is the ZINB loss of expressions on validation set with different dropout rates. (d) is the cross entropy 
of adjacency on validation set with different dropout rates.  



Supplemental tables 
Table S1. The Results of SIM-T2 and SIM-T6 datasets, Related to Figure 3. 

  

Datasets Methods 
Adjusted Rand 

Index (ARI) 
Clustering 

Accuracy (CA) 
Silhouette 

Coefficient (SC) 

SIM_T2 

GraphSCI 0.977 0.994 0.609 
DeepImpute 0.920 0.922 0.580 

DCA 0.914 0.925 0.582 
scImpute 0.779 0.528 0.382 

SAVER-X 0.845 0.654 0.449 
scRNA-seq 0.716 0.508 0.342 

SIM_T6 

GraphSCI 0.818 0.859 0.340 
DeepImpute 0.778 0.832 0.292 

DCA 0.767 0.842 0.284 
scImpute 0.426 0.562 0.098 

SAVER-X 0.671 0.752 0.254 
scRNA-seq 0.318 0.371 0.019 



Table S2. The Results of Mouse ES, PBMC and Mouse Brain Cells datasets, Related to 
Figure 4-5. 

Datasets Methods 
Adjusted Rand 

Index (ARI) 
Clustering 

Accuracy (CA) 
Silhouette 

Coefficient (SC) 

Mouse ES 

GraphSCI 0.791 0.862 0.761 
DeepImpute 0.762 0.833 0.673 

DCA 0.733 0.824 0.665 
scImpute 0.647 0.818 0.634 

SAVER-X 0.691 0.822 0.652 
scRNA-seq 0.393 0.754 0.423 

PBMC 

GraphSCI 0.472 0.552 0.177 
DeepImpute 0.464 0.548 0.169 

DCA 0.414 0.503 0.132 
scImpute 0.289 0.478 0.102 

SAVER-X 0.387 0.489 0.094 
scRNA-seq 0.312 0.457 0.071 

Mouse 
Brain 

GraphSCI 0.316 0.422 0.030 
DeepImpute 0.234 0.360 -0.090 

DCA 0.233 0.351 -0.050 
RAW 0.157 0.268 -0.170 

 
  



Table S3. The summarization of datasets in this manuscript, Related to Figure 3-8 

Datasets Sample size / 

cell number 

Number of genes Number of cell 

types 

SIM-T2 2000 3000 2 

SIM-T6 3000 5000 6 

C. elegans time-course 206 15855 - 

Mouse ES cells 2717 24175 4 

5K PBMC 5247 33570 11 

10K Neuron Cells 11843 31053 16 

Human ES cells 30 14766 - 

 
  



Table S4. Main notations in our paper, Related to Figure 1-2. 

Symbol Description 

𝒢 an undirected gene network with expressions and 

relations 

𝒩 set of nodes (genes) 

ℳ set of scRNA-seq samples 

ℰ set of edges (gene-to-gene relationships) 

𝑁 = |𝒩| number of nodes (genes) 

𝑀 = |ℳ| number of samples 

𝐷 dimension of latent variables 

𝐴 ∈ ℝW×W adjacency matrix of nodes 

𝑋Y ∈ ℝW×Z raw gene expression matrix 

𝑋 ∈ ℝW×Z normalized gene expression matrix 

𝑍𝒩 ∈ ℝW×\ latent representation matrix for all nodes 

𝑍ℳ ∈ ℝZ×\ latent representation matrix for all samples 

𝐴] ∈ ℝW×W reconstructed adjacency matrix of nodes 

𝑋$ ∈ ℝW×Z imputed gene expression matrix 

 
  



Transparent Methods 
The proposed model GraphSCI imputes gene expression levels in scRNA-seq data based on a 

combination of the graph convolution network and Autoencoder neural network, with the input of gene 

expression matrix 𝑋 and gene-to-gene relationships 𝐴. In our framework, GCN encodes the gene-to-

gene network with expression matrix 𝑋 to the latent vector 𝑍 and then reconstructs the edges in gene-

to-gene network. AE encodes the gene expression matrix with gene-to-gene network and finally sample 

𝑍 from ZINB or NB distributions to reconstruct gene expression matrix.  

By using 𝑀  single cells RNA-seq data with 𝑁  genes, an undirected gene graph with gene 

expressions and gene-to-gene relationships can be constructed. Let 𝒩 and ℳ be a set of genes and 

samples respectively, an undirected gene graph can be denoted as 𝒢 = (𝒩,ℳ, ℰ), where ℰ is the set 

of gene-to-gene relationships. Thus, we introduce an adjacency matrix 𝐴 ∈ ℝW×W and a gene expression 

matrix 𝑋 ∈ ℝW×Z for 𝒢, with 𝐴_` representing the edge of the 𝑖-th gene and the 𝑗-th gene and 𝑋_` 

being the expression value with rows representing genes and columns representing cells. Table S4 

summarizes our main notations for scRNA-seq data.  

Data processing and normalization. There are two inputs to our proposed model: (1) a gene 

expression matrix 𝑋 ∈ ℝW×Z, (2) an adjacency matrix 𝐴 ∈ ℝW×W, and our final goal is to construct an 

imputed gene expression matrix 𝑋$  with the same dimensions. First, in raw scRNA-seq read count 

matrix 𝑋Y, genes with no reads in any cell would be filtered out. Then, the library size of cell 𝑖 is 

denoted as 𝑙_  and is calculated as the total number of read counts of cell 𝑖. The size factor 𝑠_ of cell 

𝑖 is 𝑙_ divide by the median of total counts per cell. Therefore, we make a normalized matrix 𝑋 by 

taking the log transformation with a pseudo count and scale of the read counts: 

 𝑋_` = log f
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where 𝑖 = 1,2, … ,𝑁 representing each gene and 𝑗 = 1,2, … ,𝑀 representing each sample. 

Secondly, we attempt to obtain the adjacency matrix 𝐴 ∈ ℝW×Wfrom a graph where genes are nodes 

and edges indicate genes which are likely to be co-expressed. For the simulated datasets generated from 

Splatter(Zappia et al., 2017), we introduce the adjacency matrix 𝐴 ∈ ℝW×W  by Pearson correlation 

coefficient (PCC) as: 

 𝐴_` = 𝜌gh,gi =
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; 𝑖 = 1,2, … ,𝑁; 	𝑗 = 1,2, … ,𝑁  (2) 

where 𝐶𝑜𝑣(𝑋, 𝑌) and 𝜎g  is the covariance between 𝑋  and 𝑌  and the standard deviation of 𝑋 

respectively.  

Imputation based on graph convolution network. The preprocessed gene expression matrix and 

adjacency matrix are treated as the input for GraphSCI. Two neural network models, i.e., the inference 

model 𝑓�  and the generative model 𝑔�  were used to constructed the model for the probabilistic 

encoder 𝑞�  and probabilistic decoder 𝑝�  respectively, to preform gradient descent for learning all 

trainable parameters. 



To infer the embeddings of cells and genes, we apply a two-layer graph convolution network and a 

two-layer fully connected neural network mapping the adjacency matrix A and the gene expression 

matrix X to the low-dimensional representations of the posterior distribution (i.e. Gaussian distributions 

and ZINB distributions) respectively. In particular, the two-layer GCN is defined as:  

 𝐻𝒩
(�) = 𝑅𝑒𝐿𝑈(𝐴�𝑋𝑊𝒩
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where 𝜇𝒩  and 𝜎𝒩�  are the mean and variances of the learned Gaussian distribution parameters, 

𝑅𝑒𝐿𝑈(⋅) = max	(0, ⋅)  is the non-linear activation function, 𝐴� = 𝐷�
o
�𝐴𝐷�
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normalized adjacency matrix with the 𝒢�s degree matrix 𝐷__ = ∑ 𝐴_`` , and 𝜙 = [𝑊𝒩
(�),𝑊𝒩

(�)] are the 

trainable parameters of GCN layers. 

The two-layer fully connected layers for inferring ZINB distribution of single cell samples are defined 

as: 

 𝐻ℳ
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where 𝜇ℳ, 𝜃ℳ and 𝜋ℳ are the parameters of the ZINB distribution: mean, dispersion and dropout 

probability, the operation ⨀  is the Hadamard (element-wise) product, tanh(⋅)  and σ(⋅)  are the 

activation functions and 𝜙 = [𝑊ℳ
(�),𝑊ℳ

(�), 𝑏(�), 𝑏(�)] are the trainable parameters of fully connected 

layers. 

In particularly, the ZINB distribution is applied for count data that exhibit over-dispersion and excess 

zeros, which is parameterized with the mean (𝜇) and dispersion (𝜃) of the negative binomial distribution 

as well as the dropout probability (𝜋) representing the probability of zeros (dropout events). But droplet-

based scRNA-seq (such as 10X) are supposed to follow a NB distribution. A count matrix X that is 

ZINB-distributed with (𝜇, 𝜃, 𝜋) or NB-distributed with (𝜇, 𝜃) are denoted as:  
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 𝑍𝐼𝑁𝐵(𝑋|𝜇; 𝜃; 𝜋) = 𝜋𝛿�(𝑋) + (1 − 𝜋)𝑁𝐵(𝑋|𝜇; 𝜃)  (8) 

where Γ(x) and 𝛿�(𝑥) is the Gamma function and Dirac function respectively. Therefore, we could 

estimate the parameters 𝜇, 𝜃, 𝜋 of ZINB distribution from the hidden layer in Eq. (6): 
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where exp(⋅) is the exponential function and softplus(⋅) and sigmoid(⋅) are the non-linear activation 

functions. 

After having obtained the parameters of the learned distributions, the reparameterization method could 

help us transform the latent variables ([𝜇𝒩, 𝜎𝒩� ], [𝜇ℳ, 𝜃ℳ, 𝜋ℳ]) to deterministic variables, denoted as 

𝑍𝒩, 𝑍ℳ . Therefore, the generative model in our framework could decode from the deterministic 

variables 𝑍𝒩 and 𝑍ℳ to generative random variables, where the gene expressions and gene-to-gene 

relationships can be reconstructed.   

Specifically, given embeddings of gene 𝑖 and cells 𝑗, we compute 𝜇ℳ� , 𝜃ℳ�  and 𝜋ℳ�  by: 

 [𝜇ℳ� , 𝜃ℳ� , 𝜋ℳ� ] = 𝑔�o(𝑍_
𝒩, 𝑍ℳ)  (12) 

where 𝑔�o  is a neural network for reconstructing gene expression matrix and 𝜑� is the trainable 

parameter in 𝑔�o. Then an imputed gene expression 𝑋$_` can be generated by the following process: 
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(_,`)­ is the NB distribution parameterized by 𝜇ℳ� (_,`) and 𝜃ℳ� (_,`) , and 

𝑝�o is the probabilistic decoder given the latent embeddings 𝑍_𝒩 and 𝑍ℳ. 

Therefore, we could implement the generative model 𝑔�o by: 

 𝑋$_` = 𝑔�or𝑍_
𝒩, 𝑍ℳs = 𝑑𝑖𝑎𝑔(𝑠 ) × 𝑍ℳ  (15) 

where diag(⋅) is the diagonal matrix constructed by the vector (⋅) and 𝑠  is the size factor of cell 𝑗. 

Similarly, given embeddings of two genes 𝑖 and 𝑗, we can compute 𝜇𝒩�  and 𝜎�𝒩
�  by: 
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where 𝑔�� is a neural network for reconstructing gene-to-gene relationships and 𝜑� is the trainable 

parameter in 𝑔��. Then an observed edge between two genes 𝑖 and 𝑗 can be generated by: 
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The generative model 𝑔�� to reconstruct gene-to-gene relationships could be defined as: 

 𝐴]_` = 𝑔��r𝑍_
𝒩, 𝑍𝒩s = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑍_𝒩

 𝑍𝒩)  (18) 



where sigmoid(⋅) is the sigmoid function.  

Optimization. The optimization was performed to obtain accurate embeddings of both genes and cells 

in an unsupervised way. For this purpose, 𝑍𝒩 and 𝑍ℳwere optimized by the variational lower bound 

ℒ: 

							ℒ(𝜙, 𝜑) ≜ 𝔼¿À Á Â log𝑝�or𝑋$_`·𝑍_
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 where 𝔼¿À  is the cross entropy function with the probabilistic distribution 𝑞�  and 

𝑝�and	𝐷𝐾𝐿(𝑞||𝑝) = ∑𝑝(⋅) log
𝑝(⋅)
𝑞(⋅)

 is the Kullback-Leibler (KL) divergence between q(⋅) and p(⋅). In 

the above equation, 𝑞�(𝑍ℳ|𝐴, 𝑋 ) and 𝑞�(𝑍𝒩|𝐴, 𝑋) is defined as the probabilistic encoder with the 

input of 𝐴, 𝑋   and 𝐴, 𝑋  respectively, aiming at producing the representations 𝑍𝒩, 𝑍ℳ . Similarly, 

𝑝�or𝑋$_`·𝑍_
𝒩, 𝑍ℳs and 𝑝��r𝐴]_`·𝑍_

𝒩, 𝑍𝒩s are the probabilistic decoders for construct the imputed gene 

expression matrix 𝑋$ and gene-to-gene relationships 𝐴]. Furthermore, the KL divergence in optimization 

could be interpreted as the regularization to make the predicted posterior distributions closer to the prior 

distributions 𝑝(𝑍ℳ), 𝑝(𝑍𝒩). 

With the help of reparameterization trick, we could represent the distributions with deterministic 

variables: 

 [𝜇ℳ, 𝜃ℳ, 𝜋ℳ] ∈ 𝑍𝐼𝑁𝐵(𝑋|𝜇ℳ, 𝜃ℳ, 𝜋ℳ) or  [𝜇ℳ, 𝜃ℳ] ∈ 𝑁𝐵(𝑋|𝜇ℳ, 𝜃ℳ) (20) 

 [𝜇𝒩, 𝜎𝒩� ] ∈ 𝐺𝑎𝑢𝑠𝑠𝑖𝑎𝑛(𝜇𝒩, 𝜎𝒩� )  (21) 

These deterministic variables are differentiable and capable to be calculated in backpropagation 

process. We could directly derivate Eq. (18) based on Monte Carlo estimates: 
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Therefore, with the optimization, the gradient-based optimization techniques can be used to train the 

end-to-end model. 

Evaluation metrics. To evaluate the accuracy of imputation, we examine the reconstruction accuracy 

and clustering performance to the scRNA-seq datasets. The reconstruction accuracy on the simulated 

dataset can be measured by mean absolute error (MAE), which is the reconstruction error between the 

true expression matrix and imputed matrix. Clustering performance can be measured by the clustering 

metrics: adjusted Rand index (ARI)(Hubert and Arabie, 1985), clustering accuracy (CA) and Silhouette 



Coefficient(Rousseeuw, 1987) (SC). To fairly quantitate the performance of differentially expressed 

genes (DEGs) detection using scRNA-seq data, we calculated the accuracy (ACC), F-score and AUC for 

each DEG detection. 

The adjusted Rand index (ARI) is the corrected-for-chance version of the Rand index. The Rand index 

is a measure of the similarity between two data clustering and the ARI is adjusted for the chance grouping 

of elements. Given a set of n samples, the two clusters of these samples are  𝑉 = {𝑉�, 𝑉�, … , 𝑉Ï} and 

𝑈 = {𝑈�, 𝑈�, … , 𝑈C} and 𝑛_`  is defined as 𝑛_` = |𝑉_ ∩ 𝑈 |. Let 𝑎_ = ∑ 𝑛_`C
`Ê� , 𝑖 = 1,… , 𝑟 and 𝑏 =

∑ 𝑛_`Ï
_Ê� , 𝑗 = 1,… , 𝑡, the ARI could be defined as 

 𝐴𝑅𝐼 =
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o
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  (23) 

The CA is defined as the accuracy of the clustering assignments. Given a sample 𝑖, let 𝑠_ be the 

ground truth label and 𝑟_ be the assignments of clustering, then the CA is  

 𝐶𝐴 = max
×

∑ Ø(Bh,×(Ïh))
Ò
hno

Ù
  (24) 

where 𝑛  is the number of samples, 𝑚  is the set of one-by-one mapping between clustering 

assignments and true labels and 𝛿(x, y) = 1 if x = y otherwise 0.   

The SC measured the similarity between a single cell and its cluster. The silhouette ranges from −1 to 

+1, where a high value indicates that the object is well matched to its own cluster. It could be defined as 

 𝑆𝐶 = Û(_)�I(_)
ÜÝÞ	{I(_),Û(_)}

  (25) 

where 𝑎(𝑖) is the mean distance between sample 𝑖 and all other samples in the same cluster and 

𝑏(𝑖) is the minimum distance of sample 𝑖 to all points in any other cluster. 

In the experiments of differential expression analysis, we took the DEG detection as the problem of 

predicting a gene is DEG or not, and the gold standard are obtained from bulk RNA-seq. Therefore, the 

accuracy (ACC), F-score and AUC could be calculated by: 

 𝐴𝐶𝐶 = CßD	àDÙD	_B	\áâ
\áâB

× 100%  (26) 

The F-score is calculated from the precision and recall of the DEG predictions, where the precision is 
the number of correctly detected genes divided by the number of all DEGs and the recall is the number 
of correctly detected genes divided by the number of all DEGs that should have been detected. It could 
be defined as: 

 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =  å
 å©o�(æå©æW)

  (27) 

where TP is the true positive meaning that the correct DEG have been detected, FP is the false positives 
and FN is the false negatives. 

AUC - ROC curve is a performance measurement for the classification problems at various threshold 
settings, which could be applied to evaluate the detection of DEGs. The AUC is calculated by the area 
under the ROC-curve, which represents the degree or measure of separability.  



Simulated datasets. Our simulated data are generated by Splatter(Zappia et al., 2017) R package, a 

widely used package for simulating the scRNA-seq count data. First, we simulated a dataset with two 

cell groups, 2000 cells of 3000 genes by setting 27% of data values to zero mimicking dropout events. 

During the simulation, we set the parameter 𝑑𝑟𝑜𝑝𝑜𝑢𝑡. 𝑠ℎ𝑎𝑝𝑒 = −1 , 𝑑𝑟𝑜𝑝𝑜𝑢𝑡.𝑚𝑖𝑑 = 0  and 

𝑑𝑒. 𝑓𝑟𝑎𝑐𝑆𝑐𝑎𝑙𝑒 = 0.3 for simulating the dropout events and the other parameters are set to default values. 

Hence, we could obtain the true counts before dropout and the raw counts after dropout, which are the 

simulated scRNA-seq data. Furthermore, we simulated a complex dataset of 3000 cells by 5000 genes to 

evaluate the robustness of our model, The 3000 cells are divided into six groups and the parameter were 

set to 𝑑𝑟𝑜𝑝𝑜𝑢𝑡. 𝑠ℎ𝑎𝑝𝑒 = −1 , 𝑑𝑟𝑜𝑝𝑜𝑢𝑡.𝑚𝑖𝑑 = 0 , 𝑑𝑒. 𝑓𝑟𝑎𝑐𝑆𝑐𝑎𝑙𝑒 = 0.3  and the other parameters 

with default values.  

C. elegans time course experimental data. We obtain the bulk transcriptomics data from the 

supplementary material of Francesconi. et al, which contains 15855 detected genes during 12 hours of C. 

elegans development(Francesconi and Lehner, 2014). We analyzed the dataset after simulating single-

cell transcriptomics dropout noises and the bulk transcriptomics data can be the ground truth for 

evaluation. Hence, we compared our method with the existing method DCA(Eraslan et al., 2019) by 

Pearson correlation coefficient.  

Mouse embryonic stem cells data. Klein. et al. profiled the single-cell transcriptomics by droplet-

microfluidic approach and applied it on embryonic stem cells(Klein et al., 2015). They analyzed the 

heterogeneity of mouse embryonic stem cells differentiation after leukemia inhibitory factor (LIF) 

withdrawal. Here, we selected the four different LIF withdrawal intervals (0, 2, 4, 7 days) and construct 

a scRNA-seq dataset with 2717 cells of 24175 detected genes. And the cell types are determined by the 

intervals of LIF withdrawal. 

Human ESC scRNA-seq dataset for differential expression analysis. Chu et al generated bulk and 

scRNA-seq data from H1 human embryonic stem cells (H1) differentiated into definitive endoderm cells 

(DEC). This dataset contains six samples of bulk RNA-seq (four for H1 ESC and two for DEC) and 

scRNA-seq of 350 single cells (212 for H1 ESC and 138 for DEC). The percentage of zero expression is 

14.8% for the bulk RNA-Seq dataset and 49.1% for the scRNA-Seq dataset. 

5k peripheral blood mononuclear cells (PBMC) from a healthy donor. The dataset was provided 

by 10X scRNA-seq platform(Zheng et al., 2017), profiling the transcriptome of the peripheral blood 

mononuclear cells (PBMCs) from a healthy donor. The total number of cells was 5247 after filtering 

process and the cell types were identified by graph-based clustering on the platform. 

10K Brain Cells from an E18 Mouse dataset. The dataset was also provided by 10X scRNA-seq 

platform, profiling the brain cells from a combined cortex, hippocampus and sub ventricular zone of an 

E18 mouse. We could obtain the dataset containing 11843 mouse brain cells of 31053 detected genes 

and the cell types were identified by graph-based clustering on the platform. 



Human Embryos cells scRNA-seq data. Xue et al. performed a comprehensive analysis of 

transcriptome dynamics by weighted gene co-expression network analysis(Xue et al., 2013). Therefore, 

we could obtain the dataset containing 30 samples from oocyte to morula in human embryos samples 

from their experiments. Here, we utilized the dataset to demonstrate the effectiveness of our method on 

inferring the gene-to-gene relationships. 

Implementation. We implemented the proposed model with Tensorflow 1.11.0(Abadi et al., 2016). 

In the training process, we utilized the Adam(Kingma and Ba, 2014) optimizer with an initial learning 

rate of 0.01 and allowed it to decay exponentially with decay_rate = 0.9  and decay_steps = 50 

during learning. The total loss and learning rate decreased with epoch during training as shown in 

supplementary Fig. 4. The hidden layers of encoders were set as 16 neurons and we use a 32-dimensional 

of embedding latent variables in all experiments, denoted as 𝐷. To alleviate overfitting, we implemented 

the regularization methods such as dropout and L2 regularization. Dropout(Srivastava et al., 2014) rate 

0.2 was applied on the inference model and the coefficient of L2 regularization was 0.001. We explored 

hyper-parameters in a wide range and find the above hyper-parameters yields the highest performance, 

as supplementary Fig. 5 shown. We tuned model hyper-parameters based on the experimental results on 

simulated datasets and used them across all datasets. All experiments are repeated for 5 times, each with 

a different random seed.  
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