iScience, Volume 24

Supplemental information

A new CcpA binding site plays

a bidirectional role in carbon catabolism

in Bacillus licheniformis

Fengxu Xiao, Youran Li, Yupeng Zhang, Hanrong Wang, Liang Zhang, Zhongyang Ding, Zhenghua Gu, Sha Xu, and Guiyang Shi

Supplementary Information

A newly CcpA binding site plays a bidirectional role in carbon catabolism in Bacillus licheniformis

Fengxu Xiao^{a,b,c}, Youran Li^{a,b,c*}, Yupeng Zhang^{a,b,c}, Hanrong Wang^{a,b,c}, Liang Zhang^{a,b,c}, Zhongyang Ding^{a,b,c}, Zhenghua Gu^{a,b,c}, Sha Xu^{a,b,c}, Guiyang Shi^{a,b,c,d*}

^aKey Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, People's Republic of China;

^bNational Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu Province 214122, People's Republic of China;

°Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University.

dLead contact

*Address Correspondence to:

Youran Li, Jiangnan University, Wuxi, China. Email: <u>liyouran@jiangnan.edu.cn</u>

or:

Guiyang Shi, Jiangnan University, Wuxi, China. Email: gyshi@jiangnan.edu.cn

Legends:

Transparent Methods	2
Figure S1: EMSA of CcpA or CcpA-Hpr-P protein for fragment A and B	3
Figure S2: EMSA of CcpA protein binding to two fragments (cre4-1, cre4-2) labelled with 5'-biotin	4
Figure S3: Further point mutation of the 12-bp symmetrical region of CRETre	5
Figure S4: Further point mutation of the 12-bp symmetrical region of CRE _{Tre(R)}	6
Figure S5: Potential CRETre sites in xylose operon and mannose operon	7
Table S1: Bacterial strains and plasmids used in this study	8
Table S2: Primers used to construct recombinant plasmids	10

Transparent Methods

Bacterial Strains, Plasmids, and Culture Conditions

Table S1 lists the strains and plasmids used or produced in this study. *Escherichia coli* JM109 was used for plasmid preparation. The *E. coli* JM109 transformants carrying plasmids based on pHY-PLK300, were selected on Luria–Bertani (LB) agar plates supplemented with ampicillin (100 µg/mL). The *B. licheniformis* B1391 transformants were selected on LB agar plates supplemented with tetracycline (20 µg/mL). Two strains were cultured in LB medium (10 g/L tryptone, 5 g/L yeast extract, 10 g/L NaCl), *E. coli* was cultured at 37 °C and 200 rpm, and *B. licheniformis* was cultured at 37 °C and 250 rpm. Fermentation medium (12 g/L tryptone, 24 g/L yeast extract, 16.427 g/L K₂HPO₄.3H₂O, 2.31 g/L KH₂PO₄) was prepared for protein expression. A 3% seed liquid was inoculated into the fermentation medium, and batch fermentation was cultured at 37 °C and 250 rpm.

Plasmid Construction

The recombinant plasmids were constructed based on pHY300-PLK using the primers listed in Table S2. First, eGFP was amplified by the primer pair eGFP-F/eGFP-R (Table S2). The fragment was then purified and digested with *Xho*I and *Sma*I, followed by incorporation into pHY300-PLK, yielding pE. Then, the promoter region, *PtreA*, was cloned using 100 ng of the genome of *Bacillus licheniformis* CICIM B1391. PCR was performed with high-fidelity DNA polymerase (Vazyme Biotech Co., Ltd. 2 × Phanta Master Mix) and the primer pairs *PtreA*-F/*PtreA*-R. The fragment was also purified and digested with *Hin*dIII and *Xho*I, followed by incorporation into pE, yielding pBLTE. Next, the artificial promoter *PtreA* was constructed using overlap extension PCR. Two fragments, *PtreA*-CRETre-1 and *PtreA*-CRETre-2, were cloned by the primer pairs *PtreA*-F/*PtreA*-CRETre-R, *PtreA*-CRETre-F/*PtreA*-R, using *PtreA* as template. *PtreA*-CRETre was created using *PtreA*-CRETre-1 and *PtreA*-CRETre-2 as a template, and *PtreA*-F/*PtreA*-R as primers. The fragment *PtreA*-CRETre was also purified and digested with *Hin*dIII and *Xho*I, followed by incorporation method of pBLT1E.

Transformation of B. licheniformis

A method of electrotransformation was used to transform plasmids into *B. licheniformis*. A total of 8 µg-10 µg of plasmid was added to the *B. licheniformis* competent cells and mixed. Then, the mixed competent cells were added to a precooled 0.1 cm Gene Pulser cuvette and placed on ice for 5 min. Next, the 0.1 cm Gene Pulser cuvette was placed into an electroporation apparatus and shocked with 2,100 V. After the electric shock was administered, 900 µL of recovery medium (LB + 0.5 M sorbitol + 0.38 M mannitol) was immediately added, and the cells were cultured at 37°C and 100 rpm for 3 h before being applied to the corresponding antibiotic plates.

Fluorescence Measurement of eGFP

The BlspTE strain was cultured overnight at 37°C and 250 rpm, and 3% culture was inoculated into the fermentation broth. After 8 h of growth, 15 g/L trehalose was added for inducible expression. The sample was measured for OD600 and fluorescence intensity after 16 h of adding trehalose. Then, 100 μ L of fermentation broth was centrifuged to obtain the cell pellet, then the cell pellet was rinsed twice with phosphate buffered saline (PBS) solution at pH 7.4, and the final OD600 was diluted to 0.5. Next, 200 μ L of diluted suspension was added to the 96-well microtiter plate (Corning). The 96-well microtiter plate was placed in a TECAN-SparK plate reader (Tecan, Männedorf, Switzerland), which calculated the final value using an absorption wavelength of 485 nm, excitation wavelength of 535 nm, and gain value of 100. The formula FI (AU/OD) = 2×(FVt-FVr), where FVt refers to the fluorescence value measured by the target strain, and FVr represents the fluorescence value measured by the control strain BlsPE, was used to evaluate the fluorescence intensity.

Electrophoretic Mobility Shift Assays

DNA probes were amplified using high-fidelity DNA polymerase (Vazyme Biotech Co., Ltd. 2 × Phanta Master Mix) and primers were labeled with biotin. Biotin-labeled probes were purified by agarose gel electrophoresis. 10 nM biotin-labeled probes were incubated with different concentrations of CcpA in binding buffer (10 mM Tris-HCI (pH 7.4), 1 mM DTT, 1 mM EDTA, 50 mM KCI, 0.05 µg/µL poly (dI-dC), 1 mM MgCl₂), and the reaction solution was put through a full reaction at 25°C for 20 min. After the reaction was completed, the samples were separated by electrophoresis using 4% acrylamide gels in 0.5 × Tris-borate EDTA (TBE) buffer. The samples were electroblotted from the acrylamide gels onto nylon membrane (Beyotime, FFN15), and immobilized by UV crosslinking. The nylon membrane was washed and detected using Chemiluminescent EMSA Kit (Beyotime, GS009) according to manufacturing protocol. Gel imaging and analysis were performed using ChemiDoc XRS (Bio-Rad, U.S.A).

Statistical analysis

The sample size was $n \ge 3$ for biology experiments. A student's tests (* $P \le 0.05$; ** $P \le 0.01$, *** $P \le 0.001$) were performed for statistical analysis.

Figure S1: EMSA of CcpA or CcpA-Hpr-P protein for fragment A and B. Related to Figure 1.

The *hpr* (c16360) gene of *Bacillus licheniformis* CICIM B1391 was cloned and then inserted into pET28a vector (between *Nde*I and *Eco*RI), to obtain the gene expression vector of pET28a-*hpr*. The recombinant strain *E.coli* BL21 (DE3) containing expression vector was grown overnight in 15 mL LB-Kanamycin at 37° C, 200 rpm. A 3 % of the culture was inoculated into Terrific Broth (TB) at 37° C until OD600 of 0.4-0.5. The Hpr protein was induced by 0.1mM IPTG for 10 h at 25° C. The cells were collected by centrifugation at 8,000 × g for 5 min. The Hpr protein was purified by the Kit (Mag-Beads His-Tag Protein Purification, Sangon Biotech, C650033) according to the manufacture's protocols. The purify of the Hpr Protein was analyzed through Tris-Tricine SDS PAGE.

Hpr protein phosphorylation was performed in 20 mM Tris-Cl buffer (pH 7.0) supplemented with 1 mM MgCl₂, 2 mM NaCl and 5 mM ATP. 27 μ g Hpr protein and 0.15 μ g HprK protein was added to the reaction system at 37 °C for 10 min. The reaction was ended at 75 °C for 5 min. 10% phos-tag SDS PAGE (Boppard, 193-16711) was used to determine whether Hpr phosphorylation.

The EMSA Lane (left→right): 10 nM fragment A; 1.2µM CcpA+10 nM fragment A; 1.2 µM CcpA +1.2 µM Hpr-P+10 nM fragment A; 1.2µM CcpA+10 nM fragment B; 1.2 µM CcpA +1.2 µM Hpr-P+10 nM fragment B; 1.2µM CcpA + 10 nM Positive control probe.

Figure S2: EMSA of CcpA protein binding to two fragments (E6, E7) labelled with 5'-biotin. Related to Figure 1.

Fragment E6 and Fragment E7, containing cre4-1 (AGCGTT-aaggaactttcaga-AACGCT) and cre4-2 (AGCTTT-aaggaactttcaga-AAAGCT). Increasing concentrations of CcpA (0 μM, 0.6 μM, 0.9 μM, 1.2 μM) were incubated with 10 nM E6 or E7 before the reaction run on EMSA gel.

L: 1	2	3	4	5	6	х	7	8	9	10	11	12	R CcpA-His(µM)	0 2.0 2.0 2.0 2.0 2.0 2.0
TO A	G	с	т	т	т	AAGGAACTTTCAGA	А	А	Α	G	С	т]	
T1-1 C	G	С	т	т	т	AAGGAACTTTCAGA	А	А	Α	G	с	G		副目前のたい
T2-1 A	т	С	т	т	т	AAGGAACTTTCAGA	Α	Α	Α	G	A	т		
T3-1 A	G	т	т	т	т	AAGGAACTTTCAGA	Α	Α	Α	A	С	т		
T4-1 A	G	С	С	т	т	AAGGAACTTTCAGA	Α	Α	G	G	С	т		
T5-1 A	G	С	т	С	т	AAGGAACTTTCAGA	Α	G	Α	G	С	т		T1-1 T1-1 T2-1 T3-1 T4-1 T5-1 T6-1
T6-1 A	G	С	т	т	C	AAGGAACTTTCAGA	G	Α	A	G	С	т	CcpA-His(uM)	0 2.0 2.0 2.0 2.0 2.0 2.0
T7-1 A	G	С	т	т	G	AAGGAACTTTCAGA	С	Α	A	G	С	т		
T8-1 A	G	с	т	G	т	AAGGAACTTTCAGA	Α	C	A	G	С	т		
T9-1A	G	С	G	т	т	AAGGAACTTTCAGA	Α	Α	C	G	С	т		
T10-1A	G	Α	т	т	т	AAGGAACTTTCAGA	Α	Α	A	т	С	т		
T11-1A	A	С	т	т	т	AAGGAACTTTCAGA	Α	Α	A	G	т	т		
T12-1G	G	С	т	т	т	AAGGAACTTTCAGA	Α	Α	A	G	С	С	-	T7 1 T7 1 T8 1 T9 1 T10 1 T11 1 T12 1

Figure S3: Nucleotide mutations within the 12-bp symmetrical regions of CRE_{Tre}. Related to Figure 3.

Two symmetrical bases in symmetrical regions were mutated based on fragment H1, resulting 12 derivative probes (T1-1, T2-1, T3-1, T4-1, T5-1, T6-1, T7-1, T8-1, T9-1, T10-1, T11-1, and T12-1). 2.0 μ M CcpA was incubated with 10 nM T1-1, T2-1, T3-1, T4-1, T5-1, T6-1, T7-1, T8-1, T9-1, T10-1, T11-1, and T12-1before the reaction run on EMSA gel.

L: 1	2	3	4	5	6	Х	7	8	9	10	11	12	:R	CcpA-His(µM)	0	2.0	2.0	2.0	2.0	2.0	2.0
T _R A	А	Α	G	С	Т	AAGGAACTTTCAGA	Α	G	С	т	т	Т	1								
T _{R1-1} C	Α	А	G	с	т	AAGGAACTTTCAGA	Α	G	С	т	т	G							•		
T _{R2-1} A	С	Α	G	С	т	AAGGAACTTTCAGA	Α	G	С	т	G	Т								••	
T _{R3-1} A	Α	С	G	С	т	AAGGAACTTTCAGA	Α	G	С	G	т	Т			-	2	1	4	1	13	
Т _{R4-1} А	Α	Α	т	С	т	AAGGAACTTTCAGA	Α	G	A	т	т	т			_			_	_	_	_
T _{R5-1} A	Α	А	G	т	т	AAGGAACTTTCAGA	Α	Α	с	т	т	т			T _{R1}	1 T _{R1-1}	T _{R2-1}	T _{R3-1}	T _{R4-1}	T _{R5-1}	T _{R6-1}
T _{R6-1} A	Α	Α	G	С	С	AAGGAACTTTCAGA	G	G	с	т	т	т		CcpA-His(µM)	0	2.0	2.0	2.0	2.0	2.0	2.0
Т _{R7-1} А	Α	А	G	С	G	AAGGAACTTTCAGA	С	G	С	т	т	т									
T _{R8-1} A	Α	Α	G	A	т	AAGGAACTTTCAGA	А	т	С	т	т	т									
T _{R9-1} A	А	Α	Α	С	т	AAGGAACTTTCAGA	Α	G	Т	т	т	т									
T _{R10-1} A	Α	G	G	С	т	AAGGAACTTTCAGA	Α	G	С	С	т	т				-	-				
T _{R11-1} A	G	Α	G	С	т	AAGGAACTTTCAGA	Α	G	С	т	С	т			_	-	_	_	-	-	_
T _{R12-1} G	Α	Α	G	С	т	AAGGAACTTTCAGA	Α	G	С	т	т	С			TR	7-1 T _{R7}	1 T _{R8}	1 T _{R9}	1TR10	T _{R11}	-1T _{R12-1}

Figure S4: Further point mutation of the 12-bp symmetrical region of CRE_{Tre(R)}. Related to Figure 6.

Two symmetrical bases in symmetrical regions were mutated based on fragment H1, resulting 12 derivative probes (TR1-1, TR2-1, TR3-1, TR4-1, TR5-1, TR6-1, TR7-1, TR8-1, TR9-1, TR10-1, TR11-1, and TR12-1). 2.0 µM CcpA was incubated with 10 nM (TR1-1, TR2-1, TR3-1, TR4-1, TR5-1, TR6-1, TR7-1, TR8-1, TR9-1, TR10-1, TR11-1, and TR12-1), and T12-1before the reaction run on EMSA gel.

Figure S5: Potential CRE_{Tre} sites in xylose operon and mannose operon. Related to Figure 8.

The putative CRE_{Tre} was annotated with red. Increasing concentrations of CcpA (0 µM, 0.6 µM, 0.9 µM, 1.2 µM) were incubated with 10 nM fragments before the reaction run on EMSA gel.

Table S1Bacterial Strains and Plasmids Used in This Study. Related to Figure 4.

Strain or plasmid	Description		Reference		
Strains					
Escherichia coliJM109	F′, traD36, proAB + laclq, Δ(lacZ), M15/Δ (lac-proAB), gln V44, e14−, g recA1, relA1, endA1, thi, hsdR17 (CICIM B0012)	CICIM-CU			
Bacillus licheniformis	wild time (CICIM D4204)				
CICIM B1391	wild-type (CICIM B1391)	CICIM-CU			
Bacillus licheniformis CA	B. licheniformis CICIM B1391, $\Delta ccpA$		Laboratory construct		
BlspHY	B. licheniformis CICIM B1391, harboring pHY300-PLK		this work		
BlspE	B. licheniformis CICIM B1391, harboring pE		this work		
BlspTE	B. licheniformis CICIM B1391, harboring pBLTE		this work		
BlspT1E	B. licheniformis CICIM B1391, harboring pBLT1E		this work		
BlspT2E	B. licheniformis CICIM B1391, harboring pBLT2E		this work		
BlspDE	B. licheniformis CICIM B1391, harboring pBLDE		this work		
BlspAE	B. licheniformis CICIM B1391, harboring pBLAE		this work		
BlspHY1	B. licheniformis CA, harboring pHY300-PLK		this work		
BlspE1	B. licheniformis CA, harboring pE		this work		
BlspTE1	B. licheniformis CA, harboring pBLTE		this work		
BlspT1E1	B. licheniformis CA, harboring pBLT1E		this work		
BlspT2E1	B. licheniformis CA, harboring pBLT2E		this work		
BlspDE1	B. licheniformis CA, harboring pBLDE		this work		
BlspAE1	B. licheniformis CA, harboring pBLAE				
Plasmids			this work		
pMD18-T-simple	<i>E. coli</i> cloning vector, Ap ^R		TaKaRa		
pHY300-PLK	<i>E. coli/Bacillus</i> shuttle vector, Ap ^R /Tet ^R		TaKaRa		
pE	pHY300-PLK derivative with egfp		this work		
pBLTE	pE derivative with PtreA from B. licheniformis CICIM B1391	this work			
	pE derivative with P <i>treA,</i> in which CRE site 'TGAAAGCGCTATAA' v	was	this work		
pBLT1E	changed to 'AGCTTT-AT-AAAGCT'	this work			
	pE derivative with PtreA, in which CRE site 'TGAAAGCGCTATAA' w		this work		
pBLT2E	changed to 'AAAGCT-AT-AGCTTT'		this work		
pBLDE	pE derivative with PdnaP from B. licheniformis CICIM B1391		this work		
pBLAE	pE derivative with P5A2 from <i>B. licheniformis</i> CICIM B1391		this work		

Ap^R, ampicillin resistance; Tet^R, tetracycline resistance; Kan^R, kanamycin resistance

CICIM-CU: Culture and Information Center of Industrial Microorganisms of China Universities.

Table S2

Primers Used to Construct Recombinant Plasmids. Related to Figure 4.

ofFPF CCCCCCGGGUtaccoggggtoggit Xhol aGFPR CCCCCCGGGUtaccoggggtoggit Small prex.F CCCCCCGGGUtaccogggtoggit Xhol Prex.R CCCCCCGGUtacctogggtoggit Xhol Prex.CRETror.F AGCITTAIAACCCTaactagggtoggtoctult Hindlil Prex.CRETror.F AAGCITAGGUTTaacatogggggggatca Hindlil Prex.CRETror.F AAGCITAGGUTTaacatoggggggatca Hindlil Prex.CRETror.F AAGCITAGGUTTaacatoggggatca Hindlil Prex.CRETror.F AAGCITAGGUTTaacatogggatcatast Hindlil Prex.CRETror.F CCCCAAGCITagggtaggattaactoctoctte Xhol Prex.PRETror.F CCCCAAGCITagggtaggattaactoctoctte Xhol Prex.PRETror.F aacagaatgggagattaactoctoctte Xhol IreR-195-F tagagattaacagagtat Hindlil IreR-195-F tagagagataggaggattaactoctoctte Xhol IreR-195-F tagagagataggaggattaactoctoctte Xhol IreR-195-F tagagatagaaggattaactoctoctoctoctoctoctoctoctoctoctoctoctoc	Primers	Sequence (5'-3')	Restriction site
eGFPR CCCCCCGSGerencequerginging Sine PreA-R CCCCTCCAC intersequerginging Sine PreA-RET CCCCCCAC intersequerginging Note PreA-RET CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	eGFPF	CCGCTCGAG atgggtcgcggatccatg	Xhol
ProxAFFCCCAGCCT GardrageognitudeHindliProxACRETiveFCCCT CGAGUCGAGUCGALCUCIDICXholProxACRETiveFAGCTTTATAAACCT analatuguaCucturgiXholProxACRETiveFFAGCTTATAAACCT analatuguaCucturgiXholProxACRETiveFFAGCTTATAAACCT analatuguaCucturgiXholProxACRETiveFFAAGCTATAGCTT analatuguaCucturgiXholProxACRETiveFFCCCAACCT CongUt analatuguaCucturgiXholProxACRETiveFFCCCAACCT CongUt analatuguaCucturgiXholPohaPFCCCCAACCT CongUt analatuguaCucturgiXholPohaPFCCCCAACCT CongUt analatuguaCucturgiXholPohaPFCCCCAACCT CongUt analatuguaCucturgiXholVireF109FatacqanticoggancaacatXholVireF109FqagaacaacaataCaacaacaatXholVireF109FgagacaacaagitatVireF109FVireF109FgagacaacaagitatVireF109FVireF109FgagacaacagitatVireF109FVireF109FgagacaacagitatVireF109FVireF109FgagacaacagitatVireF109FVireF109FgagacaacagitagaacagitatVireF109FVireF100FtugagacacagitagaVireF109FVireF100FtugagaccacaattictagaVireF109FVireF100FgagaccacaattictagaVireF109FVireF100FgagaccacaattictagaCuttigVireF109FVireF100FtugagaccacaattictagaCuttigVireF109FVireF100FgagaccacaattictagaCuttigVireF109FVireF100FtugagaccacaattictagaCuttigVireF109FVireF100Ftuga	eGFPR	TCC <u>CCCGGG</u> tcacacgtggtggtggtg	Smal
ProvARCCGCCCAGUECAGUECAGUECAGUECAGUECAGUECAGUE	P <i>treA</i> -F	CCCAAGCTTatctcagccggttgttcc	<i>Hin</i> dIII
Pre#-CRETIVEF AGCITIAIAAGCI anasing inpactacity Pre#-CRETIVER,F AGCITIAIAAGCI anasing inpactacity Pre#-CRETIVER,F AGCITIAGCITI analatity inpactacity Pre#-CRETIVER,F AGCITIAGCITI analatity inpactacity Pre#-CRETIVER,F AGCITIAGCITI analatity inpactacity Pre#-CRETIVER,F CCCAGCIT anggeogggaga analatal Pre#-RETIVER,F CCCAGCIT anggeogggaga analatal PSA2.F CCCAGCIT anggeogggaga analatal PSA2.F CCCAGCIT anggeogggaga analatal PSA2.F CCCAGCIT anggeogggaga analatal PRF109F.F anaga analaticog anacaanal PRF109F.F gaanacaanaticog anacaana PRF200F.F gaanacaanaticog anacaana PRF200F.F gaanacaanaticog anacaana <td>P<i>treA</i>-R</td> <td>CCGCTCGAGttccaatccctccttctc</td> <td>Xhol</td>	P <i>treA</i> -R	CCGCTCGAGttccaatccctccttctc	Xhol
Pre-AcRETro(R)-FAdSCITA/AcGCITasatasaasagocoggPre-AcRETro(R)-FAAAGCIA/AGCITasatasaasagocoggPre-AcRETro(R)-FCCCAAGCITasatasaasagocoggPdm-PACCCCAGCIGAGocoggocigaacactatataKindliKindliPSA2-RCCCCAGCIGAGOcoggocigaacactatataWarNiga-FatgaagatcacaagtatatWarNiga-FatgaagatcacaagtatatWarNiga-FasacaattgaagataWarNiga-FgaaagagocotigooggaaWarNiga-FgaaagagocotigooggaaWarNiga-FgaaagagocotigooggaaWarNiga-FtagaagatcacaagtatatWarNiga-FgaaagagocotigooggaaWarNiga-FtogaoggaaggataWarNiga-FtogaoggaaggataWarNiga-FtogaoggaaggataWarNiga-FtogaoggaaggataWarNiga-FtogaoggaaggataWarNiga-FtogaogtacoggagaWarNiga-FcogattcoggttggaWarNiga-FcogattcoggttggaWarNiga-FcogattcoggttggaWarNiga-FcogattcoggttggaWarNiga-FcogattcoggttggaWarNiga-FcogattcoggttggaWarNiga-FcogattcoggttggaWarNiga-FcogattcoggttggaWarNiga-FcogattcoggttggaWarNiga-FcogattcoggttggaWarNiga-FcogattcoggttggaWarNiga-FcogattcoggttggaWarNiga-FcogattcoggttggaWarNiga-FcogattcoggttggaWarNiga-FcogattcoggttggaWarNiga-FcogattcoggttggaWarNiga-FcogattcoggttggaWarNiga-Fcogattcoggttgga <tr< td=""><td>PtreA-CRETre-F</td><td>AGCTTTATAAAGCTaaatatgttgactacttgt</td><td></td></tr<>	PtreA-CRETre-F	AGCTTTATAAAGCTaaatatgttgactacttgt	
Pre4-CRETre(R)-F AAAGCTATAGCTTTasaatagttgadtatigt Pre4-CRETre(R)-R AAAGCTATAGCTTTasaatagttgagtaggags HirdIII Pre4-R CCGCTCQAGcgoctgaacaatastaata Xhol PdmP-R CCGCTCQAGcgoctgaacatastaat Xhol PdmP-R CCGCTCQAGcgoctgaacatastaat HirdIII PSA2-F CCGCTCGAGctaggatttacccocttte Xhol reR-109-F atgaagttcaacaagtatt HirdIII PSA2-R CCGCTCGAGctaggatttacccocttte Xhol reR-109-F atgaagttcaacaagtatt HirdIII reR-109-F atgaagttcaacagtat HirdIII reR-109-F atgaagttcaacagtatt HirdIII reR-109-F gattcaacagttagta HirdIII reR-109-F gattcaacgttagtat HirdIII reR-102-F gattcaacgttagtat HirdIII reR-102-F gattcaacgttagtat HirdIII reR-102-F gattcaacgttagtatagtagtagtagt HirdIIII reR-102-F gattcaacgttagtatagtagt HirdIIII reR-102-F gattcaacgttagtatagt HirdIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	PtreA-CRETre-R		
Prod-CRETre(R)-RAMAGCTATAGCTT asaataaaaaaagacceggHirdIIIPdmP-FCCCQAGCTGAGCGGgggctggacqatcgaHirdIIIPGAP-FCCCCAGCTGAGCGGgggctggacqatcatataXholPGAP-FCCCCAGCTGAGCGGgggacqatcatataXholPGAP-FcCCCAGCTGAGCGGgggacqatcatataXholPGAP-FatgaagatcaacagatatatViceIIIIVerR-199-FatgaagatcaacagatatatViceIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	PtreA-CRETre(R)-F	AAAGCTATAGCTTTaaatatgttgactacttgt	
PdmPARCCCAAGCITacgetaggaggaggaggaggaggaggaggaggaggaggaggagg	PtreA-CRETre(R)-R		
PdnaP-RCCGCTGAGcggcgtgaacettataXholPSA2-RCCGCAGCaGycgcggaacettataXholPSA2-RCCGCTGCAGYcggagtagattatetXholref-199-FatagaagtacacagtataXholref-199-FaaacaastagcagaacaatXholref-199-FgaacagattgagaacaagtataIntellingref-199-FgaacagattgagaacaatIntellingref-199-FgaacagattgagaacaatIntellingref-199-FtatagagaacaggatIntellingref-199-FtatagagaacaggaIntellingref-199-FtagagaacaggaacaggatIntellingref-192-FtagtacaaggaacaggatIntellingref-129-FcgdtccgttgtggtggIntellingref-129-FcgdtccgttgtggtggIntellingref-129-FcgdtccgttgtggtggIntellingref-129-FcgdtccgttgtggagaggtggIntellingref-129-FcgdtgcdtattacaaaIntellingref-129-FttggagatgaaggtgtgIntellingref-129-FttggagatgaaggtgtgIntellingref-129-FttggagatgaagagtgtgIntellingref-129-FttggagatgaagagtgtgIntellingref-129-FttggagatgaagagtgtgIntellingref-129-FttggagatgaagaaggtgtgIntellingref-129-FttggagatgaagaaggtgtgIntellingref-129-FttggagatgaagaaggtgtgIntellingref-129-FttggagatgaagaaggtgtgIntellingref-129-FttggagatgagaagatgIntellingref-129-FttggagatgagaagatgIntellingref-129-Fttggagatgaga	P <i>danP</i> -F	CCCAAGCTTacgcttagggtagcgaatcga	<i>Hin</i> dIII
P5A2-FCCCCAGCTTaggagagggagaagdaaatHntllP5A2-RCCCCTGAActaggattattactccetteXholP5A2-RCCCCTGAActaggattattactccetteXholP5A2-RCCCCTGAActaggattattactccetteXholtreR-199-FaacaaattgcaggaacaatInternet and attaggaggagaaggatatreR-199-FgaaagaacagtcggaacaatInternet and attaggaggaacaggattreR-199-FtoggagaacaggatInternet and attaggaggaggaaggaggaggaggaggaggaggaggagg	P <i>dnaP</i> -R	CCGCTCGAGcggcctgaacactctatata	Xhol
P5A2-RCCGCTGCAGCaggattitactoccitteXholtraR-199-F.atgaagacaacagtatattraR-199-F.atgaagacaacagtatattreR-139-F.atacgaatgacgagacaattreR-139-F.gaaacagtgggggaatreR-199-F.gaaacagtgggggaatreR-199-F.gigctgccagaacggttreR-199-F.gigctgccagaacggttreR-199-F.togagcaatgggaagggaatreR-199-F.toggtccagggaagaagggttreR-127-F.toggttccaggtggaatreR-127-F.toggttccaggtggaatreR-127-F.coggttccaggtggaatreR-127-F.coggttccaggtggaatreR-127-F.coggttccaggtggaatreR-127-F.coggttccaggtggaatreR-127-F.coggttccaggtggaatreR-127-F.coggttccaggtggaatreR-127-F.coggttccaggtggaatreR-128-F.coggatgaatatacaaatreR-129-F.coggatgaataggtaitreR-129-F.ttcggaagaaggatagtreR-129-F.ttcggaagaaggatagtreR-129-F.ttcggaagaaggtaigtreR-129-F.ttcggaagaaggatagtreR-129-F.ttcggaagaaggatagtreR-129-F.ttcggaagaaggatagtreR-129-F.ttcggaagaaggatagtreR-129-F.ttcggaagaaggatagtreR-129-F.ttcggaagaaggatagtreR-129-F.ttccaatcoctoctocttreA-122-F.AGCTTTAAGCTatctagccggtgtgtcccgtreA-129-F.AGCTTTAAGCTatctagccggtgtgtcccgtreA-129-F.CCCGGGaaggaatttcgaAAGCTatctcagccggtgtgtcccgtreA-129-F.AGCTTagagaatttcgaAAGCTatctcagccggtgtgtcccgtreA-129-F.CCCGG	P5A2-F		<i>Hin</i> dIII
IneR-199-FatgaagataaaagatatIneR-199-FaaacaatgaagaacaatIneR-199-FaaacaatgaagaacaatIneR-199-FgaaagacaatgaagaacIneR-199-FtogaggaaaaggatIneR-199-FtogaggaaaaggatIneR-199-F(F-biotin)cigaccaacaggagaIneR-199-F(F-biotin)cigaccaacaggagaIneR-199-F(F-biotin)cigaccaaggagaIneR-122-FciggetgacaaggagaIneR-124-FciggetgacaggagaIneR-124-FciggetgacaggagaIneR-124-FciggetgacaggagaIneR-124-FciggetgacaggagaIneR-124-FciggetgacaggagaIneR-124-FciggetgacaggagaIneR-124-FciggetgacaggatagIneR-124-FciggetgacaggatagIneR-124-FciggetgacaggatagIneR-124-FciggetgacaggatagIneR-124-FciggececcatactIneR-124-FciggececcatactIneR-124-FattcacacggatagIneR-124-FtitcagacaggttgaIneR-124-FtitcagacaggttgaIneR-124-FtitcagacaggttgaIneR-124-FtitcagacaggttgaIneR-124-FtitcagacaggttgaIneR-124-FtitcagacaggttgaIneR-124-FtitcagacaggttgaIneR-124-FtitcagacaggttgaIneR-124-FciccatactaccagIneR-124-FciccatactaccagIneR-124-FciccatactacagaIneR-124-FciccatactacagaIneR-124-FciccatagaaattagaAAGCTIneR-124-FciccatagaaattagaAAGCTIneR-124-FciccatagaaattagaAAGCTIneR	P5A2-R	CCG <u>CTCGAG</u> ctaggattttacctccctttc	Xhol
IneR-169-FaaacaaatigoogaacaatiIneR-169-FaaacaactigoogaacaatiIneR-169-FgaaacaactigoogaacaatiIneR-169-FigaacagactigogaIneR-169-R(S-biolin)cigacctittactictagatiIneR-169-R(S-biolin)cigacctittactictagatiIneR-169-R(S-biolin)cigacctittactictagatiIneR-169-R(S-biolin)cigacctittactictagatiIneR-169-R(S-biolin)cigacctittactictagatiIneR-169-R(S-biolin)acgaccgtaccagagagagatiIneR-169-R(S-biolin)acgaccgtaccagagagagatiIneR-169-R(S-biolin)acgaccagattactagaIneR-169-R(S-biolin)acgaccagattagaaIneR-169-R(S-biolin)acgaccagattagagatiIneR-169-R(S-biolin)acgaccagattagagatiIneR-169-R(S-biolin)acacaattactagIneR-169-R(S-biolin)acacaattacctagIneR-169-R(S-biolin)acacaattacctagIneR-169-R(S-biolin)acacaattacctagIneR-169-R(S-biolin)acacaattacctagIneR-169-R(S-biolin)acataacaagaccggcgIneR-169-R(S-biolin)ticcagccggtittaccgIneR-169-R(S-biolin)ticcagccggtittaccgIneR-169-R(S-biolin)ticcagccggtittaccgIneR-169-R(S-biolin)ticcagccggtittaccgIneR-169-R(S-biolin)ticcagccggtittaccgIneR-169-R(S-biolin)ticcagcccgtactactagacggtittaccgIneR-169-R(S-biolin)ticcagccggtittaccgIneR-169-R(S-biolin)ticcagccggtittaccgIneR-169-R(S-biolin)ticcagccggtittaccgIneR-169-R(S-biolin)ticcagccggtittaccgIneR-169-R(S-biolin)ticcagccggti	<i>treR</i> -199-F	atgaagatcaacaagtatat	
treR-139-FaiacigaaggatatreR-139-FgaaaaggactigcogaatreR-139-FgagaaaggactigcogatreR-139-FgigotigccagaaggattreR-139-FgigotigccagaaggattreR-149-FgigotigccagaaggattreR-122-FagatcaaggaagaaggattreR-112-FtcgjgcigcacaggagaatreR-122-FcggacgaccaggitogatreR-122-FcgacggccagattogatreR-122-FcgacggccacagttogatreR-122-FcgacggccacatactttreR-122-FcgacggccacatactttreR-124-FttcggaagatgaaggattreR-124-FttcggaagatgaaggattreR-124-FttcggaagtaggaattgtreR-124-FttcggaagtaggaattgtreR-124-FttcggaagtaggaattgtreR-124-FttcggaagtaggaattgtreR-124-FttcggaagtaggaattgtreR-124-FttcggaagtaggaattgtreR-124-FttcggaagtcgtcacaggtreR-124-FttcgaccgttgttccogcPtreA-124-FttcgaccgttgttccogcPtreA-124-Fttgcactatggaagtattgtre-24-FAcCTTTaagtcgacgttgttccogtre-24-FAcCTTTaagtcgacgttgttccogtre-24-FAcCTTTaagtcgacgttgttccogtre-24-FAcCTTTaagtcgacgttgttccogtre-24-FAcCTTTaagtcgacgttgttccogtre-24-FAcCTTTaagtcgacgttgttccogtreR-24-FCCCCGGGaagaacttcgacCCGGdactcagccggttgttccogtreR-24-FCCCCGGGaagaacttcgagACCTTatctagccggttgttccogtreR-24-FCCCCGGGaagaacttcgagACCTTatctagccggttgttccogtreR-24-FCCCCGGGaagaacttcgagACCTTatctagccggttgttccogtreR-24-	<i>treR</i> -169-F	aaacaaattgcagaacaaat	
treR-109-FgaaacgaccigocgaactreR-19-FtogaggaacggattreR-49-FtogaggaacggattreR-49-FtogaccetttocttigattreR-199-R(5-biotin)ctgaccetttocttigattreR-199-R(5-biotin)ctgaccetttocttigattreR-122-FagatcaaggaacggattreR-122-FcogtttocogttiggcagtreR-122-FcogtttocogttiggcagtreR-122-FcogtttocogttiggcagtreR-122-FcogactococagattocgtreR-122-FcogactococagattocgtreR-222-R(5-biotin)acoaccocagattocgtreR-194-FttotgogatgaagatggatgtreR-194-FttotgogatgaagatggatgtreR-194-FatoccaataggaatgtreR-194-FatoccaataggaatgtreR-194-FatoccaataggaatgtreR-194-FatoccaataggaatgtreR-194-FatoccaataggaatgtreR-194-FatoccaatagcogttgtocogPtreA-192-R(5-biotin)caatattocttottagPtreA-192-R(5-biotin)taatatagtdcaatdttreA-202-RFatoccaatacctocttotPtreA-192-R(5-biotin)ttocaatcctocttotPtreA-192-R(5-biotin)ttocaatcctocttotPtreA-192-R(5-biotin)ttocaatcctocttottre-26-1-FAGCTTTaaggaactticagaAAGCTatctcagcogttgttocogtre-26-1-FAGCTTTaaggaactticagaAAGCTatctcagcogttgttocogtre-26-1-FAGCTTTaaggaactticagaAAGCTatctcagcogttgttocogtre-26-1-FAAGCTatagaaccttcagaCCGGGatctcagcogttgttocogtreR(12-2-1-FAAGCTTatctagacogttgttocogtreR(12-2-1-FAAGCTatagaactticagaAAGCTatctagcogttgttocogtreR(12-2-1-FAAG	<i>treR</i> -139-F	atactgaatgccggagata	
treR-79-F togaggaaaggitogga treR-49-F gjettigeceagaaeggit treR-199-R(5'-biotin) etgacettitectitigatat treR-191-R(5'-biotin) togacetticettiggata treR-142-F toggitocagitiggigag treR-142-F cogittecagitiggigag treR-122-F agatcaaaggaaaggitiggigag treR-124-F coggitocatiggitiggigag treR-124-F coggitocatiggitiggigag treR-252-F coggitocatiggitiggigag treR-125-F coggitocatiggitiggigag treR-126-F tttcagaaacgettiggigag treR-136-R(5'-biotin) accaccatitectatig treR-194-R(5'-biotin) gaccacatitectatig treR-194-R(5'-biotin) gaccacatitectatig treR-194-R(5'-biotin) acataaaaaaagccoggec PtreA-102-F ttgaaggactitaaaat PtreA-102-F ttgaaggactitaaaat PtreA-102-F ttgaaggactitaaaat PtreA-102-F ttgaaggactitagaCCGGGGattcagcogttgttcccg tre-20-2-F AGCTTTaacgacetticagaAAGCTatctcagcogttgttcccg tre-20-2-F AGCTTTaacgacetticagaAAGCTatctcagcogttgttcccg tre-20-2-F AGCTTTaacgacetticagaAAGCTatctcagcogttgttcccg tre-20-2-F AGCTTTaacgacetticagaAAGCTatctcagcogttgttcccg tre-20-2-F AGCTTTaacgacetticagaAAGCTatctcagcogttgttcccg tre-20-2-	<i>treR</i> -109-F	gaaaacgaccttgccgaac	
treR-49-F gigctigcccaggaacgjat treR-199-R(5-biotin) ctgacccattertitgatt treR-202-F agatcaaggaaagggt treR-122-F togtgatgccaaggagaa treR-122-F togtgatgccaaggagaa treR-122-F togtgatgccaaggagaa treR-122-F togtgatgccaaggattogg treR-122-F cogacgttccacgattogg treR-202-R(5-biotin) acgaccattocacgattogg treR-202-R(5-biotin) gacgacaggatgat treR-142-F tottggaagaaggatga treR-142-F tottggaagaaggatga treR-142-R(5-biotin) gacgaccattacctatt treR-144-R(5-biotin) gacacaatttoctatg treR-144-R(5-biotin) caattagacgaattg treR-144-R(5-biotin) aattacaatagataagacctgggcg PtreA-102-R(6-biotin) aattacaatagataagccoggcg PtreA-102-R(6-biotin) ttcgacggttgttcccgg PtreA-102-R(6-biotin) ttccaatccctctctc PtreA-102-R(6-biotin) ttccaatccctctctc PtreA-102-R(6-biotin) ttccaatccctctctc PtreA-102-R(6-biotin) ttccaatccctctctc PtreA-102-R(6-biotin) ttccaatccctctctc PtreA-102-R(6-biotin) ttccaatccctctctc PtreA-102-R(6-biotin) ttccaatccaggattccaagAAAGCTattocagcogttgttcccg tte-26-F AGCTTTagacacttccagacCGGGattccagcoggttgttccc	treR-79-F	tcgagggaaacggttcgga	
traR-199-R(5-biotin) ctgaccttticctttgatt traR-202-F agatcaaaggaaaagggl traR-12F-F toglotgtacaaggaaaagggl traR-142-F coggittcogittggicag traR-12F-F toglotgtacaaggaaaggl traR-12F-F cogagitcoggittggicag traR-52F cogagitgcatatticaaaa traR-12F-F togagatgaaggaggl traR-12F-F cogagitgcatatticaaaa traR-12F-F cogagitgcatatticaaaa traR-196-R(5-biotin) agaccacatttccttg traR-194-F atccagcogitgtcogg traR-194-R(5-biotin) gaccacaatttccttg traR-194-R(5-biotin) catcttactcttctg Ptra-4.88-R(5-biotin) aattcagacogitgtcogg Ptra-4.88-R(5-biotin) aattcagacogitgttcogg Ptra-4.98-R(5-biotin) tacttcagtcogttgttcogg Ptra-4.98-R(5-biotin) tactcagtcogttgttcogg Ptra-4.98-R(5-biotin) tactagttgacattg tra-20-2F tagaaggatattgagaAAGCTatccagcogtgttcccg tra-20-2F AGCTTTaaggaactttcagaCCGGGattccagcogtgttcccg tra-20-2F AGCTTAAGCTattccagcCggttgttcccg tra-20-2F AGCTTAAGCTattccagcogtgttgtcccg tra-20-2F AGCTTAAGCTattccagcogtgttgtccg tra-20-2F AGCTTAAGCTattccagcogtgttgtccg tra-20-2F AGCTTAAGCTTattccagcogttgttccg	treR-49-F	gtgcttgcccagaacggat	
traR-202-F agataaaggaaagggt traR-172-F tcggdttocggggaa traR-142-F cggdttocggtggcag traR-142-F cggdttocggtgcag traR-122-F cggdttocggtgcag traR-122-F cggdttocggtgcag traR-122-F cggdttocggtgcag traR-25-F cggdttocggtgcag traR-262-RG-biolin) acgaccoccatactut traR-196-F ttdggagagaatgg traR-196-RG-biolin) gaccacaattuctatg traR-194-RG-biolin) gaccacaattuctatg traR-194-RG-biolin) cacattaggcggttgtcccggc Ptra-4-88-F attcggccgttgttcccggc Ptra-4-88-F attcggccgttgttcccggc Ptra-4-88-F attcggccgttgttcccggc Ptra-4-88-F attcggccgttgttcccgg Ptra-4-88-F attcggccgttgttcccgg Ptra-4-88-F attcggccgttgttcccgg Ptra-4-88-F Attcgccattagacgttgttcccg Ptra-4-88-F Attcgctagacgttgttcccg Ptra-4-88-F Attcgctagacgttgttcccg Ptra-4-88-F Attcgctagacgttgttcccg Ptra-4-88-F Attcgctagacgttgttcccg Ptra-4-88-F Attcgctagacgttgttcccg Ptra-4-88-F Attcgctagacgttgttcccg Ptra-4-88-F AttcgtagacgtttggagaAttcgacgttgttcccg Ptra-4-102-F Attcgtagagagtt	<i>treR</i> -199-R(5'-biotin)	ctgacccttttcctttgatct	
treR-172-F tcgtgtcgaaggaga treR-142-F cggttcgaaggaga treR-142-F cggaaggctgaaga treR-12-F tttcggaaaggttggg treR-22-F cggacggccaagattcgg treR-22-F cggacggccaagattcgg treR-196-F tttggagagagagttg treR-196-F tttggagagagagttg treR-196-F tttggagagagagttg treR-196-F tttggagagagagttg treR-196-R(5'-biotin) gaccccaatttcttatg treR-196-R(5'-biotin) gaccccaatttcttgca PtreA-88-FF attctagccgttgttcccggc PtreA-88-FF attctagccgttgttcccgg PtreA-88-R(5'-biotin) aataaaaaagacccggtgcg PtreA-102-F ttgaagagcttaaaaat PtreA-102-F ttgaagttcgaaAAAGCTatctcagccggttgttccg tre-20-2-F AGCTTTaaggaactttcagaAAGCTatctcagccggttgttccg tre-20-2-F AGCTTTaaggaactttcagaAAGCTatctcagccggttgttccg tre-26-5-F AGCTTTaaggaactttcagaAAGCTatctcagccggttgttccg tre-26-5-F AGCTTTaaggaactttcagaACCGGGaattcagccggttgttccg tre(R)-22-F AAAGCTaggaagttcagaAGCTTatctcagccggttgttccg tre(R)-26-1-F AAAGCTaggaagttcagaAGCTTatctcagccggttgttccg tre(R)-26-5-F CCCGGGaaggaactttcagaACCGGgaattcagccggttgttccg tre(R)-26-5-F CCCGGGaaggaactttcagaAAGCTatctcagccggttgttccg tr	treR-202-F	agatcaaaggaaaagggt	
treR-142-F cognitocognitigicag treR-112-F tittagaaacgetigcaa treR-12-F cogagicacagagitag treR-12-F cogagicatataticaaaa treR-22-F cogagicatataticaaaa treR-22-R(5-biotin) acgaccoccatacctet treR-196-F tittagagaagagagitag treR-196-R(5-biotin) gacccacaticctatg treR-194-R(5-biotin) ctaatacaaagaaatg treR-194-R(5-biotin) ctaattitcitatigaa treR-194-R(5-biotin) ctaattitcitatigaa PtreA-88-F attcaacgogigtitccoggc PtreA-88-F attcaacgogigtitcocggc PtreA-88-F attcaacgogigtitcocggc PtreA-88-F attcaacgogigtitcocggc PtreA-102-F ttgaaagogctataaaaa PtreA-102-F ttgaaagogctataaaata PtreA-102-R(5-biotin) ttcaatacatictaagocgigtittcocg tre-26-1-F AGCTTTaagaaatttagaAAGCTatctagcogigtigttccog tre-26-1-F AGCTTTaagaaatttagaAAGCTatctagcogigtigttccog tre-26-5-F CCCGGGaaggaactttagaAAGCTatctagcogigtigttccog tre/26-5-F AAGCTTaaggaacttcagaAGCTTatctagcogigtigttccog tre/26-5-F AAGCTTaaggaacttcagaAGCTTatctagcogigtigttccog tre/26-5-F CCCGGGaaggaacttcagaAGCTTatctagcogigtigttccog tre/26-5-F AAAGCTaaggaacttcagaACCTTatctagcogigtigttccog	<i>treR</i> -172-F	tcgtgctgcacagggaga	
twR-112-F tittaagaaacgitigjcaa twR-122-F cgaggiccacqagticgg twR-222-R(5-biolin) acgaccoccatacctett twR-212-R(5-biolin) gaccacaattoctatig twR-196-R(5-biolin) gaccacaattoctatig twR-196-R(5-biolin) gaccacaattoctatig twR-196-R(5-biolin) gaccacaattoctatig twR-194-R(5-biolin) cacacaattoctatig twR-194-R(5-biolin) catatttettoctaga Ptra-885-R attocagcogtigtoccogc Ptra-488-R(5-biolin) catatttettoctatiga Ptra-402-R(5-biolin) attacaacagtogtigtoccog Ptra-402-R(5-biolin) ttocaatcoctocttoc Ptra-402-R ttocaatcoctocttoc Ptra-402-R ttocaatcoctocttoc Ptra-402-R AGCTTTaaggaactttcaagAAAGCTatotcagcoggtigttocog tra-26-1-F CaCGGGaaggaactttcagaCCGGGattctagcoggtigttocog tra-26-5-F AGCTTTaaggatcttagaCCGGGattctagcoggtigttocog tra-26-5-F AAGCTTaaggatcttagaCCGGGattctagcoggtigttocog tra(R)-22-F AAAGCTaaggaactttcagaAAGCTTatotcagcoggtigttocog tra(R)-22-F AAAGCTaaggaactttcagaAAAGCTTatotcagcoggtigttocog tra(R)-22-F AAAGCTaaggaactttcagaAAAGCTatotcagcoggtigttocog tra(R)-22-F AAAGCTaaggaactttcagaAAAGCTatotcagcoggtigttocog tra(R)-26-F CCCGGGaaggaacttcagaAAAGCTatatcagcoggtigttocog	<i>treR</i> -142-F	cggtttccggtttggtcag	
treP-82.F cgacgGccagagitGgg treP-202.R(5-biotin) acgaccgccatactCtt treP-196.F ttdggagagagagaggtigg treP-196.FF ttdggagagagagaggtigg treP-194.F atgcccatactCtt treP-194.F ttdggagagagaggtigg treP-194.F atgccccataggcaattg treP-194.F atgccccataggcaattg treP-194.F atgccccataggcaattg treP-194.F atgccccataggcagt PtreA-88.F atccacgccgttgtcccggc PtreA-88.F atccacgccgttgtcccg PtreA-88.F ttccacgccgttgtcccg PtreA-102.F ttgaaaggctataaaat PtreA-102.F ttgaaaggctataaaat PtreA-102.F ttgaaaggctataaaat PtreA-102.F ttgaaaggctatagaatt tre-26.1.F AdCTTTAAQCTatctcagccggttgtcccg tre-26.4.F CCCCGGGaaggaacttcagaAAGCTatctcagccggttgttccg tre-26.4.F CCCCGGGaaggaacttcagaACCCGGGatctagccggttgttccg tre/R>26.F.F AAGCTTAaggaacttcagaAGCTTatctcagccggttgttccg tre(R)-26.F.F AAAGCTaaggaacttcagaAGCTTatctcagccggttgttccg tre(R)-26.F.F AAAGCTaaggaacttcagaAGCTTatctcagccggttgttccg tre(R)-26.F.F AAAGCTaaggaacttcagaAAGCTatctcagccggttgttccg tre(R)-26.F.F AAAGCTaaggaacttcagaAAGCTTatctcagccggttgttccg tre(R)-26.F.F AAAGCTaaggaac	<i>treR</i> -112-F	tttcagaaacgcttggcaa	
treR-52:F cggaccgccatactut treR-202:R(5'-biotin) acgaccgccatactut treR-196:R(5'-biotin) gacccacattucctuty treR-194:R(5'-biotin) gacccacattucctuty treR-194:R(5'-biotin) ctactagccggtgttcccgg PtreA-88:F atccagccggtgttcccgg PtreA-88:F(5'-biotin) ctactagccggtgttcccgg PtreA-88:F(5'-biotin) ctactagccggtgttcccgg PtreA-88:R(5'-biotin) tactagccggtgttcccgg PtreA-102:R(5'-biotin) tactagccggtgttcccgg PtreA-102:R(5'-biotin) ttccaatccctctctc PtreA-102:R(5'-biotin) ttccaatccctctctc PtreA-102:R(5'-biotin) ttccaatcccctctc PtreA-102:R(5'-biotin) ttccaatcccctctcc PtreA-102:R(5'-biotin) ttccaatcccctctc PtreA-102:R(5'-biotin) ttccaatcccctctc tre-26-1:F AGCTTTaaggacacttcagaCAAGCTatctcagccggttgttcccg tre-26-5:F AGCTTTaaggaacttcagaCCCGGGatctcagccggttgttccg tre-26-5:F AGCTTTaggaacttcagaCCCGGGatctcagccggttgttccg tre(R):26-1:F AAGCTAggaacttcagaCCCGGGatctcagccggttgttccg tre(R):26-1:F CCCGGGaaggaacttcagaCCGGGatctcagccggttgttccg tre(R):26-5:F CCCGGGaaggaacttcagaCCGGGatctcagccggttgttccg tre(R):26-5:F CCCGGGaaggaacttcagaCCGGGatctcagccggttgttccg tre(R):26-6:F CCCGGGaaggaacttcagaCCGGGatctcag	treR-82-F	cgacggtccacgagttcgg	
treR-202-R(5'-biotin) acgaccegcoatacctctt treR-196-F ttctggagatgaaggatag treR-196-F ttctggagatgaaggatag treR-196-F ttctggagatgaaggatag treR-194-F algcccataagggaatag treR-194-F algcccataagggaatag treR-194-F algcccataagggaatag treR-194-F algcccataagggaatag treR-194-F algccataagggaatag treR-194-F algccataagggaatag treR-194-F ttcaagccggttgttcccgg PtreA-402-F ttgaaggactttaagaaat PtreA-102-R(5'-biotin) ttccaatccctcettc PtreA-102-R(5'-biotin) ttccaatccctcettct PtreA-102-R(5'-biotin) ttccaatccctcettc PtreA-102-R(5'-biotin) ttccaatccctcettct PtreA-102-R(5'-biotin) ttccaatccctcettcagaAAGCTatctcagccggttgttcccg tre-26-5F AGCTTTaatgagaactttcagaACCGGGGatctcagccggttgttcccg tre-26-5F AAGCTaaggaactttcagaAAGCTatc	treR-52-F	cggatgcatatattcaaaa	
treR-196-F ttdggagatgaagaggtatg treR-196-R(5-biotin) gaccacatttocttatg treR-194-R(5-biotin) gaccacatttocttatg treR-194-R(5-biotin) ctactttocttoctaga PtreA-88-F atccagcoggtgttoccggc PtreA-88-F(5-biotin) aaataaaaaaaccccggccg PtreA-102-F ttgaaaggcattaaaaaat PtreA-102-R(5-biotin) aaataaaaaaacttccagaAAAGCTatctagccggttgttoccg PtreA-102-R(5-biotin) ttocaatcoctocttac PtreA-102-R(5-biotin) ttocaatcoctoctac PtreA-102-R(5-biotin) ttocaatcoctoctac tre-26-1F AGCTTTaatcagacgtgtgttoccg tre-26-5F AGCTTTaatcagacgtttagaaACGTTatctcagccggttgttoccg tre(R)-26-1F AAAGCTaaggaactttcagaACCTGGatctagccggttgttoccg tre(R)-26-5F AAAGCTaaggaactttcagaACCCGGatctagccggttgttoccg tre(R)-26-5F AAAGCTaaggaactttcagaAAAGCTatctagccggttgttoccg tre(R)-26-5F AAAGCTaaggaactttcagaAAAGCTatctagccggttgttoccg tre(R)-26-5F CAGCGGaaggaactttcagaAAAGCTatctagccggttgttoccg	<i>treR</i> -202-R(5'-biotin)	acgacccgccatacctctt	
treR-196-R(5'-biotin)gacacacattccttaigtreR-194-FatgcccataaggaaattgtreR-194-R(5'-biotin)ctacttttcttcttgcaPtreA-88-FatccagcogttgttcccggcPtreA-88-R(5'-biotin)aaataaaaaagcccggccgPtreA-102-FttgaaagcgctataaaaatPtreA-102-R(5'-biotin)aaataaaaaagcccggccgPtreA-102-R(5'-biotin)ttccaatccctcttcPtreA-102-R(5'-biotin)ttccaatccctcttcPtreA-102-R(5'-biotin)ttccaatccctcttcPtreA-102-R(5'-biotin)ttccaatcctcttctPtreA-102-R(5'-biotin)ttccaatcctccttcPtreA-102-R(5'-biotin)ttccaatcctccttcPtreA-102-R(5'-biotin)ttccaatcctccttcPtreA-102-R(5'-biotin)ttccaatcctccttcPtreA-102-R(5'-biotin)ttccaatcctccttcPtreA-102-R(5'-biotin)ttccaatcctccttcPtreA-102-R(5'-biotin)ttccaatcctccttcPtreA-102-R(5'-biotin)ttccaatcctctctcPtreA-102-R(5'-biotin)ttccaatccttcctcPtreA-102-R(5'-biotin)ttccaatccttctcPtreA-102-R(5'-biotin)ttccaatccttctctre3-5-FAGCTTTaatgaactttcaagaCAGCgdgtttcccgtte-26-5-FCCCGGGaaggaactttcaagaCCGGGattctagccggttgttcccgtte-26-1-FAAGCTTaaggaactttcaagaCCGGGattcagccggttgttcccgtte(R)-26-1-FAAGCTAaggaactttcaagaCCGGGattcagccggttgttcccgtte(R)-26-1-FCCCGGGaaggaactttcagaCAAGCTatctagccggttgttcccgtte(R)-26-5-FCCCGGGaaggaactttcagaCAAGCTatctagccggttgttcccgtte(R)-26-5-FCCCGGGaaggaactttcagaCAAGCTatctagccggttgttcccgtte(R)-26-5-FCCCGGGaaggaactttcagaAAAGCTatctagccggttgttc	<i>treR</i> -196-F	ttctggagatgaagaggtatg	
treR-194-F atgoccataaggaattg treR-194-R(5'-biotin) ctacttttctcttctgca PtreA-88-F attcagccgttgttcccggc PtreA-88-F attcagccgtgtttcccggc PtreA-88-R(5'-biotin) aataaaaagcccggccg PtreA-102-R(5'-biotin) ttcaatcctcctctc PtreA-102-R(5'-biotin) ttcaatccccctctcc PtreA-102-R(5'-biotin) ttccaatccctcctct PtreA-102-RF ttaatagttgatcattg tre-20-2-F AGCTTTaaggaactttcagaAAGCTatctcagccggttgttcccg tre-22-3-F AGCTTTaaggaactttcagaAAGCTatctcagccggttgttcccg tre-26-4-F CCCGGGaaggaactttcagaAAGCTatctcagccggttgttcccg tre-26-5-F AGCTTTaaggaactttcagaACCCGGGatctcagccgttgttcccg tre(R)-20-2-F AAGCTaaggaactttcagaACCCGGGatctcagccgttgttcccg tre(R)-20-2-F AAGCTaaggaactttcagaACCTTatctcagccgttgttcccg tre(R)-20-2-F AAAGCTaaggaactttcagaACCTTatctcagccgttgttcccg tre(R)-20-2-F AAAGCTaaggaactttcagaACCTTatctcagccgttgttcccg tre(R)-26-4-F CCCGGGaaggaactttcagaACGTTatctcagccgttgttcccg tre(R)-26-4-F CCCGGGaaggaactttcagaACGTTatctcagccgttgttcccg tre(R)-26-5-F CCCGGGaaggaactttcagaAAGCTatctcagccgttgttccg tre(R)-26-6-F CCCGGGaaggaactttcagaAAGCTatctcagccgttgttccg tre(R)-26-6-F CCCGGGaaggaactttcagaAAGCTatctagccgttgttccg T1-F CGCTTaaggaactttcagaAAGCTatctc	<i>treR</i> -196-R(5'-biotin)	gaccacaatttccttatg	
treR-194-R(5'-biotin) ctactituctituctituca PtreA-88-F atctcagccggttgttcccggc PtreA-88-F attcagccggttgttcccggc PtreA-188-R(5'-biotin) aaataaaaagccggccg PtreA-102-F ttgaaagcgtataaaaat PtreA-102-R(5'-biotin) ttgaaagcgtataaaaat PtreA-102-R(5'-biotin) ttgaaagcgtataaaaat PtreA-102-R(5'-biotin) ttgaaagcgtataaaaat PtreA-102-R(5'-biotin) ttgaaagcgtataaaaat PtreA-102ACRE-F ttgaaagcgtataagaAAGCTatctcagccggttgttcccg tte-20-2-F AGCTTTaaggaactttcagaAAGCTatctcagccggttgttcccg tte-12-3-F AGCTTTaaggaactttcagaCCGGGattctagccggttgttcccg tte-26-5-F CCCGGGaaggaactttcagaACCCGGGattctagccggttgttcccg tte-86-5-F CCCGGGGaaggaactttcagaACCCGGGattctagccggttgttcccg tte(R)-20-2-F AAGCTaaggaactttcagaAGCTTTatctcagccggttgttcccg tte(R)-20-2-F AAGCTaaggaactttcagaAGCTTTatctcagccggttgttcccg tte(R)-20-2-F AAGCTaaggaactttcagaAAGCTatctagccggttgttcccg tte(R)-20-2-F AAGCTaaggaactttcagaAAGCTatctagccggttgttcccg tte(R)-20-2-F AAGCTaaggaactttcagaAAGCTatctagccggttgttccg tte(R)-26-5-F CCCGGGGaaggaactttcagaAAGCTatctagccggttgttccg tte(R)-26-5-F CCCGGGGaaggaactttcagaAAGCTatctagccggttgttccg tte(R)-26-5-F CCCGGGGaaggaactttcagaAAAGCTatctcagccggttgttccg T1-F	<i>treR</i> -194-F	atacccataaqqaaattq	
PreA-88-FatctagccggtgttcccgcPreA-88-F(5'-biotin)aaataaaaagcccggcgPreA-102-FttgaagcgctataaaaatPreA-102-F(5'-biotin)ttccaatcctccttctcPreA-102-R(5'-biotin)ttccaatcctccttctcPreA-102-RCF-Ftaaatagttgaacattgtre-26-1-FAGCTTTaaggaactttcagaAAAGCTatctcagccggtgttcccgtre-20-2-FAGCTTTaaggaactttcagaAAAGCTatctcagccggtgttcccgtre-26-1-FAGCTTTaaggaacttcagacCggtgttcccgtre-26-5-FCCCGGGaaggaactttcagaCCGGGatctagccggtgttcccgtre-26-5-FCCCGGGaaggaactttcagaCCGGGatctagccggtgttcccgtre-26-6-FCCCGGGaaggaactttcagaCCGGGatctagccggtgttcccgtre/26-6-FCCCGGGaaggaactttcagaCCGGGatctagccggtgttcccgtre(R)-26-1-FAAAGCTaaggaactttcagaCCGGGatctagccggtgttcccgtre(R)-26-1-FAAAGCTaaggaactttcagaAGCTTTatctcagccggtgttcccgtre(R)-26-5-FAAAGCTaaggaactttcagaAGCTTTatctcagccggtgttcccgtre(R)-26-5-FAAAGCTaaggaactttcagaAGCTTatctcagccggtgttcccgtre(R)-26-6-FCCCGGGaaggaactttcagaACGTTatctcagccggtgttcccgtre(R)-26-6-FCCCGGGaaggaactttcagaAAGCTatctcagccggttgttcccgtre(R)-26-6-FCCCGGGaaggaactttcagaAAGCTatctcagccggttgttcccgT1-FCGCTTaaggaactttcagaAAGCTatctcagccggttgttcccgT1-FAGCTTTaaggaactttcagaAAGCTatctcagccggttgttcccgT1-FAGCTTaaggaactttcagaAAGCTatctcagccggttgttcccgT4-FAGCTTaaggaactttcagaAAGCTatctcagccggttgttcccgT6-FAGCTTaaggaactttcagaAAGCTatctcagccggttgttcccgT1-FAGCTTaaggaactttcagaAAGCTatctcagccggttgttcccgT1-FAGCTTaaggaactttcagaAAGCTatctcagccggttgttcccg <td< td=""><td><i>treR</i>-194-R(5'-biotin)</td><td>ctacttttctttcttgca</td><td></td></td<>	<i>treR</i> -194-R(5'-biotin)	ctacttttctttcttgca	
PreA-88-R(5'-biotin)aaataaaaaaacccggccgPreA-102-FttgaaagcgtataaaaatPreA-102-FttgaaagcgtataaaaatPreA-102-R(5'-biotin)ttocaatcctottotcPtreA-102ACRE-Ftaaatagttgactattgtre-26-1-FAGCTTTaaggatttagaaAAAGCTatctagccggttgttccgtre-20-2-FAGCTTTaaggaactttagaaCAAGCTatctagccggttgttccgtre-26-4-FCCCGGGaaggaactttagaaCCGGGatctagccggttgttccgtre-26-4-FCCCGGGaaggaactttagaaCCGGGatctagccggttgttccgtre-26-6-FCCCGGGaaggaactttagaaCCGGGatctagccggttgttccgtre(8)-26-1-FAAAGCTaaggaactttagaaCCGGGatctagccggttgttccgtre(8)-20-2-FAAAGCTaaggaactttagaaCCGGGatctagccggttgttccgtre(8)-26-1-FAAAGCTaaggaactttagaaCCGGGatctagccggttgttccgtre(8)-26-1-FAAAGCTaaggaactttagaaCCGGGatctagccggttgttccgtre(8)-26-1-FAAAGCTaaggaactttagaaCCGGGatctagccggttgttccgtre(8)-26-5-FAAAGCTaaggaactttagaCCGGGatctagccggttgttccgtre(8)-26-6-FCCCGGGaaggaactttagaACCGGatctagccggttgttccgtre(8)-26-6-FCCCGGGaaggaactttagaAAAGCTatctagccggttgttccgtre(8)-26-6-FCCCGGGaaggaactttagaAAAGCTatctagccggttgttccgtre(8)-26-6-FCCCGGGaaggaactttagaAAAGCTatctagccggttgttccgtre(8)-26-6-FCCCGGGaaggaactttagaAAAGCTatctagccggttgttccgtre1-5ACCTTTaggaactttagaAAAGCTatctagccggttgttccgtre1-6ACCTTaaggaactttagaAAAGCTatctagccggttgttccgtre1-7ACCTTaaggaactttagaAAAGCTatctagccggttgttccgtre1-7AGCTTTaaggaactttagaAAAGCTatctagccggttgttccgtre1-7ACCTTaaggaactttagaAAAGCTatctagccggttgttccgtre1-7AGCTTTaaggaactttagaAAAGCTatct	P <i>treA</i> -88-F	atctcagccggttgttcccggc	
PreA-102-FttgaaagcgtataaaatPreA-102-FttgaaagcgtataaaatPreA-102-R(5-biotin)ttccaatcctccttctPtreA-102ACRE-Ftaaatatgtgaatattagtre-26-1-FAGCTTTaaggaactttaagaAAAGCTatctaagcoggtigttcccgtre-23-FAGCTTTAAAGCTatctaagcoggtigttcccgtre-26-4-FCCCGGGaaggaactttaagaAAAGCTatctaagcoggtigttcccgtre-26-5-FAGCTTTAAAGCTatctaagcCGGGatctaagcoggtigttcccgtre-26-5-FCCCGGGaaggaactttaagaCCCGGGatctaagcoggtigttcccgtre-26-6-FCCCGGGaaggaactttaagaCCCGGGatctaagcoggtigttcccgtre(R)-20-2-FAAAGCTaaggaactttaagaCCCGGGatctaagcoggtigttcccgtre(R)-20-2-FAAAGCTaaggaactttaagaCCCGGGatctaagcoggtigttcccgtre(R)-20-2-FAAAGCTaaggaactttaagaCCCGGGatctaagcoggtigttcccgtre(R)-26-4-FCCCGGGaaggaactttaagaACCTTatctaagcoggtigttcccgtre(R)-26-5-FAAAGCTaaggaactttaagaCCCGGGatctaagcoggtigttcccgtre(R)-26-6-FCCCGGGaaggaactttaagaACCCGGGatctaagcoggtigttcccgtre(R)-26-6-FCCCGGGaaggaactttaagaAAGCTatctaagcoggtigttcccgtre(R)-26-6-FCCCGGGaaggaactttaagaAAGCTatctaagcoggtigttcccgtreATAGCTTTaaggaactttaagaAAGCTatctaagcoggtigttcccgtreATAGCTTTaaggaactttaagaAAGCTatctaagcoggtigttccgtreAFAGCTTTaaggaactttaagaAAGCTatctaagcoggtigttccgtreFAGCTTTaaggaactttaagaAAGCTatctaagcoggtigttccgtreFAGCTTTaaggaactttaagaAAGCTatctaagcoggtigttccgtreFAGCTTTaaggaactttaagaAAGCTatctaagcoggtigttccgtrefRAGCTTTaaggaactttaagaAAGCTatctaagcoggtigttccgtrefRAGCTTTaaggaactttaagaAAGCTatctaagcoggtigttccgtrefRAGCTTTaaggaac	P <i>treA</i> -88-R(5'-biotin)	aaataaaaaaagcccggccg	
PreA-102-R(5-biotin)ticcatcotcuttcPtreA-102-R(5-biotin)ticcatcotcuttcPtreA-102ACRE-Ftaatatgttgactacttgtre-26-1-FAGCTTTaaggaaatttaagaAAGCTatctaagcoggttgttccgtre-20-2-FAGCTTTaaggtaagaAAGCTatctaagcoggttgttccgtre-21-23-FAGCTTTaaggtaagaCtttaagaAAGCTatctaagcoggttgttccgtre-26-4-FCCCGGGaaggaactttcagaCCGGGatctaagcoggttgttccgtre-26-5-FAGCTTTaaggaaatttaagaCCCGGGatctaagcoggttgttccgtre/26-5-FCCCGGGaaggaactttcagaACGCTTatctaagcoggttgttccgtre(R)-26-1-FAAAGCTaaggtaagaAttGagaAGCTTatctaagcoggttgttccgtre(R)-26-4-FCCCGGGaaggaactttcagaAGCTTatctaagcoggttgttccgtre(R)-26-5-FAAAGCTaaggtacgaagaCtttcagaAGCTTTatctaagcoggttgttccgtre(R)-26-5-FAAAGCTaaggaactttcagaAGCTTatctaagcoggttgttccgtre(R)-26-5-FAAAGCTaaggaactttcagaAGCTTatctaagcoggttgttccgtre(R)-26-5-FAAAGCTaaggaactttcagaAAGCTatctaagcoggttgttccgtre(R)-26-5-FCCCGGGaaggaactttcagaAAGCTatctaagcoggttgttccgtre(R)-26-5-FAAGCTaaggaactttcagaAAGCTatctaagcoggttgttccgtre(R)-26-5-FACGCTTaaggaactttcagaAAGCTatctaagcoggttgttccgtre/R>-27-FAGCTTTaaggaactttcagaAAGCTatctaagcoggttgttccgtra-FAGCTTTaaggaactttcagaAAGCTatctaagcoggttgttccgtra-FAGCTTTaaggaactttcagaAAGCTatctagcoggttgttccgtra-FAGCTTTaaggaactttcagaAAGCTatctagcoggttgttccgtra-FAGCTTTaaggaactttcagaAAGCTatctagcoggttgttccgtra-FAGCTTTaaggaactttcagaAAGCTatctagcoggttgttccgtra-FAGCTTTaaggaactttcagaAAGCTatctcagcoggttgttccgtra-FAGCTTTaaggaactttcagaAAGCTatctcagcoggttgttccg <td>PtreA-102-F</td> <td>ttgaaagcgctataaaaat</td> <td></td>	PtreA-102-F	ttgaaagcgctataaaaat	
PireA-102∆CRE.F taatatgitgactactig tre-26-1.F AGCTTTaagqattaagaAAAGCTatctagcoggtgttocog tre-20-2.F AGCTTTAAGCTatctaagcoggtgttocog tre-12-3.F AGCTTTAAGCTatctaagcoggtgttocog tre-26.4.F CCCGGGaagqaactttcaagaCAGCTatctagcoggttgttocog tre-26.5.F AGCTTTAAGCACtatctagcoggttgttocog tre-26.6.F CCCGGGaagqaactttcagaCCCGGGatctagcoggttgttocog tre(R)-26.1.F AAAGCTaagqaactttcagaCCCGGGatctagcoggttgttocog tre(R)-20-2.F AAAGCTaagqaactttcagaCCCGGGatctagcoggttgttocog tre(R)-26.4.F CCCGGGaagqaactttcagaCCCGGGatctagcoggttgttocog tre(R)-26.4.F AAAGCTaaggaactttcagaCCGGGatctagcoggttgttocog tre(R)-26.4.F CCCGGGaagqaactttcagaCCCGGGatctagcoggttgttocog tre(R)-26.4.F CCCGGGaaggaactttcagaCCCGGGatctagcoggttgttocog tre(R)-26.4.F CCCGGGaaggaactttcagaCCCGGGatctagcoggttgttocog tre(R)-26.4.F CCCGGGaaggaactttcagaCCCGGGatctagcoggttgttocog tre(R)-26.4.F CCCGGGaaggaactttcagaCCCGGGatctagcoggttgttocog T1.F CGCTTTaaggaactttcagaAAGCTatctagcoggttgttocog T2.F ATCTTTaaggaactttcagaAAGCTatctcagcoggttgttocog T3.F AGCTTTaaggaactttcagaAAGCTatctagcoggttgttocog T4.F AGCTTTaaggaactttcagaAAGCTatctagcoggttgttocog T6.F AGCTTTaaggaactttcagaAAGCTatctagcoggttgttocog T6.F AGCTTTaaggaactttcagaAAGCTatctc	PtreA-102-R(5'-biotin)	ttccaatccctccttctc	
the 261-FAGCTTT aaggaactticagaAAAGCT at ctagecggtigticcegtre-20-2-FAGCTTT aaggaactticagaAAAGCT at ctagecggtigticcegtre-12-3-FAGCTTT AAAGCT at ctagecggtigticcegtre-26-4-FCCCCGGG aaggaactticagaAAAGCT at ctagecggtigticcegtre-26-5-FAGCTTT aaggaactticagaACCCGGG at ctagecggtigticcegtre(R)-26-1-FAAAGCT aaggaactticagaACCCGGG at ctagecggtigticcegtre(R)-20-2-FAAAGCT aaggaactticagaAGCTTT at ctagecggtigticcegtre(R)-26-5-FAAAGCT aaggaactticagaAGCTTT at ctagecggtigticcegtre(R)-26-6-FCCCGGG aaggaactticagaAGCTTT at ctagecggtigticcegtre(R)-26-5-FAAAGCT aaggaactticagaAGCTTT at ctagecggtigticcegtre(R)-26-6-FCCCGGG aaggaactticagaAAGCTT at ctagecggtigticcegtre(R)-26-6-FCCCGGG aaggaactticagaAAGCT at ctagecggtigtitccegtre(R)-26-6-FCCCGGG aaggaactticagaAAGCT at ctagecggtigticcegtre(R)-26-6-FCCCGGG aaggaactticagaAAGCT at ctagecggtigticcegtre(R)-26-6-FCCCGG GaaggaactticagaAAGCT at ctagecggtigticcegtre(R)-26-6-FCCCGG GaaggaactticagaAAGCT at ctagecggtigticcegtre(R)-26-6-FCCCGG GaaggaactticagaAAGCT at ctagecggtigticcegtre(R)-26-6-FCCCGG GaaggaactticagaAAAGCT at ctagecggtigticcegtre(R)-26-6-FCCCGG GaaggaactticagaAAGCT at ctagecggtigticcegtre(R)-26-6-FCCCGG GaaggaactticagaAAAGCT at ctagecggtigticcegtre(R)-26-6-FCCCGG GaaggaactticagaAAAGCT at ctagecggtigticcegtre(R)-26-6-FCCCGG GaaggaactticagaAAAGCT at ctagecggtigticcegtre(R)-26-7AGCTT aaggaactticagaAAAGCT at ctagecggtigticcegtre(R)-26-7AGCTT aaggaactticagaAA	PtreA-102ΔCRE-F	taaatatgttgactacttg	
Instructure	tre-26-1-F	AGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccg	
tre-12-3-FAGCTTTAAAGCTatctagcogttyttccogtre-26-4-FCCCGGGaaggaactttcagaAAAGCTatctagcoggttyttccogtre-26-5-FAGCTTTaaggaactttcagaACCGGGatctagcoggttyttccogtre/26-6-FCCCGGGaaggaactttcagaACCTTatctagcoggttyttccogtre(R)-26-1-FAAAGCTaaggaactttcagaAGCTTTatctagcoggttyttccogtre(R)-26-1-FAAAGCTaaggaactttcagaAGCTTTatctagcoggttyttccogtre(R)-26-4-FCCCGGGaaggaactttcagaAGCTTTatctagcoggttyttccogtre(R)-26-4-FCCCGGGaaggaactttcagaAGCTTTatctagcoggttyttccogtre(R)-26-5-FAAAGCTaaggaactttcagaACCGGGatctagcoggttyttccogtre(R)-26-6-FCCCGGGaaggaactttcagaACCCGGGatctagcoggttyttccogtre(R)-26-6-FCCCGGGaaggaactttcagaACCCGGGatctagcoggttyttccogtre(R)-26-6-FCCCGGGaaggaactttcagaAAGCTatctagcoggttyttccogtre(R)-26-6-FCCCGGGaaggaactttcagaAAAGCTatctagcoggttyttccogT1-FCGCTTTaaggaactttcagaAAAGCTatctagcoggttyttccogT3-FAGCTTTaaggaactttcagaAAAGCTatctagcoggttyttccogT4-FAGCCTTaaggaactttcagaAAAGCTatctagcoggttyttccogT6-FAGCTTTaaggaactttcagaAAAGCTatctagcoggttyttccogT6-FAGCTTTaaggaactttcagaAAAGCTatctagcoggttyttccogT6-FAGCTTTaaggaactttcagaAAAGCTatctagcoggttyttccogT1-FAGCTTTaaggaactttcagaAAAGCTatctagcoggttyttccogT1-FAGCTTTaaggaactttcagaAAAGCTatctagcoggttyttccogT6-FAGCTTTaaggaactttcagaAAAGCTatctagcoggttyttccogT6-FAGCTTTaaggaactttcagaAAAGCTatctagcoggttyttccogT6-FAGCTTTaaggaactttcagaAAAGCTatctagcoggttyttccogT6-FAGCTTTaaggaactttcagaAAAGCTatctagcoggttyttccogT6-FAGCTTTaaggaactttcagaAAGCTat	tre-20-2-F	AGCTTTaaggttcagaAAAGCTatctcagccggttgttcccg	
tre-26-4-FCCCGGGaaggaactttcagaAAAGCTatctagccggttgttcccgtre-26-5-FAGCTTTagggaactttcagaCCCGGGatctagccggttgttcccgtre-26-6-FCCCGGGaaggaactttcagaACCCGGGatctagccggttgttcccgtre(R)-26-1-FAAAGCTagggaactttcagaAGCTTTatctagccggttgttcccgtre(R)-20-2-FAAAGCTagggaactttcagaAGCTTTatctagccggttgttcccgtre(R)-26-4-FCCCGGGaaggaactttcagaAGCTTTatctagccggttgttcccgtre(R)-26-5-FAAAGCTagggaactttcagaAGCTTTatctagccggttgttcccgtre(R)-26-6-FCCCGGGaaggaactttcagaACCCGGGatctagccggttgttcccgtre(R)-26-6-FCCCGGGaaggaactttcagaAAGCTatctagccggttgttcccgtre(R)-26-6-FCCCGGGaaggaactttcagaAAAGCTatctagccggttgttcccgT1-FCGCTTTaaggaactttcagaAAAGCTatctagccggttgttcccgT2-FATCTTTaaggaactttcagaAAAGCTatctagccggttgttcccgT3-FAGCTTaaggaactttcagaAAAGCTatctagccggttgttcccgT4-FAGCCTTaaggaactttcagaAAAGCTatctagccggttgttcccgT5-FAGCTTaaggaactttcagaAAAGCTatctagccggttgttcccgT6-FAGCTTaaggaactttcagaAAAGCTatctagccggttgttcccgT7-FAGCTTTaaggaactttcagaAAAGCTatctagccggttgttcccgT1-FAGCTTaaggaactttcagaAAAGCTatctagccggttgttcccgT1-FAGCTTTaaggaactttcagaAAAGCTatctagccggttgttcccgT1-FAGCTTTaaggaactttcagaAAAGCTatctagccggttgttcccgT1-FAGCTTaaggaactttcagaAAGCTatctagccggttgttcccgT1-FAGCTTTaaggaactttcagaAAGCTatctagccggttgttcccgT1-FAGCTTaaggaactttcagaAAGCTatctagccggttgttcccgT1-FAGCTTaaggaactttcagaAAGCTatctagccggttgttcccgT1-FAGCTTaaggaactttcagaAAGCTatctagccggttgttcccgT1-FAGCTTaaggaactttcagaAAGCTatctagccggttgttcccg	tre-12-3-F	AGCTTTAAAGCTatctcagccggttgttcccg	
tre-26-5-FAGCTTTaaggaactttcagaCCCGGGatctcagccggttgttcccgtre-26-6-FCCCGGGaaggaactttcagaCCCGGGatctcagccggttgttcccgtre(R)-26-1-FAAAGCTaaggaactttcagaAGCTTTatctcagccggttgttcccgtre(R)-20-2-FAAAGCTaaggaactttcagaAGCTTTatctcagccggttgttcccgtre(R)-23-FAAAGCTaaggaactttcagaAGCTTTatctcagccggttgttcccgtre(R)-26-5-FAAAGCTaaggaactttcagaAGCTTTatctcagccggttgttcccgtre(R)-26-6-FCCCGGGaaggaactttcagaAGCTTTatctcagccggttgttcccgtre(R)-26-6-FCCCGGGaaggaactttcagaAAGCTatctcagccggttgttcccgT1-FCGCTTTaaggaactttcagaAAGCTatctcagccggttgttcccgT2-FATCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT3-FAGTTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT4-FAGCCTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT5-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT6-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT7-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT1-FCGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT7-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT6-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT1-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT1-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT1-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT7-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT1-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT1-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT1-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT1-FAGCTTTaaggaactttcagaAAAGCTatctc	tre-26-4-F	CCCGGGaaggaactttcagaAAAGCTatctcagccggttgttcccg	
tre-26-6-FCCCCGGGaaggaactttcagaCCCGGGatctagccggttgttcccgtre(R)-26-1-FAAAGCTaaggaactttcagaAGCTTTatctagccggttgttcccgtre(R)-20-2-FAAAGCTaaggaactttcagaAGCTTTatctagccggttgttcccgtre(R)-12-3-FAAAGCTAGCTTTatctagccggttgttcccgtre(R)-26-4-FCCCGGGaaggaactttcagaAGCTTTatctagccggttgttcccgtre(R)-26-5-FAAAGCTaaggaactttcagaCCCGGGatctagccggttgttcccgtre(R)-26-6-FCCCGGGaaggaactttcagaAAGCTatctagccggttgttcccg1-FCGCTTTaaggaactttcagaAAGCTatctagccggttgttcccg1-FCGCTTTaaggaactttcagaAAAGCTatctagccggttgttcccg73-FAGTTTaaggaactttcagaAAAGCTatctagccggttgttcccg74-FAGCCTTaaggaactttcagaAAAGCTatctagccggttgttcccg75-FAGCTTCaaggaactttcagaAAGCTatctagccggttgttcccg76-FAGCTTTaaggaactttcagaAAGCTatctagccggttgttcccg77-FAGCTTTaaggaactttcagaAAGCTatctagccggttgttcccg78-FAGCTTTaaggaactttcagaAAGCTatctagccggttgttcccg79-FAGCTTTaaggaactttcagaAAGCTatctagccggttgttcccg71-FAGCTTTaaggaactttcagaAAGCTatctagccggttgttcccg71-FAGCTTTaaggaactttcagaAAGCTatctagccggttgttcccg71-FAGCTTTaaggaactttcagaAAGCTatctagccggttgttcccg71-FAGCTTTaaggaactttcagaAAGCTatctagccggttgttcccg71-FAGCTTTaaggaactttcagaAAGCTatctagccggttgttcccg71-FAGCTTTaaggaactttcagaAAGCTatctagccggttgttcccg71-FAGCTTTaaggaactttcagaAAGCTatctagccggttgttcccg72-FAGCTTTaaggaactttcagaAAGCTatctagccggttgttcccg73-FAGCTTTaaggaactttcagaAAGCTatctagccggttgttcccg74-FAGCTTaaggaactttcagaAAGCTatctagccggttgttccg75-FAGCTTaaggaactttc	tre-26-5-F	AGCTTTaaggaactttcagaCCCGGGatctcagccggttgttcccg	
tre(R)-26-1-FAAAGCTaaggaactttcagaAGCTTTatctcagccgdtigttcccgtre(R)-20-2-FAAAGCTaaggaactttcagaAGCTTTatctcagccgdtigttcccgtre(R)-12-3-FAAAGCTAGCTTTatctcagccgdtigttcccgtre(R)-26-4-FCCCGGGaaggaactttcagaAGCTTTatctcagccggttgttcccgtre(R)-26-5-FAAAGCTaaggaactttcagaCCCGGGatctcagccggttgttcccgtre(R)-26-6-FCCCGGGaaggaactttcagaAAGCTatctcagccggttgttcccg1-FCGCTTTaaggaactttcagaAAGCTatctcagccggttgttcccg72-FATCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccg73-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccg74-FAGCCTTaaggaactttcagaAAAGCTatctcagccggttgttcccg75-FAGCTTCaaggaactttcagaAAAGCTatctcagccggttgttcccg76-FAGCTTTaaggaactttcagaAAGCTatctcagccggttgttcccg77-FAGCTTTaaggaactttcagaAAGCTatctcagccggttgttcccg79-FAGCTTTaaggaactttcagaAAGCTatctcagccgttgttcccg71-FAGCTTTaaggaactttcagaAAGCTatctcagccgttgttcccg71-FAGCTTTaaggaactttcagaAAGCTatctcagccgttgttcccg71-FAGCTTTaaggaactttcagaAAGCTatctcagccgttgttcccg71-FAGCTTTaaggaactttcagaAAGCTatctcagccgttgttcccg71-FAGCTTTaaggaactttcagaAAGCTatctcagccgttgttcccg71-FAGCTTTaaggaactttcagaAAGCTatctcagccgttgttcccg71-FAGCTTTaaggaactttcagaAAGCTatctcagccgttgttcccg71-FAGCTTTaaggaactttcagaAAGCTatctcagccgttgttcccg71-FAGCTTTaaggaactttcagaAAGCTatctcagccgttgttcccg71-FAGCTTTaaggaactttcagaAAGCTatctcagccgttgttcccg71-FAGCTTTaaggaactttcagaAAGCTatctcagccgttgttcccg71-FAGCTTTaaggaactttcagaAAGCTatctcagccgtgttgtcccg71-FAGCTT	tre-26-6-F	CCCGGGaaggaactttcagaCCCGGGatctcagccggttgttcccg	
tre(R)-20-2-FAAAGCTaagqttcagaAGCTTTatctcagccggttgttcccgtre(R)-12-3-FAAAGCTAGCTTTatctcagccggttgttcccgtre(R)-26-4-FCCCGGGaaggaactttcagaAGCTTTatctcagccggttgttcccgtre(R)-26-5-FAAAGCTaagqaactttcagaACCCGGGatctcagccggttgttcccg11-FCCCGGGaaggaactttcagaAAGCTatctcagccggttgttcccg72-FATCTTaaggaactttcagaAAGCTatctcagccggttgttcccg73-FAGCTTaaggaactttcagaAAAGCTatctcagccggttgttcccg74-FAGCCTTaaggaactttcagaAAAGCTatctcagccggttgttcccg75-FAGCTTaaggaactttcagaAAAGCTatctcagccggttgttcccg76-FAGCTTaaggaactttcagaAAAGCTatctcagccggttgttcccg77-FAGCTTaaggaactttcagaAAAGCTatctcagccggttgttcccg78-FAGCTTaaggaactttcagaAAAGCTatctcagccggttgttcccg79-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccg71-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccg77-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccg78-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccg71-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccg71-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccg71-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccg72-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccg73-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccg74-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccg75-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccg76-FAGCTTTaaggaacttcagaAAAGCTatctagccggttgttcccg77-FAGCTTTaaggaacttcagaAAAGCTatctcagccggttgttcccg78-FAGCTTTaaggaacttcagaAAAGCTatctcagccggttgttcccg79-FAGCTTaag	tre(R)-26-1-F	AAAGCTaaggaactttcagaAGCTTTatctcagccggttgttcccg	
tre(R)-12-3-F AAAGCTAGCTIT_atctcagccgytgttcccg tre(R)-26-4-F CCCGGGaaggaactttcagaAGCCGGGatctcagccggttgttcccg tre(R)-26-5-F AAAGCTaaggaactttcagaCCGGGatctcagccggttgttcccg T1-F CGCTITaaggaactttcagaAAAGCTatctcagccggttgttcccg T2-F ATCTITaaggaactttcagaAAAGCTatctcagccggttgttcccg T3-F AGTITTaaggaactttcagaAAAGCTatctcagccggttgttcccg T4-F AGCCTTaaggaactttcagaAAAGCTatctcagccggttgttcccg T5-F AGCTTaaggaactttcagaAAAGCTatctcagccggttgttcccg T6-F AGCCTTaaggaactttcagaAAAGCTatctcagccggttgttcccg T6-F AGCTTCaaggaactttcagaAAAGCTatctcagccggttgttcccg T7-F AGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccg T8-F AGCTTCaaggaactttcagaAAGCTatctcagccggttgttcccg T7-F AGCTTTaaggaactttcagaAAGCTatctcagccggttgttcccg T8-F AGCTTTaaggaactttcagaAAGCTatctcagccggttgttcccg T9-F AGCTTTaaggaactttcagaAACGTatctcagccggttgttcccg T10-F AGCTTTaaggaactttcagaAAATCTatctcagccggttgttcccg T11-F AGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccg T12-F AGCTTTaaggaactttcagaAAGCTatctcagccggttgttcccg T14-F AGCTTTaaggaactttcagaAAGCTatctcagccggttgttcccg T14-F AGCTTTaaggaactttcagaAAGCTatctcagccggttgttcccg	tre(R)-20-2-F	AAAGCTaaggttcagaAGCTTTatctcagccggttgttcccg	
tre(R)-26-4-FCCCGGGaaggaactttcagaAGCTTTatctagccggttgttcccgtre(R)-26-5-FAAAGCTaaggaactttcagaCCCGGGattcagccggttgttcccgT1-FCGCTTTaaggaactttcagaAAGCTatctagccggttgttcccgT2-FATCTTTaaggaactttcagaAAGCTatctagccggttgttcccgT3-FAGTTTTaaggaactttcagaAAAGCTatctagccggttgttcccgT4-FAGCCTTaaggaactttcagaAAAGCTatctagccggttgttcccgT5-FAGCTTTaaggaactttcagaAAAGCTatctagccggttgttcccgT6-FAGCTTCaaggaactttcagaAAAGCTatctagccggttgttcccgT7-FAGCTTTaaggaactttcagaAAAGCTatctagccggttgttcccgT8-FAGCTTTaaggaactttcagaAAAGCTatctagccggttgttcccgT7-FAGCTTTaaggaactttcagaAAAGCTatctagccggttgttcccgT8-FAGCTTTaaggaactttcagaAAAGCTatctagccggttgttcccgT9-FAGCTTTaaggaactttcagaAAAGCTatctagccggttgttcccgT1-FAGCTTTaaggaactttcagaAAAGCTatctagccggttgttcccgT1-FAGCTTTaaggaactttcagaAAAGCTatctagccggttgttcccgT1-FAGCTTTaaggaactttcagaAAAGCTatctagccggttgttcccgT1-FAGCTTTaaggaactttcagaAAAGCTatctagccggttgttcccgT1-FAGCTTTaaggaactttcagaAAAGCTatctagccggttgttcccgT1-FAGCTTTaaggaactttcagaAAAGCTatctagccggttgttcccgT1-FAGCTTTaaggaactttcagaAAAGCTatctagccggttgttcccgT1-FAGCTTTaaggaactttcagaAAAGCTatctagccggttgttcccgT1-FAGCTTTaaggaactttcagaAAAGCTatctagccggttgttcccgT1-FAGCTTTaaggaactttcagaAAGCTatctagccggttgttcccgT1-FAGCTTTaaggaactttcagaAAGCTatctagccggttgttcccgT1-FAGCTTTaaggaactttcagaAAGCTatctagccggttgttcccgTR-1-FCAAGCTaaggaactttcagaAGCTTTatctagccggttgttcccgTR-2-FAAAGCTaaggaactttcagaAGCT	tre(R)-12-3-F	AAAGCTAGCTTTatctcagccggttgttcccg	
tre(R)-26-5-FAAAGCTaaggaactttcagaCCCGGGattcagccggttgttcccgtre(R)-26-6-FCCCGGGaaggaactttcagaCCCGGGattcagccggttgttcccgT1-FCGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT2-FATCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT3-FAGTTTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT4-FAGCCTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT5-FAGCTTCaaggaactttcagaAAAGCTatctcagccggttgttcccgT6-FAGCTTCaaggaactttcagaAAAGCTatctcagccggttgttcccgT7-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT8-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT9-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT10-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT11-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT12-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT12-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT12-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT12-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccgTR-1-FCAAGCTaaggaactttcagaAAAGCCatctcagccggttgttcccgTR-2-FACAGCTaaggaactttcagaAAGCTTatctcagccggttgttcccgTR-3-FAACGCTaaggaactttcagaAGCTTTatctcagccggttgttcccgTR-3-FAACGCTaaggaactttcagaAGCTTTatctcagccggttgttcccgTR-3-FAACGCTaaggaactttcagaAGCTTTatctcagccggttgttcccgTR-3-FAACGCTaaggaactttcagaAGCTTTatctcagccggttgttcccgTR-3-FAACGCTaaggaactttcagaAGCTTTatctagccggttgttcccgTR-3-FAACGCTaaggaactttcagaAGCTTTatctagccggttgttcccgTR-3-FAACGCTaaggaactttcagaAGCTTTatctagccggttgttcccg <td>tre(R)-26-4-F</td> <td>CCCGGGaaggaactttcagaAGCTTTatctcagccggttgttcccg</td> <td></td>	tre(R)-26-4-F	CCCGGGaaggaactttcagaAGCTTTatctcagccggttgttcccg	
tre(R)-26-6-FCCCGGGaaggaactttcagaCCCGGGattcagccggttgttcccgT1-FCGCTTTaaggaactttcagaAAAGCTattcagccggttgttcccgT2-FATCTTTaaggaactttcagaAAAGCTattcagccggttgttcccgT3-FAGTTTTaaggaactttcagaAAAGCTattcagccggttgttcccgT4-FAGCCTTaaggaactttcagaAAAGCTattcagccggttgttcccgT5-FAGCTTCaaggaactttcagaAAAGCTattcagccggttgttcccgT6-FAGCTTCaaggaactttcagaAAAGCTattcagccggttgttcccgT7-FAGCTTTaaggaactttcagaAAAGCTattcagccggttgttcccgT9-FAGCTTTaaggaactttcagaAAGCTattcagccggttgttcccgT10-FAGCTTTaaggaactttcagaAAGCTattcagccggttgttcccgT11-FAGCTTTaaggaactttcagaAAGCTattcagccggttgttcccgT12-FAGCTTTaaggaactttcagaAAGCTattcagccggttgttcccgT12-FAGCTTTaaggaactttcagaAAGCTattcagccggttgttcccgT12-FAGCTTTaaggaactttcagaAAGCTattcagccggttgttcccgTR-1-FCAAGCTaaggaactttcagaAAAGCCattcagccggttgttcccgTR-2-FACAGCTaaggaactttcagaAAGCTTTattctagccggttgttcccgTR-3-FAACGCTaaggaactttcagaAAGCTTTattctagccggttgttcccgTR-3-FAACGCTaaggaactttcagaAGCTTTattctagccggttgttcccgTR-4-FAACGCTaaggaactttcagaAGCTTTattctagccggttgttcccg	tre(R)-26-5-F	AAAGCTaaggaactttcagaCCCGGGatctcagccggttgttcccg	
T1-FCGCTTTaaggaactttcagaAAAGCT attcagccggttgttcccgT2-FATCTTTaaggaactttcagaAAAGCT attcagccggttgttcccgT3-FAGTTTTaaggaactttcagaAAAGCT attcagccggttgttcccgT4-FAGCCTTaaggaactttcagaAAAGCT attcagccggttgttcccgT5-FAGCTCTaaggaactttcagaAAAGCT attcagccggttgttcccgT6-FAGCTTTaaggaactttcagaAAAGCT attcagccggttgttcccgT7-FAGCTTTaaggaactttcagaAAAGCT attcagccggttgttcccgT8-FAGCTTTaaggaactttcagaACAGCT attcagccggttgttcccgT9-FAGCTTTaaggaactttcagaACAGCT 	tre(R)-26-6-F	CCCGGGaaggaactttcagaCCCGGGatctcagccggttgttcccg	
T2-FATCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT3-FAGTTTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT4-FAGCCTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT5-FAGCTCTaaggaactttcagaAAAGCTatctcagccggttgttcccgT6-FAGCTTCaaggaactttcagaAAAGCTatctcagccggttgttcccgT7-FAGCTTTaaggaactttcagaAAGCTatctcagccggttgttcccgT8-FAGCTTTaaggaactttcagaAACGCTatctcagccggttgttcccgT9-FAGCTTTaaggaactttcagaAACGCTatctcagccggttgttcccgT10-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT11-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT12-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT12-FAGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccgTR-1-FCAAGCTaaggaactttcagaAAAGCCatctcagccggttgttcccgTR-2-FACAGCTaaggaactttcagaAAGCTTTatctcagccggttgttcccgTR-3-FAACGCTaaggaactttcagaAGCTTTatctcagccggttgttcccgTR-4-FAAATCTaaggaactttcagaAGCTTTatctcagccggttgttcccg	T1-F	CGCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccg	
T3-FAGTTTTaaggaactttcagaAAAGCT atctcagccggttgttcccgT4-FAGCCTTaaggaactttcagaAAAGCT atctcagccggttgttcccgT5-FAGCTCTaaggaactttcagaAAAGCT atctcagccggttgttcccgT6-FAGCTTCaaggaactttcagaAAAGCT atctcagccggttgttcccgT7-FAGCTTTaaggaactttcagaAAAGCT atctcagccggttgttcccgT8-FAGCTTTaaggaactttcagaACAGCT atctcagccggttgttcccgT9-FAGCTTTaaggaactttcagaAAAGCT atctcagccggttgttcccgT10-FAGCTTTaaggaactttcagaAAAGCT atctcagccggttgttcccgT11-FAGCTTTaaggaactttcagaAAAGCT atctcagccggttgttcccgT12-FAGCTTTaaggaactttcagaAAAGCC atctcagccggttgttcccgTR-1-FCAAGCTaaggaactttcagaAAAGCC atctcagccggttgttcccgTR-2-FACAGCTaaggaactttcagaAGCTTT atctcagccggttgttcccgTR-3-FAACGCTaaggaactttcagaAGCTTT atctcagccggttgttcccgTR-4-FAAATCTaaggaactttcagaAGCTTT atctcagccggttgttcccg	T2-F	ATCTTTaaggaactttcagaAAAGCTatctcagccggttgttcccg	
T4-FAGCCTTaaggaactttcagaAAAGCTatctcagccggttgttcccgT5-FAGCTCTaaggaactttcagaAAAGCTatctcagccggttgttcccgT6-FAGCTTCaaggaactttcagaAAAGCTatctcagccggttgttcccgT7-FAGCTTTaaggaactttcagaCAAGCTatctcagccggttgttcccgT8-FAGCTTTaaggaactttcagaACAGCTatctcagccggttgttcccgT9-FAGCTTTaaggaactttcagaAAACGCTatctcagccggttgttcccgT10-FAGCTTTaaggaactttcagaAAACGCTatctcagccggttgttcccgT11-FAGCTTTaaggaactttcagaAAAGTTatctcagccggttgttcccgT12-FAGCTTTaaggaactttcagaAAAGCCatctcagccggttgttcccgTR-1-FCAAGCTaaggaactttcagaAAAGCCatctcagccggttgttcccgTR-2-FACAGCTaaggaactttcagaAGCTTTatctcagccggttgttcccgTR-3-FAACGCTaaggaactttcagaAGCTTTatctcagccggttgttcccgTR-4-FAAATCTaaggaactttcagaAGCTTTatctcagccggttgttcccg	T3-F	AGTTTTaaggaactttcagaAAAGCTatctcagccogttgttcccg	
T5-FAGCTCTaaggaactttcagaAAAGCT atctcagccggttgttcccgT6-FAGCTTCaaggaactttcagaAAAGCT atctcagccggttgttcccgT7-FAGCTTTaaggaactttcagaCAAGCT atctcagccggttgttcccgT8-FAGCTTTaaggaactttcagaACAGCT atctcagccggttgttcccgT0-FAGCTTTaaggaactttcagaAACGCT atctcagccggttgttcccgT10-FAGCTTTaaggaactttcagaAAACGCT atctcagccggttgttcccgT11-FAGCTTTaaggaactttcagaAAAGTT atctcagccggttgttcccgT12-FAGCTTTaaggaactttcagaAAAGCC atctcagccggttgttcccgTR-1-FCAAGCTaaggaactttcagaAAAGCC atctcagccggttgttcccgTR-2-FACAGCTaaggaactttcagaAGCTTT atctcagccggttgttcccgTR-3-FAACGCTaaggaactttcagaAGCTTT atctcagccggttgttcccgTR-4-FAAATCTaaggaactttcagaAGCTTT atctcagccggttgttcccg	T4-F	AGCCTTaaggaactttcagaAAAGCTatctcagccggttgttcccg	
T6-FAGCTTCaaggaactttcagaAAAGCTatctcagccggttgttcccgT7-FAGCTTTaaggaactttcagaCAGCTatctcagccggttgttcccgT8-FAGCTTTaaggaactttcagaACAGCTatctcagccggttgttcccgT9-FAGCTTTaaggaactttcagaAACGCTatctcagccggttgttcccgT10-FAGCTTTaaggaactttcagaAAACGCTatctcagccggttgttcccgT11-FAGCTTTaaggaactttcagaAAAGTTatctcagccggttgttcccgT12-FAGCTTTaaggaactttcagaAAAGCCatctcagccggttgttcccgTR-1-FCAAGCTaaggaactttcagaAAAGCCatctcagccggttgttcccgTR-2-FACAGCTaaggaactttcagaAGCTTTatctcagccggttgttcccgTR-3-FAACGCTaaggaactttcagaAGCTTTatctcagccggttgttcccgTR-4-FAAATCTaaggaactttcagaAGCTTTatctcagccggttgttcccg	T5-F	AGCTCTaaggaactttcagaAAAGCTatctcagccggttgttcccg	
T7-FAGCTTTaaggaactttcagaCAAGCTatctcagccggttgttcccgT8-FAGCTTTaaggaactttcagaACAGCTatctcagccggttgttcccgT9-FAGCTTTaaggaactttcagaAACGCTatctcagccggttgttcccgT10-FAGCTTTaaggaactttcagaAAATCTatctcagccggttgttcccgT11-FAGCTTTaaggaactttcagaAAAGTTatctcagccggttgttcccgT12-FAGCTTTaaggaactttcagaAAAGCCatctcagccggttgttcccgTR-1-FCAAGCTaaggaactttcagaAAAGCCatctcagccggttgttcccgTR-2-FACAGCTaaggaactttcagaAGCTTTatctcagccggttgttcccgTR-3-FAACGCTaaggaactttcagaAGCTTTatctcagccggttgttcccgTR-4-FAAATCTaaggaactttcagaAGCTTTatctcagccggttgttcccg	T6-F	AGCTTCaaggaactttcagaAAAGCTatctcagccggttgttcccg	
T8-FAGCTTTaaggaactttcagaACAGCTatctcagccggttgttcccgT9-FAGCTTTaaggaactttcagaAACGCTatctcagccggttgttcccgT10-FAGCTTTaaggaactttcagaAAATCTatctcagccggttgttcccgT11-FAGCTTTaaggaactttcagaAAAGTTatctcagccggttgttcccgT12-FAGCTTTaaggaactttcagaAAAGCCatctcagccggttgttcccgTR-1-FCAAGCTaaggaactttcagaAGCCTTatctcagccggttgttcccgTR-2-FACAGCTaaggaactttcagaAGCTTTatctcagccggttgttcccgTR-3-FAACGCTaaggaactttcagaAGCTTTatctcagccggttgttcccgTR-4-FAAATCTaaggaactttcagaAGCTTTatctcagccggttgttcccg	T7-F	AGCTTTaaggaactttcagaCAAGCTatctcagccggttgttcccg	
T9-FAGCTTTaaggaactttcagaAACGCTatctcagccggttgttcccgT10-FAGCTTTaaggaactttcagaAAATCTatctcagccggttgttcccgT11-FAGCTTTaaggaactttcagaAAAGTTatctcagccggttgttcccgT12-FAGCTTTaaggaactttcagaAAAGCCatctcagccggttgttcccgTR-1-FCAAGCTaaggaactttcagaAGCTTTatctcagccggttgttcccgTR-2-FACAGCTaaggaactttcagaAGCTTTatctcagccggttgttcccgTR-3-FAACGCTaaggaactttcagaAGCTTTatctcagccggttgttcccgTR-4-FAAATCTaaggaactttcagaAGCTTTatctcagccggttgttcccg	T8-F	AGCTTTaaggaactttcagaACAGCTatctcagccggttgttcccg	
T10-FAGCTTTaaggaactttcagaAAATCTatctcagccggttgttcccgT11-FAGCTTTaaggaactttcagaAAAGTTatctcagccggttgttcccgT12-FAGCTTTaaggaactttcagaAAAGCCatctcagccggttgttcccgTR-1-FCAAGCTaaggaactttcagaAGCTTTatctcagccggttgttcccgTR-2-FACAGCTaaggaactttcagaAGCTTTatctcagccggttgttcccgTR-3-FAACGCTaaggaactttcagaAGCTTTatctcagccggttgttcccgTR-4-FAAATCTaaggaactttcagaAGCTTTatctcagccggttgttcccg	T9-F	AGCTTTaaggaactttcagaAACGCTatctcagccggttgttcccg	
T11-FAGCTTTaaggaactttcagaAAAGTTatctcagccggttgttcccgT12-FAGCTTTaaggaactttcagaAAAGCCatctcagccggttgttcccgTR-1-FCAAGCTaaggaactttcagaAGCTTTatctcagccggttgttcccgTR-2-FACAGCTaaggaactttcagaAGCTTTatctcagccggttgttcccgTR-3-FAACGCTaaggaactttcagaAGCTTTatctcagccggttgttcccgTR-4-FAAATCTaaggaactttcagaAGCTTTatctcagccggttgttcccg	T10-F	AGCTTTaaggaactttcagaAAATCTatctcagccggttgttcccg	
T12-F AGCTTTaaggaactttcagaAAAGCCatctcagccggttgttcccg TR-1-F CAAGCTaaggaactttcagaAGCTTTatctcagccggttgttcccg TR-2-F ACAGCTaaggaactttcagaAGCTTTatctcagccggttgttcccg TR-3-F AACGCTaaggaactttcagaAGCTTTatctcagccggttgttcccg TR-4-F AAATCTaaggaactttcagaAGCTTTatctcagccggttgttccccg Q Q	T11-F	AGCTTTaaggaactttcagaAAAGTTatctcagccogttgttcccg	
TR-1-F CAAGCTaaggaactttcagaAGCTTT TR-2-F ACAGCTaaggaactttcagaAGCTTT TR-3-F AACGCTaaggaactttcagaAGCTTT TR-4-F AAATCTaaggaactttcagaAGCTTT Q Q	T12-F	AGCTTTaaggaactttcagaAAAGCCatctcagccggttgttcccg	
TR-2-F ACAGCTaaggaactttcagaAGCTTT TR-3-F AACGCTaaggaactttcagaAGCTTT TR-4-F AAATCTaaggaactttcagaAGCTTT Q Q	TR-1-F	CAAGCTaaggaactttcagaAGCTTTatctcaaccaattattccca	
TR-3-F AACGCTaaggaactttcagaAGCTTT TR-4-F AAATCTaaggaactttcagaAGCTTT Q Q	TR-2-F	ACAGCTaaggaactttcagaAGCTTTatctcagccgattattcccg	
TR-4-F <u>AAATCTaaggaactttcagaAGCTTT</u> atctcagccggttgttcccg	TR-3-F	AACGCTaaggaactttcagaAGCTTTatctcaaccaattattccca	
Q	TR-4-F	AAATCTaaggaactttcagaAGCTTTatctcagccogttgttcccg	
•		9	

TR-5-F	AAAGTTaaggaactttcagaAGCTTTatctcagccggttgttcccg
TR-6-F	AAAGCCaaggaactttcagaAGCTTTatctcagccggttgttcccg
TR-7-F	AAAGCTaaggaactttcagaCGCTTTatctcagccggttgttcccg
TR-8-F	AAAGCTaaggaactttcagaATCTTTatctcagccggttgttcccg
TR-9-F	AAAGCTaaggaactttcagaAGTTTTatctcagccggttgttcccg
TR-10-F	AAAGCTaaggaactttcagaAGCCTTatctcagccggttgttcccg
TR-11-F	AAAGCTaaggaactttcagaAGCTCTatctcagccggttgttcccg
TR-12-F	AAAGCTaaggaactttcagaAGCTTCatctcagccggttgttcccg
T1-1-F	CGCTTTaaggaactttcagaAAAGCGatctcagccggttgttcccg
T2-1-F	ATCTTTaaggaactttcagaAAAGATatctcagccggttgttcccg
T3-1-F	AGTTTTaaggaactttcagaAAAACTatctcagccggttgttcccg
T4-1-F	AGCCTTaaggaactttcagaAAGGCTatctcagccggttgttcccg
T5-1-F	AGCTCTaaggaactttcagaAGAGCTatctcagccggttgttcccg
T6-1-F	AGCTTCaaggaactttcagaGAAGCTatctcagccggttgttcccg
T7-1-F	AGCTTGaaggaactttcagaCAAGCTatctcagccggttgttcccg
T8-1-F	AGCTGTaaggaactttcagaACAGCTatctcagccggttgttcccg
T9-1-F	AGCGTTaaggaactttcagaAACGCTatctcagccggttgttcccg
T10-1-F	AGATTTaaggaactttcagaAAATCTatctcagccggttgttcccg
T11-1-F	AACTTTaaggaactttcagaAAAGTTatctcagccggttgttcccg
T12-1-F	GGCTTTaaggaactttcagaAAAGCCatctcagccggttgttcccg
TR-1-1-F	CAAGCTaaggaactttcagaAGCTTGatctcagccggttgttcccg
TR-2-1-F	ACAGCTaaggaactttcagaAGCTGTatctcagccggttgttcccg
TR-3-1-F	AACGCTaaggaactttcagaAGCGTTatctcagccggttgttcccg
TR-4-1-F	AAATCTaaggaactttcagaAGATTTatctcagccggttgttcccg
TR-5-1-F	AAAGTTaaggaactttcagaAACTTTatctcagccggttgttcccg
TR-6-1-F	AAAGCCaaggaactttcagaGGCTTTatctcagccggttgttcccg
TR-7-1-F	AAAGCGaaggaactttcagaCGCTTTatctcagccggttgttcccg
TR-8-1-F	AAAGATaaggaactttcagaATCTTTatctcagccggttgttcccg
TR-9-1-F	AAAACTaaggaactttcagaAGTTTTatctcagccggttgttcccg
TR-10-1-F	AAGGCTaaggaactttcagaAGCCTTatctcagccggttgttcccg
TR-11-1-F	AGAGCTaaggaactttcagaAGCTCTatctcagccggttgttcccg
TR-12-1-F	GAAGCTaaggaactttcagaAGCTTCatctcagccggttgttcccg
<i>xylB</i> -410-F	agcttttatgggaaagaaca
xylB-410∆CRETre-F	gtttgaaaaggcggccgt
<i>xylB</i> -410-R(5'-biotin)	attcgctgtgaagacgccc
<i>xylB</i> -1384-F	accttttcgccccgccgtga
xylB-1384∆CRETre-F	ctgtttcaaatttacagaga
xylB-1384-R(5'-biotin)	ttattcccgaaagctcgcca
<i>xyIR</i> -775-F	agctttacgcttcggaaaaagc
xylR-775∆CRETre-F	gtcttctctcactatggag
xyIR-775-R(5'-biotin)	gaaaccgttaaagaacttgc
<i>xyIA</i> -249-F	agcttttcaaaaaattca
xylA-249∆CRETre-F	gcttccgcccgggctttt
xyIA-249-R(5'-biotin)	atgacacatcctttggataaagc
<i>levR</i> -1359-F	agcttttttaatcagaaaat
<i>levR</i> -1359∆CRETre-F	tcaaaaccacagcttgctca
<i>levR</i> -1359-R(5'-biotin)	aattaaaggaagtcgctgaa
<i>manR</i> -1359-F	agcttttggatgaatgccgg
manR-1359∆CRETre-F	ggacagctcttgaaacagt
manR-1359-R(5'-biotin)	ctttatgctggctgtcaaac
Ptre48-F	cgctttcaaaaataaaaaaa
Ptre71-F	cggccgttcccttcataa
Ptre48-R(5'-biotin)	atctcagccggttgttcccg