The polyaminoisoprenyl potentiator NV716 revives old disused antibiotics against intracellular forms of infection by *Pseudomonas aeruginosa*

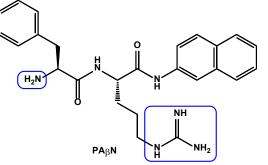
Gang W. Wang¹, Jean-Michel Brunel², Jean-Michel Bolla², Françoise Van Bambeke¹

¹ Pharmacologie cellulaire et moléculaire, Louvain Drug Research Institute, Université catholique de Louvain, Brussels, Belgium

² Aix Marseille Univ, INSERM, SSA, MCT, 13385 Marseille, France.

Supplementary Materials

Antibiotics	Efflux pumps shown	Apparent cellular	Human serum	Human serum C _{max} (mg/L)	
	to increase the	accumulation in	C _{min} (mg/L)		
	antibiotic MIC	eukaryotic cells	(5 <i>,</i> 6)	(6, 7)	
	in Pseudomonas	(at equilibrium) (4)ª			
	aeruginosa (1-3)				
Ciprofloxacin	MexAB-OprM,	5	0.05	5	
	MexCD-OprJ,				
	MexEF-OprN,				
	MexXY-OprM				
Doxycycline	MexAB-OprM,	2-10	1	10	
	MexCD-OprJ,				
	MexXY-OprM				
Chloramphenicol	MexAB-OprM,	2-5	5	20	
	MexCD-OprJ,				
	MexEF-OprN				
Rifampin	Poor substrate for	1-4	0.5	20	
	these four efflux				
	pumps				


Table S1. Relevant properties of the antibiotics used in this study

^a apparent accumulation factor (C_c/C_E : ratio between (C_c) cellular concentration and (C_E) extracellular concentration).

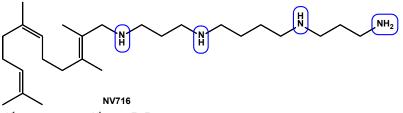
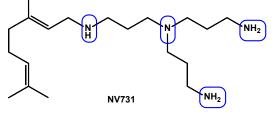
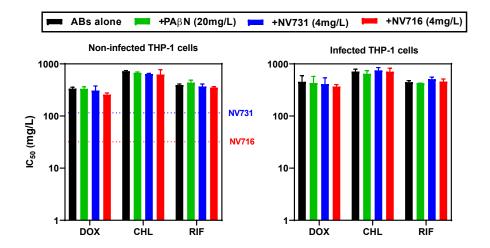

		THP-1 non-infected			THP-1 infected by PAO1				
Antibiotic	units	AB alone	+ΡΑβΝ	+731 (10μM)	+716 (10μM)	AB alone	+ΡΑβΝ	+731 (10μM)	+716 (10μM)
			(20mg/L)	·// (10µ///)		AB dione	(20mg/L)		., 10 (10µ10)
RIF	x MIC	24.6±1.1	27.3±3.3	23.1±2.6	22.0±0.9	27.8±1.9	26.6±0.2	31.9±2.9	28.7±3.4
	mg/L	393.0±18.3	436.1±52.6	369.3±41.5	351.6±14.2	445.5±30.2	426.2±2.8	510.0±47.1	459.0±55.1
	μM	477.5±22.3	529.9±63.9	448.8±50.5	427.2±17.3	541.4±36.7	517.9±3.4	619.7±57.3	557.8±66.9
DOX	x MIC	41.9±2.8	41.6±3.7	38.5±8.7	32.1±2.5	56.7±17.7	53.8±17.9	51.2±16.4	46.0±4.2
	mg/L	334.8±22.6	333.0±29.3	307.9±69.3	256.7±19.9	453.7±141.7	430.5±143.4	409.8±131.0	368.0±34.0
	μM	753.4±50.8	749.3±65.9	692.9±155.9	577.6±44.9	1,020.8±318.8	968.6±322.6	922.2±294.8	828.0±76.4
CHL	x MIC	22.5±0.8	21.0±0.8	20.1±0.5	19.5±4.7	22.3±2.5	20.2±3.0	23.5±3.1	22.1±3.7
	mg/L	719.1±25.3	673.2±27.0	642.0±16.2	624.4±150.2	714.1±80.4	645.9±95.0	752.6±98.4	707.0±118.6
	μM	2,225.6±78.4	2,083.3±83.7	1,986.9±50.1	1,932.4±464.8	2,210.0±248.8	1,998.8±294.1	2,329.2±304.4	2,187.9±366.9

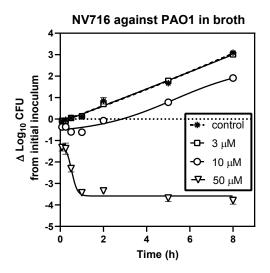
Table S2. IC₅₀ values from cytotoxicity tests, for antibiotics alone or combined with potentiators, and expressed in different units (x MIC, mg/L, μ M)


Figure S1: Chemical structures of the potentiators used in this study. The aminated functions that are partially protonated at physiological pH are evidenced by blue squares.

 $(S) \mbox{-}2 \mbox{-}((S) \mbox{-}2 \mbox{-}amino \mbox{-}3 \mbox{-}phenyl \mbox{propanamido}) \mbox{-}5 \mbox{-}guanidino \mbox{-}N \mbox{-}(naphthalen \mbox{-}2 \mbox{-}yl) \mbox{pentanamide}$



 N^1 -(3-aminopropyl)- N^4 -(3-((($2^{E,6Z}$)-2,3,7,11-tetramethyldodeca-2,6,10-trien-1-yl)amino) propyl)butane-1,4-diamine



 $({}^{E}) \cdot {}^{\mathcal{N}^{1},\mathcal{N}^{1}} \cdot bis (3-aminopropyl) \cdot {}^{\mathcal{N}^{3}} \cdot (3,7-dimethylocta-2,6-dien-1-yl) propane-1,3-diamine$

Figure S2. Cytotoxicity of antibiotics alone or combined with potentiators, as assessed by the trypan blue exclusion test. The graphs show the IC₅₀ for three antibiotics (doxycycline [DOX], chloramphenicol [CHL] or rifampin [RIF] alone or combined potentiators at the indicated concentrations, calculated based on the Hill equation of concentration-response curves experiments similar to those illustrated in Figure 1, in non-infected THP-1 cells (left) or infected THP-1 cells (right). These IC₅₀ values are higher than 400 mg/L in all cases, i.e. similar to the highest concentration tested in our model. The same type of experiment was performed with ciprofloxacin, but 50% cytotoxicity was not reached over the range of concentrations investigated (up to 25 mg/L), so that the IC₅₀ could not be calculated. The dotted horizontal dotted lines in the left panel show the IC₅₀ of potentiators alone (blue: NV731 [IC₅₀: 354 μ M or 115 mg/L]; red: NV716 [IC₅₀: 75 μ M or 32 mg/L]). These values are above the concentration used in most experiments (10 μ M). All data are shown as means ± SEM (triplicates from 3 experiments). Statistical analysis (1-way ANOVA; Tukey's Multiple Comparison Test): no significant difference was noticed when comparing the different conditions for each antibiotic (p>0.05). See further details in Table S2.

Figure S3. Kill curve of extracellular PAO1 by NV716 at increasing concentrations. The graph shows the changes in the Log_{10} CFU counts from the initial inoculum per mL of broth over 8 h of incubation with NV716 at the indicated concentrations (expressed in μ M). All data are means ± SEM (n=3).

<u>Corresponding method</u>: PAO1 was incubated on TSA overnight. A single colony was inoculated in 10 mL MHB-CA and incubated overnight at 37°C with gentle agitation (130 rpm). The density of the culture was adjusted at 0.5 McF (around 10^8 CFU/mL) in PBS, and diluted 100 times in MHB-CA to obtain a starting inoculum of 10^6 CFU/mL. Concentration-kill curves were determined over time with NV716 concentrations ranging from 3 to 50 μ M. Fifty μ L aliquots were diluted and plated on agar containing 2g/L charcoal to adsorb the residual antibiotic.

References

- 1. **Schweizer HP.** 2003. Efflux as a mechanism of resistance to antimicrobials in Pseudomonas aeruginosa and related bacteria: unanswered questions. Genet Mol Res **2**:48-62.
- 2. **Depardieu F, Podglajen I, Leclercq R, Collatz E, Courvalin P.** 2007. Modes and modulations of antibiotic resistance gene expression. Clin Microbiol Rev **20:**79-114.
- 3. **Lyu Y, Yang X, Goswami S, Gorityala BK, Idowu T.** 2017. Amphiphilic Tobramycin-Lysine Conjugates Sensitize Multidrug Resistant Gram-Negative Bacteria to Rifampicin and Minocycline. **60**:3684-3702.
- 4. **Carryn S, Chanteux H, Seral C, Mingeot-Leclercq MP, Van Bambeke F, Tulkens PM.** 2003. Intracellular pharmacodynamics of antibiotics. Infect Dis Clin North Am **17:**615-634.
- 5. **Pea F, Poz D, Viale P, Pavan F, Furlanut M.** 2006. Which reliable pharmacodynamic breakpoint should be advised for ciprofloxacin monotherapy in the hospital setting? A TDM-based retrospective perspective. J Antimicrob Chemother **58**:380-386.
- 6. **Schulz M, Iwersen-Bergmann S, Andresen H, Schmoldt A.** 2012. Therapeutic and toxic blood concentrations of nearly 1,000 drugs and other xenobiotics. Crit Care **16:**R136.
- 7. **Ruslami R, Nijland HM, Alisjahbana B, Parwati I, van Crevel R, Aarnoutse RE.** 2007. Pharmacokinetics and tolerability of a higher rifampin dose versus the standard dose in pulmonary tuberculosis patients. Antimicrob Agents Chemother **51:**2546-2551.