Supporting Information for "A Minimal, Adaptive Binning Scheme for Weighted Ensemble Simulations"

Paul A. Torrillo[‡], Anthony T. Bogetti[‡], and Lillian T. Chong^{*}

Department of Chemistry, University of Pittsburgh, Pittsburgh, PA, United States

Figure S1. Molecular association process of Na⁺ and Cl⁻ ions. Computed rate constants for the molecular association process involving Na⁺ and Cl⁻ ions in explicit solvent as a function of molecular time $N\tau$ where N is the number of WE iterations and τ is the fixed time interval for WE resampling. The rate constant from standard simulations is shown with the uncertainty as a grey shaded line. Results are shown for A) the manual binning scheme and B) the MAB scheme.

Figure S2. Probability distributions as a function of the progress coordinate X from WE simulations with the double-well potential and MAB scheme using different numbers of bins and the same total computing time (200,000 δ t). Distributions of successful trajectories by their corresponding weights (trajectory weights shown on the logscale) are shown in the second row.