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Supporting Information Text

Derivation of quasi-homogeneous model.

Age-of-infection model. We start with the same age-of-infection model as described in the main text, but include additional
time-dependent modulation of the force of infection :

J(t) = µ(t)
〈∫ ∞

0
dτRαK(τ)jα(t− τ)

〉
[S1]

Here, the modulation factor µ(t) can be due (e.g.) to mitigation measures or seasonal forcing. Due to this modification, Eq.
(5) should be rewritten as follows:

Re(t)
µ(t)R0

≡ SR(t) = 1
R0

∫ ∞
0

αRαf(α)e−αZ(t)dα [S2]

Here R0 =
∫∞

0 αRαf(α)dα is the basic reproduction number. As a reminder, we set 〈α〉 = 1. Now one can write the renewal
equation for force of infection which is formally identical to the one for a homogeneous case:

J(t) = µ(t)R0

∫ ∞
0

dτK(τ)SR(t− τ)J(t− τ) [S3]

As discussed in the main text, equations for incidence rate Ṡ, Se and S complete our quasi-homogeneous description:

dS(t)
dt

= −Se(t)J(t) [S4]

S =
∫ ∞

0
f(α)e−αZ(t)dα [S5]

Se =
∫ ∞

0
αf(α)e−αZ(t)dα = −∂S(Z)

∂Z
[S6]

The set of Eqs.(S3)-(S4) completely describes the epidemic dynamics, as long SR and Se are specified as functions of fraction
of susceptible population, S.

Compartmentalized SIR/SEIR models. The basic SIR and SIER models can be viewed as particular cases of the age-of infection
model discussed above. However, because of their great importance and wide use, we present our construction for a specific
case of SEIR:

Ṡα = −αSαJ [S7]
Ėα = αSαJ − γEEα [S8]
İα = γEEα − γIIα [S9]

Here, J(t) = µ(t)γI
∫∞

0 RαIαf(α)dα is force of infection. We define infectivity-weighted "Exposed" and "Infectious" fractions as

E(t) = 1
R0

∫ ∞
0

RαEαf(α)dα [S10]

I(t) = J

γIµ(t)R0
= 1
R0

∫ ∞
0

RαIαf(α)dα [S11]

This leads to a complete description of epidemic dynamics with three ordinary differential equations, formally equivalent to
those for the homogeneous case:

Ṡ(t) = J(t)
∫ ∞

0
αSαf(α)dα = −γIR0µ(t)Se(t)I(t) [S12]

Ė(t) = J

R0

∫ ∞
0

αRαSαdα− γEE(t) = γIR0µ(t)SR(t)I(t)− γEE(t) [S13]

İ(t) = γEE(t)− γII(t) [S14]

Eqs.(S2),S5 and (S6) relating functions SR, S and Se can be recovered by using exponential Anzats, Sα = e−αZ .
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Correlation parameter and scaling relationship between infectivity and susceptibility. Below we consider a model in which
biological susceptibility αb is correlated neither with infectivity nor with social strength αs of an individual. On the other hand,
both the overall susceptibility and infectivity are proportional to αs. Let fx and fy be probability density functions (pdfs) of
variables x ≡ lnαs and y ≡ lnαb. It is reasonable to assume a log-normal distribution for αb, since biological susceptibility can
be modeled as a product of several random factors (due to age, gender, genetics, pre-existent conditions, etc). This corresponds
to a Gaussian form for fy with variance σ2 and mean −σ2/2 (assuming normalization 〈αb〉 = 1). For a given value of α, this
translates into Gaussian distribution of variable x with the same variance, and mean lnα+ σ2/2. This allows us to calculate
the average αs which is proportional to Rα:

Rα ∼ 〈αs〉 ∼

∫
fx(x) exp

(
x− (x−lnα−σ2/2)2

2σ2

)
dx∫

fx(x) exp
(
− (x−lnα−σ2/2)2

2σ2

)
dx

[S15]

This integral can be evaluated by the method of steepest descents: for most pdfs fx and fy, will be dominated by the
vicinity of point x0 defined by the condition f ′(x0)/f(x0) = (x0/σ

2 − 1/2). By expanding ln f(x) in x′ = x− x0, we obtain
fx(x′) ≈ f(xσ) exp(rx′ − κx′2/2), where r = f ′(x0)/f(x0) = x0/σ

2 − 1/2 and κ = −f ′′(x0)/f(x0) + r2. After substituting this
Gaussian approximation for fx back into the above equation, we obtain the scaling relationship between α and Rα

Rα ∼ exp
(

(σ2 + lnα)2 − (lnα)2

2σ2(1 + κσ2)

)
∼ αχ [S16]

Here χ = 1/(1 + κσ2).

Functions SR(S) and Se(S). According to Eq.(S5), function S(Z) is directly related to the moment generating function Mα for
pdf f(α)

S = 〈e−αZ〉α = Mα(−Z) = 1− Z + 〈α
2〉Z2

2 − 〈α
3〉Z3

6 + · · · [S17]

This function also determines the effective fraction of susceptible population Se, Eq.(S6):

Se = 〈αe−αZ〉α = −dS
dZ

[S18]

Once effective susceptible fraction Se is expressed as function of S, it completely determines how SR (and hence Re) behaves
in both limiting cases of strong and weak correlations, respectively:

S
(χ)
R =

{
〈αe−αZ〉α = −dS/dZ = Se, χ = 0

1
〈α2〉

dS2

dZ2 = Se
〈α2〉

dSe
dS
, χ = 1

[S19]

Application to specific distributions of susceptibility.

Gamma distribution. Consider the gamma distribution with 〈α〉 = 1 and CV 2
α = η:

f(α) ∼ α1/η−1 exp(−α/η) [S20]

By using Eqs.(S2),(S5),(S6), we obtain:
S = (1 + ηZ)−1/η [S21]

Se = (1 + ηZ)−1/η−1 = S1+η [S22]

SR = (1 + ηZ)−(1+(χ+1)/η) = Sλ [S23]

This leads to the scaling relationship Re = R0S
λ, Eq. (14).

Truncated power law distribution. We now consider power law distributed α, f(α) ∼ 1/α1+s (s > 0), with upper and lower cut-offs,
εα+ and α+, respectively. If the upper cut-off is implemented as an exponential factor exp(−α/α+), we recover the functional
form identical to the gamma distribution, Eq. (S20) discussed above, but with negative values of the shape factor:

f(α) =
αq−1

+ exp(−α/α+)
αqΓ(1− q, ε) [S24]

Due to the normalization 〈α〉 = 1,

α+ = Γ(1− q, ε)
Γ(2− q, ε) . [S25]
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In the case of gamma distribution, the coefficient of variation CVα would completely determine the overall shape of pdf. For
power law with exponent 1 ≤ q ≤ 3, the value of η = CV 2 sets the dynamic range the between upper and lower cut-offs, i.e.
the parameter ε:

1 + η = 〈α2〉 = Γ(1− q, ε)Γ(3− q, ε)
Γ(2− q, ε)2 [S26]

By using Eq. (S2) and (S5), we obtain exact results for S and SR in terms of Z:

S = Γ(1− q, ε(1 + α+Z))
Γ(1− q, ε)(1 + α+Z)1−q [S27]

SR = Γ(ν, ε(1 + α+Z))
Γ(ν, ε)(1 + α+Z)ν [S28]

Here ν = 2 + χ− q. The resulting function Re/R0 = SR(S) is shown in Fig. S1 for several values of the exponent q.
For χ = 0, the overall function SR(S) = Se(S) can be very well fitted by an empirical analytic formula that depends only on

λ0 = 1 + CV 2
α and an additional shape parameter ∆λ = CVα(γα − 2CVα):

Se ≈
S

(1 + ∆λ(1− S))(λ0−1)/∆λ
[S29]

According to Eq. (S19), this function completely defines behavior of SR in both limits of the weak and strong correlation
regimes :

SR ≈
(1 + (∆χ − 1)(1− S))S

(1 + ∆λ(1− S))(λ−∆χ)/∆λ
[S30]

Here ∆χ = (∆λ + 1)/λ0, and λ = λ1 for χ = 1. For χ = 0, δχ has to be set to 1.

Log-normal distribution. The log-normal distribution is a very natural candidate to describe statistics of α. It universally emerges
for multiplicative random processes. Transmission of an infection involves a complex chain of random events, both social
and biological, which can be conceptualized as such multiplicative process. For instance, it may depend on how likely a
given person would be involved in a potential superspreading event, how likely that person would have a close contact with a
potential infector, what would be the duration of their contact, how effective the individual immune system is in preventing
and suppressing the infection.

For the log-normal distribution, the initial drop in Re according to Eqs. (10), is noticeably faster than for a gamma
distribution: λ = (1 + CV 2

α )(1 + χCV 2
α ). However, the initial linear regime is also much narrower. Figure S1 shows the

dependence Re(S) for the log-normal distribution alongside with the above results for gamma and power law distributions
computed for the same values of CV (specifically, CV 2

α = 2). As one can see from these plots, despite a stronger effect of
heterogeneity at the early stage, the curves generated by log-normal distribution approach Re = 0 significantly slower than those
corresponding to the gamma distribution. Note that the overall behavior of Re(S) generated by the log-normal distribution
closely matches the one obtained for the power law distribution with a certain scaling exponent q. This exponent would depend
on CV and should approach 1 in the limit of sufficiently wide distribution when the log-normal pdf asymptotically approaches
a power law 1/α with upper and lower cut-offs.

Final Size of Epidemic. Here we derive a simple result for the final size of epidemic in a population with a persistent
heterogeneity. To do this, we integrate Eq. (S3) over time t, assuming no mitigation, µ(t) = 1. This yields a relation
Z∞ =

∫∞
0 Re(t)J(t)dt =

∫ 1
S∞

Re(S)dS/Se(S) for the final value of Z when the epidemic has run its course, and this in turn
can conveniently be expressed in terms of the fraction of the susceptible population, S∞:

S∞ = Mα

(
−
∫ 1

S∞

Re(S)dS
Se(S)

)
[S31]

This equation is valid for an arbitrary distribution of α, arbitrary correlation between susceptibility and infectivity, and for any
statistics of the generation interval. This result can be also obtained as a solution to a general integral equation derived in
Ref. (1) for the well-mixed case. Eq. S31 combines and generalizes several well-known results: (i) in the weak correlation
limit (Rα = R0), when the integral in the r.h.s. is equal to R0(1− S∞), Eq.(S31) reproduces results of Refs. (1–4), (ii) in the
opposite limit of a strong correlation (Rα ∼ α), the integration gives R0(1− Se(S∞))/〈α2〉, and one recovers the result for the
FSE on a network (1, 5, 6).

For the case of gamma-distributed persistent susceptibility Eq. (S31), gives:

S∞ =

(
1 +

R0η
(
1− Sλ−η∞

)
λ− η

)−1/η

[S32]

It should be emphasized however that this result is of limited relevance to more realistic situations. Even if one assumes
no government-imposed mitigation or societal response to the epidemic, the case of fully persistent heterogeneity is just an
approximation. As we demonstrate in our paper, short-term correlations of time-dependent individual susceptibilities and
infectivities lead to transient stabilization of a fast-pacing epidemic. Because of this effect, Eq.(S31)-Eq.(S32) should be
interpreted as an estimate of the size of the first wave rather than the actual FSE.
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Path-integral theory of epidemic with time-dependent heterogeneity. Here we present a generalization of the theory developed
in the previous section that incorporates the effects of time variations of individual susceptibilities and infectivities, as well as
temporal correlations between them. Since these fast variations are primarily caused by bursty dynamics of social interactions,
and since heterogeneous biological susceptibility appears subdominant in the context of COVID-19, we set αb = 1 for all
individuals, so that α has purely social origin. Let ai(t) = αi + δai(t) be the time-dependent susceptibility of a person. Because
of the social nature of a(t), one’s individual infectivity is also proportional to it at any given time: βi(t) = R ·K(τ)ai(t). As
before, τ is time from infection, K(τ) is the pdf of generation intervals. Accordingly R is individual reproductive number of
an "average" person with social activity ai(t) = 1, in the fully susceptible population. The state of an individual is described
by a step function si(t) which is 1 as long as the person is susceptible, and turns to 0 at the moment of infection. The time
evolution of the epidemic follows a stochastic generalization of ( Eqs.(1)-(2):

E [ṡi(t)] = −ai(t)si(t− 0)J(t) [S33]

J(t) = −
∫ ∞

0
R ·K(τ)ai(t)ṡi(t− τ)dτ [S34]

Here bar ¯. . . represents averaging over individual members of population (indexed by i), in contrast with 〈. . . 〉, averaging over
all subgroups with various values of persistent heterogeneity α. E[. . . ] stands for expected value.

The overall quasi-homogeneous description given by Eqs.S3),(S4), remains valid. It is obtained by averaging Eqs. (S33)-(S34)
over the entire population. However, in contrast to the case of persistent heterogeneity, variables S(t), Se(t) and Re are no
longer connected to each other by a simple functional relationship. To relate them we first note that the average probability
that an individual is still susceptible at time t is given by E[si(t)] = exp

(
−
∫ t
−∞ J(t′)ai(t′)dt′

)
. Therefore,

S(t, [J(t′)]) ≡ si(t) = exp
[
−
∫ t

−∞
J(t′)ai(t′)dt′

]
[S35]

In other words, S becomes a functional over the set of all possible epidemic trajectories J(t). It still has the structure of a
moment generating function for the field ai(t), and thus is a direct analogue of the partition function broadly used in statistical
physics, stochastic calculus, and field theory. The specific form of this functional depends on probabilities assigned to different
individual trajectories ai(t). As a natural generalization of the case of persistent heterogeneity, Se(t) and Re(t) can be obtained
as, respectively, the first and the second variations of the functional S over J(t):

Se(t) = ai(t)si(t) = −δS(t, [J(t′)])
δJ(t) [S36]

Re(t) = Ra2
i (t)si(t) = R

δ2S(t, [J(t′)])
δJ(t)2 [S37]

For the sake of simplicity, in deriving Eq.(S37) we assumed αi(t) to be smoothed over the timescale of a single generation
interval. As a result,

∫∞
0 ai(t)ai(t− τ)K(τ)dτ ≈ a2

i (t). By applying Eq.(S37) to the initial state of fully susceptible population
we obtain the result for R0:

R0 = Ra2
i = R

(
〈α2〉+ δa2

i

)
[S38]

At the early stages of epidemic E[si(t)] ≈ 1−
∫ t
−∞ ai(t

′)J(t′)dt′ for the entire population. After substituting this expression
for si(t) to Eq.(S37) one obtains a generalization of our previous result for the initial suppression of Re, Eqs.(9)-(10):

Re(t) ≈ R0

(
1−

∫ ∞
0

Λ(t, t′)J(t− t′)dt′
)

[S39]

Λ(t, t′) = α̃2
i (t)ai(t− t′)
〈α2〉+ δa2

i

= λ∞ + δλ(t, t′) [S40]

Here λ∞ = Λ(∞) and δλ(t, t′) are the constant and time-dependent contributions to "immunity kernel" Λ(t, t′) which are
discussed in the main text in the context of the definition of λeff . Note that since the empirical value of λeff for COVID-19 is
relatively large (between 4 and 5), the attack rate at which the TCI state would be achieved is rather low (10%-15%) assuming
R0 between 2 and 3. In this case we are well within the range of our linearized regime. The long-term HIT is determined by a
lower value of λ∞ ' 2. In that case we derived the non-linear dependence of Re on S without linearization.

To obtain a corrected result for HIT, we assume a very slow progression of the epidemic (e.g. due to a gradual relaxation of
the level of mitigation). In this case, any intermediate-term correlations between time dependent variations δαi(t) become
negligible, and we largely recover the formalism developed for pure persistent heterogeneity. Belowm we make the same
assumption that was used for the estimate of λ∞ in the main text: δa2

i ∼ αi. This relationship can be rewritten in terms of
χ∗ = 〈α2〉/a2

i , as δa2
i = χ∗αi〈α2〉. It leads to the following modification to the result for SR, Eq(S2):

SR = R

R0

∫ (
α2 + (1− χ∗)a2

iα
)
f(α)e−αZdα =

(
χ∗〈α2e−Zα〉+ (1− χ∗)〈αe−Zα〉

)
[S41]
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Here we used Eq. (S38) for R0. As one can see, SR is a linear combination of two earlier results S(χ)
R , for χ = 0 and 1,

respectively (both are given by Eq. (S19)):
SR = χ∗S

(1)
R + (1− χ∗)S(0)

R [S42]
For the case of gamma-distributed α, this leads to interpolative result

SR = χ∗S1+η + (1− χ∗)S1+2η ≈ Sλ∞ [S43]

here λ∞ = 1 + (1 + χ∗)η is long-term immunity factor obtained in the main text within linearized approximation for Re(S).
A more detailed derivation of these and other results is at Ref. (7).

Age-of-infection model used to simulate the epidemic dynamics in NYC and Chicago. In our simulations of the COVID-19
epidemic dynamics in Chicago and NYC shown in Fig. 4 we used the age-of-infection model we previously developed for the
state of Illinois (8). The daily incidence (i.e. the daily number of newly-infected individuals per capita) j(t), determines the
dynamics of susceptible individuals according to

dS(t)
dt

= −j(t). [S44]

The incidence itself follows the renewal equation,

j(t) = Re(t)
∞∫

0

dτ K(τ)j(t− τ). [S45]

Here, Re(t) is time-dependent effective reproduction number, K(τ) is the probability density function (PDF) of generation
intervals. We parameterize the effective reproduction number Re(t) according to Eq. 14

Re(t) = R0µ(t)S(t). [S46]

where R0 is the basic reproduction number, µ(t) a mitigation factor, S(t) is susceptible population fraction.
For both NYC and Chicago, we have access to reliable data (9–12) describing time series of the following variables

• H(t), the total number of hospitalized (but not critical) patients

• C(t), the number of critically ill patients currently in ICU beds

• D(t), the cumulative number of daily deaths.

In our age-of-infection model changes in these variables are described by daily flux variables:

• σ(t), the number of infected individuals who become symptomatic

• h(t), the number of daily admissions to all hospitals

• r(t), the daily number of patients discharged from all hospitals

• c(t), the daily number of patients transferred from the main floor of a hospital to its ICU

• v(t), the daily number of patients transferred from the ICU to the main floor of a hospital, and

• d(t), the daily number of deaths in ICU rooms.

Figure S4 schematically depicts the topology of our model along with the names of all flux and cumulative variables. The
dynamics of any flux variable y(t) defined above may be obtained from the variable x(t) directly preceding it in the chain of
events shown in Fig. S4:

y(t) = py

∞∫
0

dτ Ky(τ)x(t− τ). [S47]

Here, py is the proportion of individuals undergoing the transition x→ y with time delays distributed according to a probability
density function Ky(t).

We fix the generation interval mean and standard deviation to 4 and 3.25 days respectively (13, 14), while our incubation
time distribution has fixed mean 5.5 days and a standard deviation of 2 days (15, 16). We calibrate the remaining delay (τx)
and fraction (px) parameters shown in Figure S4 to data downloaded from (9–12) by sampling over the high-dimensional model
parameter space using a Markov chain Monte Carlo (MCMC) approach as described in details in Ref. (8). This procedure
allowed us to determine the time evolution of Re(t) and S(t) in NYC and Chicago, which was used in Fig. 3. Figure S2 shows
the Re(t) divided by the mobility factor calculated from Google community mobility report, Ref. (17). We use the average
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of Retail, Grocery, Transit, and Workplaces categories. For NYC we use the average mobility of its five counties: New York
county, Bronx county, Kings county, Richmond county, and Queens county, weighted by their population fractions.

To construct Fig. 4 we modified our simulations by replacing Eqs. (S44), (S45) with their quasi-homogeneous generalizations
Eqs. (S4), (S3) and setting SR = Sλ and Se = S1+η, where η = (λ− 1)/2. After calibrating this model on data up to June 10,
2020 we predicted the effect of relaxing the mitigation factor µ(t) back to 1 on June 15, 2020. The results of these simulations
are shown in Fig. 4. Figs. S5 (NYC) and S6 (Chicago) show our predictions along with 95% confidence intervals caused by
parameter uncertainty. Our predictions go up to early September 2020 at which point confidence intervals become too wide.
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Fig. S1. Re/R0 vs S dependence for three different families of probability distribution f(α): Gamma (light blue), truncated power law (dashed lines), and log-normal (yellow).
Different curves correspond to the same value of the coefficient of variation CV 2

α = 2, and two limiting values (0 and 1) of the correlation parameter χ.
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Fig. S2. Exploration of effect of mobility on data presented in Figure 3(A). Triangles represent data points for NYC and Chicago with Re(t)/R0 corrected by a mobility factor
calculated from Google community mobility report, Ref. (17). We compute the mobility for NYC using average mobility of its five counties: New York county, Bronx county, Kings
county, Richmond county, and Queens county, weighted by their population fraction.
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Fig. S3. Time progressions of Re(t)/R0 and S(t) for the hardest-hit US states and DC, as reported in Ref. (18). Black dots correspond to absolute minima of transmission
and population susceptible fractions. The dashed line with slope λ = 4.7 ± 1.6 is the best power law fit through these black dots.
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Fig. S4. The topology of our model along with the names of all flux and state variables: the daily incidence, ji(t); the daily number of newly symptomatic individuals, σi(t); the
number of daily admissions to all hospitals, hi(t); the daily number of patients discharged from all hospitals, ri(t); the daily number of patients transferred from the main floor
of a hospital to its ICU, ci(t); the daily number of patients transferred from the ICU to the main floor of a hospital, vi(t); the daily number of deaths in hospitals, di(t); and the
daily number of deaths in and out of hospitals, dtot,i(t). State variables are: the total number of occupied hospital beds (main floor) Hi(t), and the total number of occupied
ICU beds Ci(t). The other parameters of the model are the fractions of infected individuals who ever become symptomatic, pσ,i; the fraction of symptomatic individuals who
are ever hospitalized, ph,i; the fraction of hospital patients who ever get to ICU, pc,i; and the fraction of ICU patients who will ultimately die pd,i; and the multiplier, Ftot that
converts between hospital deaths and all deaths in the state, including those outside of the hospital system. For the sake of legibility, we suppress age-group indices in the
diagram.
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Fig. S5. Hospitalization, ICU occupancy and daily deaths in NYC modeled under hypothetical scenario when any mitigation is completely eliminated as of Jun 15 2020, for
various values of λ. Model described in Ref. (8) is calibrated on data from Ref.(9), up to June 10, 2020 (shown as crosses). 95% confidence intervals are indicated.
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Fig. S6. Hospitalization, ICU occupancy and daily deaths in Chicago modeled under hypothetical scenario when any mitigation is completely eliminated as of Jun 15 2020, for
various values of λ. Model described in Ref. (8) is calibrated on data from Ref.(9), up to June 10, 2020 (shown as crosses). 95% confidence intervals are indicated.
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