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Supplementary Methods

Fungal material

Strains used in this study were obtained from the Wageningen collection and cultivated as in (Vogan et al,
2019). Strain S was used as the standard reference strain with no Spok block. As spore killer strains for
the fitness experiments (see below) we used the backcrossed strains Psk1xS14 and Psk7xS14 (Vogan et al,
2019), which should be isogenic to S but with a Spok block in Chromosome 3 and 5, respectively. The
more recently isolated strains Wa131, Wa137 and Wa139 were sampled during the fall of 2016 around
Wageningen (the Netherlands) from dung of rabbit (Wa131 and Wa137, locality Unksepad Oosterbeek) or
horse (Wa139, locality Uiterwaarden Wolfswaard). Morphological differences like smaller perithecia and
abundant tomentose apricot-coloured mycelium in HPM medium (Vogan et al, 2019), as well as analyses
of sequence data, allowed us to assign Wa131 and Wa139 to the species P. comata. Previously, only one
strain from this species, TD, was known (Boucher et al, 2017; Vogan et al, 2019), hence these new strains
constitute a new report of this species for the Netherlands.

DNA and RNA extraction and sequencing

Following Vogan et al (2019), we grew monokaryotic strains on PASM0.2 plates covered with a layer of
cellophane. Genomic DNA for short-read sequencing was extracted from 80 mg–100 mg of fungal tissue
with the Fungal/Bacterial Microprep kit (Zymo; www.zymo.com). Paired-end libraries were prepared and
sequenced using the Illumina HiSeq X (150-bp-long) technology at the SNP and SEQ Technology platform
(SciLifeLab, Uppsala, Sweden). For RNA extraction, around 150 mg of harvested mycelium were frozen in
liquid nitrogen and stored at −80 °C. We extracted total RNA from the grounded frozen tissue using the
RNeasy Plant Mini Kit (Qiagen, Hilden, Germany). Quality was checked on the Agilent 2100 Bioanalyzer
(Agilent Technologies, USA) and the RNA was treated with DNasel (Thermo Scientific). The sequencing
library was prepared with a NEBNext Ultra Directional RNA Library Prep Kit for Illumina (New England
Biolabs). We purified poly(A)+ transcripts with the NEBNext Poly(A) mRNA Magnetic Isolation Module
(New England Biolabs). A paired-end library was sequenced with Illumina HiSeq 2500 at the SNP and SEQ
Technology platform.

For long-read sequencing, we grew the monokaryotic strains in PASM0.2 plates, from where we sliced
small agar cubes to inoculate liquid cultures of 200 }ml 3% malt extract solution, which were subsequently
incubated in a shaker for 10 d–14 d at 27 °C (Vogan et al, 2019). Mycelium aggregates were filtered from the
flasks, any remaining agar was removed, and around 1 g was stored at −20 °C. As described in Sun et al
(2017), the tissue was freeze-dried and macerated, followed by DNA extraction using Genomic Tip G-500
columns (Qiagen) and cleaning with the PowerClean DNA Clean-Up kit (MoBio Labs). Additionally, DNA
was purified using magnetic beads (Speed-Beads, GE) and eluted for 20 min at 37 °C followed by overnight
storage at 4 °C twice to increase concentration (≈65 ng µl−1). Wa137- was sequenced on an R9.5.1 Flowcell
(Oxford Nanopore Technologies) with a modified SQK-RAD004 protocol using 550 ng DNA to 1.5 µl FRA to
increase read lengths. Wa139- was prepared using the ligation protocol (SQK-LSK109) and sequenced on
an R9.4.1 flowcell. Basecalling was done using Guppy v. 1.6.

Genome assembly

For most strains we used the assemblies produced in Vogan et al (2019). For newly sequenced strains,
we produced new assemblies as follows. The adapters from the Illumina HiSeq reads were identified with
cutadapt v. 1.13 (Martin, 2011) and removed using Trimmomatic v. 0.36 (Bolger et al, 2014) using the fol-
lowing options: ILLUMINACLIP:adapters.fasta:1:30:9 LEADING:20 TRAILING:20 SLIDINGWINDOW:4:20
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MINLEN:30. Pairs with both forward and reverse reads after filtering were used for downstream analy-
ses. For the strain Wa131, which only has Illumina data, we used SPAdes v. 3.12.0 (Bankevich et al,
2012) with the k-mers 21,33,55,77 and the –careful option. For the strains Wa137 and Wa139, the Min-
ION reads with a mean Phred quality (QV) above 9 and longer than 1 kb were assembled using minimap2
v. 2.11 and Miniasm v. 0.2 (Li, 2016, 2018). The resulting assembly was polished twice with Racon v.
1.3.1 (Vaser et al, 2017) using all MinION reads (no filtering). Further polishing was done with the fil-
tered Illumina reads in five consecutive rounds of Pilon v. 1.22 (Walker et al, 2014). We used BWA v.
0.7.17 (Li Durbin, 2010) for short-read mapping, with PCR duplicates marked using Picard v. 2.18.11
(http://broadinstitute.github.io/picard/), as well as local indel re-alignment using the Genome
Analysis Toolkit (GATK) v. 3.7 (Van der Auwera et al, 2013).

We assigned the scaffolds to chromosomes based on alignments to the reference genome of the S strain
(Espagne et al, 2008), available at the Joint Genome Institute MycoCosm website (https://mycocosm.jgi.
doe.gov/mycocosm/home) as “Podan2” (Grigoriev et al, 2014). If a given chromosome was not assembled
completely, the corresponding scaffolds were assigned an additional number (e.g., scaffolds mapping to
Chromosome 1 were named Chromosome 1.1, Chromosome 1.2, etc.). We discarded small contigs (<100
kb) of rDNA repeats as well as mitochondrial-derived sequences, except for the largest mitochondrial contig.
We assessed the quality of the final assemblies by visual inspection of the mapping of both long and short
reads using minimap2 and BWA, respectively. Mean depth of coverage was calculated with QualiMap v.2.2
(Okonechnikov et al, 2016). Other assembly statistics were calculated with QUAST v. 4.6.3 (Mikheenko
et al, 2016). As in Vogan et al (2019), the assembly of each strain is named based on the source strain
and the mating type. For example, PaWa137m is the assembly of a monokaryon from the minus (-) mating
type derived from the dikaryotic strain Wa137. However, the reference genomes of P. anserina (strain S)
and P. comata (TD) are referred to as Podan2 and PODCO (Espagne et al, 2008; Silar et al, 2019) for
consistency with available databases.

Genome annotation

A GitHub repository is available with Snakemake v. 5.4.4 (Köster Rahmann, 2012) pipelines at https:
//github.com/johannessonlab/SpokBlockPaper and in the Supplemental Code.

The TEs and other repeats in P. anserina were classified previously by Espagne et al (2008) based on
the original reference genome of the S strain or “Podan1”, and is hereafterx referred to as the “Espagne li-
brary”. To explore the diversity of TEs in the newly generated Podospora genomes, we identified repeats de
novo and manually compared them to the Espagne library to identify duplicates and new elements. Specif-
ically, we ran RepeatModeler v. 1.0.8 (http://www.repeatmasker.org/RepeatModeler/) on the scaffolds
larger than 50 kb of all available long-read assemblies (Snakemake pipeline PaTEs.smk). Each resulting
RepeatModeler consensus was BLASTN-searched back to the original genome and the best 20 hits with
2-kb flanks were aligned with T-Coffee v. 12.00.7fb08c2 (Notredame et al, 2000) (TEManualCuration.smk),
and visually inspected for manual curation. The curated consensuses were assigned to the Espagne library
(Espagne et al, 2008) equivalents based on similarity (allowing for RIP-induced mutations) or were given a
new name when having no homology to anything in the Espagne library. It was discovered that the gypsy
element crapaud has numerous diverged copies with unique LTRs. We annotated all crapaud LTRs that
were in multiple copies within P. anserina individually to improve repeat masking. We refer to the final repeat
library as “PodoTE-1.00” (available at the GitHub repository).

To generate a genome annotation of all assemblies, we ran an updated version of the pipeline in Vogan
et al (2019), named PaAnnotation.smk. We used MAKER v. 3.01.2 (Holt Yandell, 2011; Campbell et al,
2014) with the previously produced training files used for the ab initio prediction programs GeneMark-ES v.
4.32 (Lomsadze et al, 2005; Ter-Hovhannisyan et al, 2008) and SNAP release 2013-06-16 (Lomsadze et al,
2005), as well as the following dependencies: RepeatMasker v. 4.0.7 (http://www.repeatmasker.org/),
BLAST suite 2.6.0+ (Camacho et al, 2009), Exonerate v. 2.2.0 (Slater Birney, 2005), and tRNAscan-SE v.
1.3.1 (Lowe Eddy, 1997). As evidence, we used STAR v. 2.6.1b (Dobin et al, 2013) to produce transcript
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models (maximum intron length set to 1000 bp) of various RNA-seq data sets. Specifically, we mapped the
reads of the monokaryotic isolate Wa63- (P. anserina) to the assembly PaWa63m (Vogan et al, 2019), of
the monokaryotic isolate Wa131- (P. comata) to the assembly PcWa139m (this study), and of the dikaryotic
Psk7xS14 (P. anserina) to the assembly PaWa58m (Vogan et al, 2019). We then processed the mapped
reads with Cufflinks v. 2.2.1 (Trapnell et al, 2010) to obtain the transcript models. As external evidence, we
used CDS from the Podan2 annotation, protein sequences from the TD strain of P. comata (Silar et al, 2019),
and a small dataset of manually curated proteins. To aid in manual curation of selected regions (mostly the
Spok block), we visually inspected the mapping of RNA-seq reads of the different datasets, along with CDS
produced with TransDecoder v. 5.5.0 (Haas et al, 2013) on the Cufflinks models, as well as the output of
RepeatMasker ran externally from MAKER with the PodoTE-1.00 library. Additionally, we queried predicted
gene models into the NCBI databases (NCBI Resource Coordinators 2016) to verify the annotations.

The Kirc protein sequence was analysed with HHPred (Zimmermann et al, 2018) and Gremlin (Bal-
akrishnan et al, 2011). The Gremlin-generated alignment of Kirc homologs was used to generate region-
specific sequence logos with WebLlogo (Crooks et al, 2004). The relationship of Kirc to other YRs was
confirmed by comparing the sequence to the crystal structure of known YRs (CRE (PDB code 3mgv),
XERD (1a0p), and FLP (1flo)) as well as the protein sequence from the transposable element Crypton-
Cn1 using the software Promals3D (Pei et al, 2008). Other annotated genes present in the Enterprise of
Wa139 (the “crew”) were manually curated as above, and named the following way: Chronically expressed
kinase-containing ORF – Chekof (based on the high expression levels observed in the RNA-seq data);
Unknown helicase related to accumulation – Uhera (as it is associated to the accumulation or duplication of
Spok genes within the Spok blocks); and Sclerotinia ortholog typical of Enterprise - Scoty (based off best
BLAST homology).

To calculate the total repeat content in bp of a given genome or Spok block, we used the output of
RepeatMasker produced with our repeat library (in GTF format) and collapsed all overlapping features using
the script totalcovergff.py v. 2.01 available at the GitHub repository. In order to assess how common
the TSD motif of the Spok block is in the genome, we used Jellyfish v. 2.2.10 (Marçais Kingsford, 2011) to
calculate the distribution of k-mers (substring) of length six in the reference genome of P. anserina (Podan2)
as a representative of the species. Jellyfish was run with a hash of 100 million elements (-s 100M) in the
pipeline PoJellyfish.smk.

Comparative genomics

We used the NUCmer program from the MUMmer package v. 4.0.0beta2 (Kurtz et al, 2004) using the
parameters -b 200 -c 22 –maxmatch to align the Spok blocks to each other, and changed to -c 40 for
whole-genome assemblies. To achieve higher sensitivity, we used BLASTN from the BLAST suite 2.9.0
(Camacho et al, 2009) to search for the presence of the unclassified repeats bufo and schoutenella. Both
the NUCmer and the BLAST alignments were plotted using Circos v. 0.69.6 (Krzywinski et al, 2009) along
with manual curations of coding regions and repetitive elements. The distribution of TE and gene content
along chromosomes was calculated in windows of 50 kb with steps of 10 kb using BEDTtools v. 2.29.0
(Quinlan Hall, 2010; Quinlan, 2014) with the utilities makewindows and coverage. The fraction of conser-
vation between blocks compared to the block in Wa137 was calculated by aligning the block sequences
(within the TSD) of Wa28 (Psk-2), Wa53 (Psk-1), Wa58 (Psk-7 ) and Wa139 with NUCmer and the BEDT-
tools utility genomecov. The Snakemake pipelines used to produce the Circos plots (CircosBlock.smk and
CircosAllBlocks.smk) are also available at https://github.com/johannessonlab/SpokBlockPaper.

The dot plots of bufo and schoutedenella were produced by using the consensuses of these elements
in our repeat library as BLAST queries against all genome assemblies. All sites with hits larger than 150 bp
and percentage of identity larger than 70% were extracted along with 3000 (bufo) or 5000 (schoutedenella)
extra base pairs on each flank and aligned with the online server of MAFFT v. 7 (https://mafft.cbrc.jp/
alignment/server/) (Katoh et al, 2019).
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To search MycoCosm for other copies of Enterprise, the following approach was taken. The protein
sequence of Kirc was used as a query with BLASTX against all genomes within MycoCosm (as of February
2019). Genomes with multiple high-confidence positive hits were identified and the regions with putative
Kirc homologs were manually extracted. Priority was given to genomes where the hits were associated with
large duplicated regions (>50 kb). Melanconium sp. NRRL 54901 (produced as part of the 1KFG project;
Spatafora (2011)) had the most copies with clear termini. The genomic regions surrounding these Kirc
homologs were aligned with NUCmer using the parameters -b 200 -c 22 –maxmatch –nosimplify to produce
dot plots. From these regions, the least degraded Enterprise was extracted (scaffold 11) and compared to
the Psk-9 Spok block using PROmer (default parameters except –maxmatch), which produces alignments
based upon the six-frame translations of both input sequences. We used the filtered proteins annotations
available in MycoCosm to mark the position of Melanconium sp. associated genes. To determine the copy
number of the various genes of interest from the Spok block (Kirc, Uhera, Scoty and Chekof ), each gene
was used as a query with BLASTPp against the NCBI RefSeq database (consulted in October 2020). All
hits with e-values < 1 were compiled.

Phylogenetic analyses

Maximum Likelihood analyses were performed using IQ-TREE v. 1.6.8 (Kalyaanamoorthy et al, 2017;
Nguyen et al, 2014) with extended model selection (-m MFP) and 1000 standard bootstrap pseudoreplicates
to estimate branch support. In the case of bufo and schoutedenella, we used as input the first 345 (bufo) or
278 (schoutedenella) bp of the MAFFT alignment produced above but excluding the RGGTAG motif.

To estimate the phylogeny of Kirc, homologs were identified from GenBank using BLASTP with a trun-
cated version of Kirc from Wa53 that has no CHROMO domain. CHROMO domains are highly conserved
and are present in many different types of genes, so including this domain in the search results in numerous
additional hits that have no putative YR domain, and likely no relation to Kirc. Nucleotide sequences from
hits with e-values < 1e × 10−100 were compiled along with a homolog from P. anserina (Pa 5 10116), two
homologs from Melanconium sp. NRRL 54901 extracted from MycoCosm (see above), and the full length
sequence of Kirc in the Spok block of Wa53, and aligned with MACSE v. 2.03 (Ranwez et al, 2018). We
used TrimAl v. 1.4.1 (Capella-Gutierrez et al, 2009) to trim the resulting protein alignment with the -gappyout
option which was then used as input for IQ-TREE.

Fitness assays

The cultures used for the crosses were revived from the −80 °C freezer on PASM0.2 (van Diepeningen
et al, 2008) at 27 °C for several days and then stored at 4 °C until use. Strains were grown for 5 d on fresh
PASM0.2 plates before inoculating the cross. In the crosses, one strain was grown as mycelia and thereby
assigned the female role, while a compatible strain of the other mating type was assigned the male role
by fertilizing the mycelia with microconidia. The strain that was assigned the female role was grown in
a 35 mm petri dish with 5 ml HPM medium (Vogan et al, 2019) by inoculating a small cube of agar with
mycelium (≈2 × 2 mm). In parallel, the strain that was assigned the male role was grown on a 90 mm
petri dish with micro conidiation medium (King, 2013) by inoculating seven plugs of mycelium spread over
the plate. After 7 d of growth, microconidia were harvested by adding 5 ml of sterile water to the plate and
sweep over the mycelium with a drigalski spatula for 1 min. The female mycelium was then fertilized with
0.5 ml of the microconidial suspension. The suspension was carefully spread out to make sure all mycelium
was covered. The fertilized mycelia were then further incubated under standard conditions (27 °C, 12/12
light/dark cycle) (Vogan et al, 2019). The cultures were monitored daily for signs of spores shot from the
asci in order to score the first day of spore-shooting. To reduce the complexity of the experiment, the strains
used as female were always of mating type mat+.

At 6 d post-fertilization, single spores were collected with a needle to measure germination frequency
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and growth speed. From each cross, 10 spores from 4-spored asci were picked, and in cases with spore
killing, an additional 10 spores from 2-spored asci were picked. The 10 spores were transferred to a single
90 mm petri dish with PASM2 medium (van Diepeningen et al, 2008) with 0.4% ammonium acetate added
(to activate the spores) (King, 2013). Spores were spaced out in a predetermined pattern (4 lines of 2, 3, 3,
2 spores). After two days of incubation, the germination was scored and colony diameter was measured in
two directions. If there was no growth microscopic inspection was performed to check whether a spore was
present in the agar to avoid scoring no germination in case the inoculation failed.

At 12 d post-fertilization, spores were harvested from the lids of each crossed culture and used for
estimating total spore yield. Spores were collected by pipetting 750 µl of harvest liquid (1 M NAOH, 0.025%
SDS) in the lid. Spores were then scraped off the lid using the pipette tip. The liquid was then collected
into a 2 ml Eppendorf tube. Another 750 µl of harvest liquid was used to repeat the process to make sure
most of the spores were collected from the lid. The tubes were then heated for 4 h at 85 °C, then shaken
in a Qiagen Tissuelyser for 90 s at 30 HZ. After this, the tubes were stored at 4 °C overnight. The cooled
tubes were again shaken in a Qiagen Tissuelyser for 90 s at 30 30 HZ. This process prevents the clumping
of spores. Total yield was determined by counting the amount of spores in a volume of 5 µl of 50× diluted
suspension pipetted on an object glass using a stereomicroscope. Counts were taken five times for each
replicate cross. Ten replicate crosses were conducted for each cross. Statistical analyses were conducted
in base R v. 3.5.0 to determine significance and power.
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Supplementary Figures
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Supplementary Figure S1: A histogram showing the abundance of 6 bp k-mers in the P. anserina genome
(Podan2). The two potential putative targets of Kirc are shown with vertical lines.
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Supplementary Figure S3: The previously unclassified elements bufo (A) and schoutedenella (B) con-
stitute the ends of partially deleted Spok block or closely related Enterprise elements. The dot plots are
alignments of all insertion points for bufo (14 loci) and schoutedenella (17) across the three Podospora
species against the ends of the Wa137 (Psk-9) Spok block. The unclassified elements always align well
with the Spok block edges (starting at the first and last base of the Spok block) but their opposite end has
decaying extensions of homology towards the interior of the Spok block. For some insertions, the homol-
ogy of bufo elements extends into the coding region of Kirc (A). Loci of interest (all repetitive elements) are
marked in colour on the x-axis of the dot plots. Coordinates are with respect to positions in the Wa137 Spok
block. Black segments represent collinear homology, red segments mark inverse homology. Numbers in
facets refer to each insertion point, as reflected by the relationships in the phylogenies of either bufo (A) and
schoutedenella (B). Sequences used to represent each insertion point are marked in red text. The ends of
the Spok blocks themselves were also included in the phylogeny (Psk sequences). The asterisks mark the
sequences of the Wa139 Enterprise.
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to the various Spok blocks. Lilac lines show homologous regions among the Spok blocks. Genes of interest
are marked with symbols as in Figure 3.
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Supplementary Figure S5: The genomic region where the pseudogenized Spok gene (SpokΨ1) is located
in strain Wa46. Percentage of GC is plotted in windows of 250 bp with steps of 10 bp as an indication of
the effect of RIP. Gene and repeat annotations are marked on the x-axis. We inferred that the locus is in
fact a degraded Spok block based on the presence of multiple genes in one (Psk-9) or more Spok blocks.
SpokΨ1 and Uhera are highlighted. Notice that SpokΨ1 is interrupted by a transposable element.

Spok block or EnterpriseTSD

bufo schoutedenella

TSD

...

          ACATATTGGGTCTGGAAGAATACTTAGGTAGTCGGTCTCTAAAAACTTTTCTGT........................AGCCAAAAATTTTGTCGGGTGTGACTATACAGGTAGGCTATCACAGGTATTTTGATGACCPsk-9

Psk-1/5          ACTCTTTGCCGACTACAACATACCTAGGTAGTCGGTCTCTAAAAACTTTTCTGT........................AGCCAAAAATTTTGTCGGGTGTGACTATATAGGTATGCAAAAAAGGCAATGGTTGGGTA

Psk-7/8              CCTGATTTTGGGCTAACCGTTCTCTGGGTAGTCGGTCTCTAAAAACTTTTCTGT........................AGCCAAAAATTTTGTCGGGTGTGACTATATAGGTAGGTACTCAGTAATTTTCATCACGTC

Psk-2            TTAAGCCCCAAAAAGGTTCTTTCTAGGGTAGTCGGTCTCTAAAAACTTTTCTGT........................AGCCAAAAATTTTGTCGGGTGTGACTATATAGGTAGGGAGGGTGTGTAGCAAGCTCAAC

AAAAATTTGTCGGGTGTAACTATATAGGTAGTCGGTCTCTAAAAACTTTTCTGT........................AGCCAAAAAAATTGTCGGGTGTGACTATATAGGTATTCTAGTGTTCACACAATTCACCATCPcWa139m

ACCCTTCATTCGGCACCTATTCCCTTGGTAGTCGGTCTCTAAAAACTTTTCTAT.........................AGCCAAAAATTTTGTCGGGTGTGACTATATAGGTATTCTAGTGTTCACACAATTCACCATC

ACCCTTCATTCGGCACCTATTCCCTTGGTAGTCGGTCTCTAAAAACTTTTCTAT........             .....AGCCAAAAATTTTGTCGGGTGTGACTATATAGGTATTCTAGTGTTCACACAATTCACCATCPODCO

PcWa131m ?

TSD TSD
Enterprise

TCGCATATAGCTACCTACTTAGGTAGTCTTCCGCGGAATCGCACCA....................AATATGAGGGACGATTATACAGGTAGTCTTATATCGATTTCTGCCC

TTGTCTCCGTGGACCTACCTAGGTAGTCTTCCGCAGAATCACACCA....................AATATGAGGGATAACTATACAGGTATGGTTGTGGGGCTTCTTAGA

AATAGCTATATAAACTACTTAGGTAGTCTTCCGCGGAATCGCACCA....................AATACGAGGGACGACTATACAGGTAATTATCTGGATTAATAATCAT

TTCTGCAAACTACCTCCCTAGGTAGTCTTCCGCGGAATCGCACCA....................AATATGAGGGACGACTATACAGGTAGTATCGGTGACTCAGAAGCT

Melsp1_01

Melsp1_07

Melsp1_11

Melsp1_13

A

B

Supplementary Figure S6: A. An alignment of the ends of four versions of the Spok block displaying the
TSD (red trapezoid) plus the insertion site of Enterprise in three P. comata strains. The (partial) palindromic
motif is marked in magenta. The majority of Enterprise is deleted in the strain TD (PODCO) and unassem-
bled in Wa131. Additionally, the Wa139 copy is inserted next to a copy of schoutedenella that is absent in
both PODCO and Wa131. B. Alignment of four Enterprise elements within Melanconium sp. NRRL 54901
(Melsp1; adjacent numbers correspond to scaffolds in the assembly) revealing the TSD and palindromic
motif.
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Uhera2

Conserved Stop codon

[0 - 560]
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PaWa53m_chromosome_3
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Supplementary Figure S7: Gene expression of the second Uhera gene in the Spok block of a Psk-1
strain. A. Manual curation of the gene model reveals that a stop codon (red arrow) present in all Uhera
genes shows indications of RNA A to I editing, as shown in the zoomed in version in B. Polymorphic sites
in the coverage track are marked as long as they have a minor allele frequency larger than 0.1.
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Supplementary Figure S8: The genome of Melanconium sp. NRRL 54901 has Enterprise elements. A.
Dot plots representing MUMmer output of alignments between the four regions of Melanconnium sp. that
are inferred to be copies of an Enterprise element, plus flanking sequence. Black segments represent
collinear homology, red segments mark inverse homology. The golden bar represents the Kirc Msp gene.
Genomic regions and scaffolds are provided. Note that the region from scaffold 11 is the only one fully
annotated with gene models and contains the specific Kirc Msp gene analysed here. B. Comparison of
the Melanconium sp. Enterprise element from scaffold 11 to the Wa137 Spok block using PROmer. Grey
boxes on the axis represent boundaries of annotated genes; Kirc is marked in gold. Only the Kirc genes
show homology to each other. The inset shows the Kirc homologs aligning, with boxes now representing
exons.
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