Supplementary Materials

Gain-of-function mutations in acid stress response (*evgS*) protect *Escherichia coli* from killing by gallium nitrate, an antimicrobial candidate

Jie Zeng^a, Liwen Wu^a, Zhou Liu^{b,c}, Yihua Lv^a, Jinzhi Feng^a, Weijie Wang^a, Yunxin Xue^a, Dai Wang^a, Jiabin Li^{b#}, Karl Drlica^d, and Xilin Zhao^{a,b,d#}

- ^aState Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, School of Public Health,
 Xiamen University, 4221-117 South Xiang-An Road, Xiang-An District, Xiamen, Fujian Province,
 361102, China.
- ^bDepartment of Infectious Diseases, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei, Anhui Province, 230022, China
- ^cDepartment of Laboratory Medicine, The Second Hospital of Anhui Medical University, 678 Fu-Rong Road, Hefei, Anhui Province, 230601, China
- ^dPublic Health Research Institute and Department of Microbiology, Biochemistry & Molecular Genetics, New Jersey Medical School, Rutgers University, 225 Warren Street, Newark, NJ 07103.

Supplementary Tables

Table S1. Bacterial strains, plasmid, and MIC of gallium nitrate (GaNt) used in this study

- **Table S2**. Primers used in the study
- Table S3. Primers used for RT-PCR

Table S4. Concentration-dependent acidification of citrate-buffered LB medium by gallium nitrate

.Table S5. Concentration-dependent acidification of citrate-buffered MH medium by gallium nitrate

Supplementary Figures

- Figure S1. Killing of wild-type, GaNt-3, *arpA*, *kdpD*, *arpA-kdpD*, and *evgS* mutants by hydrochloric-acid-acidified (pH 3.20) medium.
- **Figure S2**. Killing of wild-type and *evgS* (E701G) mutants by gallium nitrate is more rapid and extensive than by hydrochloric-acid-acidified LB medium.
- Figure S3. Growth curves of wild-type, GaNt-3, evgS (E701G), and evgS (S582P) mutants.
- **Figure S4**. Killing of wild-type, *evgA*, and various *evgS* mutants by hydrochloric-acid-acidified (pH 3.20) medium.
- **Figure S5**. Killing of wild-type and various *evgS* (E701G), *gadE*, *ydeO*, *safA*, and *rpoS* mutants by hydrochloric-acid-acidified (pH 3.20) medium.

Supplementary References

Strains	Relevant genotype	Source and description	GaNt MIC, mM
		Source and description	with LB medium
1	Wildtype	E. coli BW25113	18.4 (12.2) ^a
596	∆evgA	This study, by kanamycin marker excision	18.4
597	evgS E701G	This study, constructed using CRISPR-cas9	18.4 (12.2) ^a
598	evgS S582P	This study, constructed using CRISPR-cas9	18.4
603	arpA E334A	This study, constructed using CRISPR-cas9	18.4
608	∆evgS	This study, by kanamycin marker excision	18.4
610	GaNt-3	This study, GaNt-tolerant mutant 3	18.4
611	GaNt-4	This study, GaNt-tolerant mutant 4	18.4
612	GaNt-5	This study, GaNt-tolerant mutant 5	18.4
613	GaNt-6	This study, GaNt-tolerant mutant 6	18.4
636	kdpD P885T- arpA E334A	This study, constructed using CRISPR-cas9	18.4
638	<i>kdpD</i> P885T	This study, constructed using CRISPR-cas9	18.4
1044	evgS G658A	This study, constructed using CRISPR-cas9	18.4
1045	evgS S584F	This study, constructed using CRISPR-cas9	18.4
1046	evgS N573K	This study, constructed using CRISPR-cas9	18.4
1047	evgS S600I	This study, constructed using CRISPR-cas9	18.4
1048	<i>∆gadE::kan</i> , Kan ^R	CGSC# 11776, Keio collection JW3480	18.4
1049	∆ydeO	This study, constructed using CRISPR-cas9	18.4
1050	evgS E701G-∆ydeO	This study, constructed using CRISPR-cas9	18.4
1051	evgS E701G-∆gadE	This study, constructed using CRISPR-cas9	18.4
1052	$\Delta rpoS$	This study, constructed using CRISPR-cas9	18.4
1053	evgS E701G-∆rpoS	This study, constructed using CRISPR-cas9	18.4
1054	∆safA	This study, constructed using CRISPR-cas9	18.4
1055	evgS E701G-∆safA	This study, constructed using CRISPR-cas9	18.4
1056	evgA D52A	This study, constructed using CRISPR-cas9	18.4
1057	evgS E701G-evgA D52A	This study, constructed using CRISPR-cas9	18.4
Plasmids			
pCas		Kan ^R , <i>repA</i> 101(temperature-sensitive replicon),	lacIq-Ptrc fragment, sg-
		RNA-pMBI,λ-Red recombinase gene (exo bet g	am paraB) (1).

Table S1. Bacterial strains, plasmids, and MIC of gallium nitrate (GaNt) used in this study

pTargetF

pTargetF-sgRNA-FRT

RNA-pMBI, λ -Red recombinase gene (*exo bet gam paraB*) (1). *aadA* (spec^R), pMB1, pj23119 (synthetic promoter) N20-sgRNA (1). spec^R, sgRNA with an N20 sequence targeting the *FRT* region of Keio collection mutants after antibiotic marker excision.

pTargetF-sgRNA-ydeO	spec ^R , sgRNA with an N20 sequence targeting the <i>ydeO</i> gene of the
	wildtype strain, also containing homologous template for ydeO knockout
pTargetF-sgRNA-gadE	spec^{R} , sgRNA with an N20 sequence targeting <i>gadE</i> gene of the wildtype
	strain, alsp containing homologous template for gadE knockout.
pTargetF-sgRNA-safA	spec ^R , sgRNA with an N20 sequence targeting <i>safA</i> gene of the wildtype
	strain, alsp containing homologous template for safA knockout.
pTargetF-sgRNA-rpoS	$spec^{R}$, sgRNA with an N20 sequence targeting <i>rpoS</i> gene of the wildtype
	strain, alsp containing homologous template for ropS knockout.
pCP-20	plasmid containing yeast FLp recombinase gene, ts-rep (30°C), recA-,
	Amp ^R (100 μ g/ml), Cm ^R (25 μ g/ml). pCP20 was used for excision of
	antibiotic marker from in-frame gene knockout mutant (2, 3).

Abbreviations: Cm^R, chloramphenicol resistance; Tc, tetracycline resistance; *aadA* (spec), spectinomycin resistance; Amp^R: ampicillin resistance; Kan^R: kanamycin resistance

^aGallium nitrate MIC for MH medium is shown in parentheses; MIC was determined after correction for water content of gallium nitrate powder; MIC values were 4.7 mg/ml and 3.1 mg/ml with LB and MH media, respectively.

Table S2. Primers used in the study

Primer name	Purpose	Nucleotide sequence of primers (5'-3')
evgA (D52A)-P1	Construction of mutant evgA D52A	AATAGGCATAGGCACCTGAAAACGC
evgA (D52A)-P2	using CRISPR system; amplification	GTTAACTCCGGGGGATATCGACAGCAATGAT
	of upstream homologous sequence by	GACGATATCAGGCTT
	PCR from wild-type strain	
evgA (D52A)-P3	Construction of mutant <i>evgA</i> D52A	AAGCCTGATATCGTCATCATTGCTGTCGAT
	using CRISPR system; amplification	ATCCCCGGAGTT
evgA (D52A)-P4	of downstream homologous sequence	TCGTCTGGGGGGGTAATTTGCTA
	by PCR from wild-type strain	
<i>kdpD</i> -P1	Construction of mutant <i>kdpD</i> P885T	TGACCACCGTACTGGGGGCAATG
kdpD-P2	using CRISPR system; amplification	ATTGTTGAGCAGCACCGCCAGC
	of homologous <i>kdpD</i> template by PCR	
	from GaNt-3	
kdpD-check-P1	Amplification and sequencing of <i>kdpD</i>	TGACCACCGTACTGGGGGCAATG
kdpD-check-P2	for mutation confirmation	GCAGATGTCCCATATAAATACGCA
arpA-P1	Construction of mutant <i>arpA</i> Q334G	GCTCTAGACGCAAAGGGTTACATGCCTA
arpA-P2	using CRISPR system; amplification	AACTGCAGATGTCTGCCGCTCACGTTC
	of homologous <i>arpA</i> template by PCR	
	from GaNt-3	
arpA-check-P1	Amplification and sequencing of <i>arpA</i>	GCCTGCTAACCACGATGCAA
arpA-check-P2	for mutation confirmation	AGCTACCGCGAATATCTCGTT
FRT-sgRNA-5'	Construction of sgRNA targeting the	TCCTAGGTATAATACTAGT TCCTATTCTCTA
	FRT sequence of Keio mutants for	GAAAGTATGTTTTAGAGCTAGAAATAGC
	backcrossing mutant alleles into the	(SpeI)
FRT-sgRNA-3'	corresponding Keio mutant strain	AA <u>CTGCAG</u> TTCAAAAAAAGCACCGACTC
		GG (PstI)
evgA D52A-evgS	Amplification (with evgA D52A-evgS	TTGATGACCATCCTCTTGCTA
E701G-check 1	E701G-P2 primer) and sequencing of	
	evgA D52A-evgS E701G for mutation	
	confirmation	
evgA D52A-evgS	Construction of evgA D52A mutation	TTGCTGTCGATATCCCCGGAGTT
E701G-P1	in <i>evgS</i> E701G background using	
evgA D52A-evgS	CRISPR system; amplification of	TCTCTTGCGGATCTATGCGGCGGTG
E701G-P2	upstream homologous fragment with	
	evgA D52A-evgS E701G-P1 plus evgA	

	(D52A)-P2 and downstream	
	homologous fragment with evgA	
	(D52A)-P3 plus evgA D52A-evgS	
	E701G-P2 by PCR from <i>evgS</i> E701G	
	mutant template. The evgA D52A-	
	evgS E701G-P1 and evgA D52A-evgS	
	E701G-P2 primer pair was used to	
	amplify full-length homologous	
	template after annealing the upstream	
	and downstream homologous	
	fragments.	
evgS-P1	Shared upstream primer for pairing	TAGCAGAGTTGACTGAAGGCG
	with various evgS P2 primers to	
	amplify upstream evgS fragment for	
	construction of various <i>evgS</i> point	
	mutations using CRISPR system	
evgS-P4	Shared downstream primer for pairing	GCCGATTACGATTTGTTGTGG
	with various evgS P3 primers to	
	amplify downstream evgS fragment	
	for construction of various <i>evgS</i> point	
	mutations using CRISPR system	
evgS S584F-P2	Primers paired with evgS-P1 for	GGATTCGGTAAGAAATCCGAGAGTGC
evgS N573K-P2	amplification of upstream <i>evgS</i> S584F,	CGGAATGATATTTGTTTTTCTAAATCACCC
evgS S600I-P2	evgS N573K, and <i>evgS</i> S600I	GCACTATTATGAATAATGACATTACC
	fragments used for subsequent full-	
	length evgS mutant template	
	construction needed for CRISPR-	
	based allelic exchange	
evgS S584F-P3	Primers paired with evgS-P4 for	GCACTCTCGGATTTCTTACCGAATCC
evgS N573K-P3	amplification of downstream evgS	GGGTGATTTAGAAAAACAAATATCATTCCG
evgS S600I-P3	S584F, <i>evgS</i> N573K, and <i>evgS</i> S600I	GGTAATGTCATTATTCATAATAGTGC
	fragments used for subsequent full-	
	length evgS mutant template	
	construction needed for CRISPR-	
	based allelic exchange	
gadE-sgRNA-5'	Amplification of gadE-sgRNA for	GG <u>ACTAGT</u> GATTTTTGATACTTTCTTTGGT
	CRISPER-based mutant construction	TTTAGAGCTAGAAATAGC (SpeI)

gadE-sgRNA-3'		CTCAAAAAAGCACCGACTCGG	
gadE-P1	Primer sequence for PCR	CGAGTCGGTGCTTTTTTTGAGCTGAAGAC	
	amplification of homologous template	ATGAATGCG	
gadE-P2	upstream of gadE for CRISPR-based	AGTTGCTTATGTCCTGACTACATAACTTGC	
	gadE mutant construction	TCCTTAGCCG	
gadE-P3	Primer sequence for PCR	CGGCTAAGGAGCAAGTTATGTAGTCAGGA	
	amplification of homologous template	CATAAGCAACTG	
gadE-P4	downstream of gadE for CRISPR-	AA <u>CTGCAG</u> GTTTTCCGCCGATTTGTCAT	
	based gadE mutant construction	(pstI)	
gadE-CRISPR-check-P1	Primer (paired with gadE-P4) for PCR	GGGTTCATTTTTTGCAACTGGCG	
	confirmation of <i>gadE</i> deletion		
evgS-PAS-check-P1	Primer pair for amplification and	GCTGAAGCCTTCATAACAACG	
evgS-PAS-check-P2	sequencing confirmation of various	TAACAGCGTGGTTGTCATCA	
	evgS PAS domain for mutations		
uda SaDNA D1	Amplification of ude ag RNA for	GG <u>ACTAGT</u> TGTAATGAAACCTTTGCATGG	
yaeo-sgrina-ri	CRISPER-based mutant construction	TTTTAGAGCTAGAAATAGC	
ydeO-SgRNA-P2		CTCAAAAAAGCACCGACTCGG	
udaO B1	Primer sequence for PCR	CCGAGTCGGTGCTTTTTTTGAGCGTTATCC	
ydeO-P1	amplification of homologous template	GCTAAATAAACA	
ydeO-P2	upstream of ydeO for CRISPR-based	TACTCGTTAGCAAATAATCACATTTTATCTC	
	yedO mutant construction	СТТААААСА	
udaO D2	Primer sequence for PCR	TGTTTTAAGGAGATAAAATGTGATTATTTG	
yaeo-rs	amplification of homologous template	CTAACGAGTA	
udaO PA	downstream of ydeO for CRISPR-	AA <u>CTGCAG</u> GTCCATAAAGCGTTGACATT	
yueo-14	based ydeO mutant construction	(pstI)	
uda CDISDD abaak D1	Primer (paired with ydeO-P4) for PCR		
yaeo-CRISFR- check-FI	confirmation of ydeO deletion	ACACITACOTIOATAOCCAT	
aaf4 aa DNA D1	Amplification of <i>safA</i> -sgRNA for CRISPER-based mutant construction	GG <u>ACTAGT</u> CTGATCAATTGCCGAAAAAAG	
SujA-SgRIVA-I I		TTTTAGAGCTAGAAATAGC (SpeI)	
safA-sgRNA-P2		CTCAAAAAAGCACCGACTCGG	
aaf4 D1	Primer sequence for PCR	CCGAGTCGGTGCTTTTTTTGAGCTATTTTC	
saja-r i	amplification of homologous template	CAGAATCGAAT	
safA-P2	upstream of <i>safA</i> for CRISPR-based	GCTGTTTGTTTTCAGCCGGTCGCATGCATT	
	safA mutant construction	TCAAATATG	
saf4_P3	Primer sequence for PCR	GAAATGCATGCGACCGGCTGAAAACAAAC	
sajA-P3	amplification of homologous template	AGCAAA	

saf A-PA	downstream of <i>safA</i> for CRISPR-		
<i>sujA</i> -14	based safA mutant construction	AA <u>CIGCAG</u> ICUCAUUAACAUUCA (FSII)	
saf4_CRISPR_check_P1	Primer (paired with <i>safA</i> -P4) for PCR	AGCTCACGCCGCATGGATAGATT	
supr-exist K-encer-1	confirmation of <i>safA</i> deletion		
rno S-sgRN A-P1	Amplification of rnoS sgRNA for	GG <u>ACTAGT</u> GCAAACGAATAGTACGGGTTG	
TPOD-SERVA-I I	CPISPEP based mutant construction	TTTTAGAGCTAGAAATAGC (SpeI)	
rpoS-sgRNA-P2	CRISTER-based mutant construction	CTCAAAAAAGCACCGACTCGG	
rno S-P1	Primer sequence for PCR	GTCGGTGCTTTTTTTGAGCGCAGATGGCC	
1005-11	amplification of homologous template	GCGTTGTTTATGC	
rno S D2	upstream of <i>rpoS</i> for CRISPR-based	GACAGATGCTTACTTACATAAGGTGGCTCC	
1005-12	rpoS mutant construction	TAC	
rno S-P3	Primer sequence for PCR	CACGGGTAGGAGCCACCTTATGTAAGTAA	
1005-15	amplification of homologous template	GCATCTGTCAGA	
rno S-PA	downstream of rpoS for CRISPR-	AA <u>CTGCAG</u> ACTCTCAGAAGCGGTGATGG	
1005-14	based <i>rpoS</i> mutant construction	GA (PstI)	
rpoS-CRISPR-check-P1	Primer (paired with <i>rpoS</i> -P4) for PCR		
	confirmation of <i>rpoS</i> deletion		

Primer ^a	Nucleotide sequence of primers (5'-3')	
ahpC-F	TTCTACCCGGCTGACTTTACTT	
ahpC-R	CTTCATCTTCACGCATGTTGTC	
ahpF-F	ACATCGAACTGGCCGGTATTT	
ahpF-R	GGTGCGAATCAGGTAGTCAAA	
katE-F	ATGCCAAACTGCTCTACTCCC	
katE-R	CAGCGCAATCGGTTTAAGGT	
oxyR-F	ACCTGCTACCGCATATTATCCCT	
oxyR-R	CTCATCAAACAACGGCACTTCA	
soxR-F	TATCCGTAACAGCGGCAATCAG	
soxR-R	CCACAACCAATACATCCGTCCAGT	
soxS-F	TATCAAAAATCGGACGCTCGGTGGT	
soxS-R	CAGGATCTTATCGCATGGATTGACG	
acnA-F	CACGCATAAAGATCGCCAGC	
acnA-R	CTTGAGGCCCAGAGTTACGG	
acnB-F	GTTCTTCGCGTAAATCCGCC	
acnB-R	CAATCACGTCGCCCATGTTC	
icd-F	CTATCAGGGCACTCCAAGCC	
icd-R	ACAATGTTCCGGGAAGCGAA	
sucA-F	ATGGGACGAAGAGTACCCGA	
sucA-R	GTAAGCGAGGTTTTCCGCAC	
sucC-F	AGCCGCTTCAAAAATCGGTG	
sucC-R	GGTTAACCGGTTGGCCATTG	
sdhA-F	GCTGTTTCTGCCAACTTCCG	

Table S3. Primers used for RT-PCR

sdhA-R	AAGTACGAATCTTCGGCGGG
frdA-F	TCCACGCGACAAAGTCTCTC
frdA-R	TCTTTAACCGGATCGACGCC
frdD-F	CAAAGCGTTCTGACGAACCG
frdD-R	TACGCGACCAATGAAGCTCT
fumA-F	CGAAGATCAACCGTCAGGGG
fumA-R	GCCGTTAAGCGATAAGCGTG
fumB-F	GCGGTGATGAAGAAACGCTG
fumB-R	CCTTTCGCAACGCAAAGGAA
fumC-F	TTTCCGCATTTCGACGGAGA
fumC-R	GATAGCCAGCGGGAATTCGT
mdh-F	CCGGTTAACACCACAGTTGC
mdh-R	CACCAGAGTGACCGCCAATA
mqo-F	GAACTGAACTACACCCCGCA
mqo-R	ATTGACGTTATCCTCGCCCC
aceA-F	AGTGCCAACTCAGGAAGCTATT
aceA-R	TAAATTCGCTGTCATACGGGTC
aceB-F	TTCCGAGCAAAGATGAAGAGC
aceB-R	CGAGAATGTCGTTGAATACCG
16S-qPCR-F ^b	CTTACGACCAGGGCTACACAC
16S-qPCR-R ^b	CGGACTACGACGCACTTTATG

^aF and R indicate forward and reverse, respectively

^b16S ribosomal RNA

[Gallium nitrate] (mM)	pH (before/after)ª
0	7.16/8.37
9.2	6.14/5.91
18.4 ^b	5.60/5.55
36.8	4.88/4.86
55.2	4.25/4.19
73.6	3.20/3.16

 Table S4. Gallium nitrate concentration-dependent acidification of citrate-buffered LB medium

^aIndicating pH values measured before and after incubation of bacterial inoculum for MIC determination. ^bIndicating MIC value determined with citrate (54.3 mM)-buffered LB medium.

[Gallium nitrate] (mM)	pH (before/after) ^a
0	7.25/8.29
6.1	6.45/6.40
12.2 ^b	6.00/5.98
18.4	5.72/5.73
24.4	5.42/5.43
36.8	5.16/5.12
48.8	4.26/4.20
55.1	3.99/3.91

Table S5. Gallium nitrate concentration-dependent acidification of citrate-buffered MH medium

^aIndicating pH values measured before and after incubation of bacterial inoculum for MIC determination.

^bIndicating MIC value determined with citrate (54.3 mM)-buffered MH medium.

Figure S1. Killing of wild-type, GaNt-3, *arpA*, *kdpD*, *arpA-kdpD*, and *evgS* mutants by hydrochloricacid-acidified (pH 3.20) medium. Exponentially growing cultures of *E. coli* were treated by adjusting the pH of the LB medium (supplemented with 54.3 mM sodium citrate) to 3.20 with hydrochloric acid and then incubated for the indicated times followed by determination of survival as colony forming units (CFU). Percent survival was determined relative to CFU at the time of acid addition. Panel *a*. Protection from acid-mediated killing by mutant GaNt-3. Panel *b*. Lack of protection from killing by mutations in *arpA* and *kdpD*. Panel *c*. Protection from acid-mediated killing by two *evgS* mutants. All experiments were performed in triplicate; error bars indicate standard error of the mean.

Figure S2. Killing of wild-type and *evgS* (E701G) mutants by gallium nitrate is more rapid and extensive than by hydrochloric-acid-acidified LB medium. Exponentially growing cultures of *E. coli* were treated either with 24.4 mM (panel *a*) or 18.4 mM (panel *b*) gallium nitrate or by adjusting the pH of the LB medium to 3.11 or 3.51 with hydrochloric acid as medium acidification controls for 24.4 mM and 18.4 mM gallium nitrate treatment, respectively. Samples were then incubated for the indicated times, followed by determination of survival as in Figure S1. All experiments were performed in triplicate; error bars indicate standard error of the mean.

Figure S3. Bacterial growth rate is affected little by the GaNt-3, evgS (E701G), and evgS (S582P) mutations. Overnight cultures of *E. coli* were diluted by 2000-fold into fresh LB medium supplemented with 54.3 mM of sodium citrate. Cultures were incubated at 37 °C with rotary shaking at 250 rpm for 9 h. At the indicated times, aliquots were taken for determination of OD₆₀₀ and colony forming units (CFU). Log of OD₆₀₀ (*a*) or CFU (*b*) was plotted as a function of incubation time. All experiments were performed in triplicate; error bars indicate standard error of the mean.

Figure S4. Killing of wild-type, *evgA*, and various *evgS* mutants by hydrochloric-acid-acidified (pH 3.20) medium. Exponentially growing cultures of *E. coli* were treated by adjusting the pH of the LB medium (supplemented with 54.3 mM sodium citrate) to 3.20 with hydrochloric acid and then incubated for the indicated times followed by determination of survival as in Figure S1. Panel *a*. Survival is unaffected by deletion of *evgA* or *evgS*. Panel *b*. Three *evgS* point mutations slightly protect from acid-mediated killing. Panel *c*. Point mutation in *evgA* is moderately hypersensitive to acid-mediated killing; when combined with a point mutation in *evgS* the double mutant is as sensitive as the *evgA* single mutant to acid treatment. All experiments were performed in triplicate; error bars indicate standard error of the mean.

Figure S5. Killing of wild-type and various *evgS* (E701G), *gadE*, *ydeO*, *safA*, and *rpoS* mutants by hydrochloric-acid-acidified (pH 3.20) medium. Exponentially growing cultures of *E. coli* were treated by adjusting the pH of the LB medium (supplemented with 54.3 mM sodium citrate) to 3.20 with hydrochloric acid and then incubated for the indicated times followed by determination of survival as in Figure S1. Panel *a*. Deletion of *gadE* renders cells hypersensitive to acid, a feature that is partially reversed by a point mutation (E701G) in *evgS*. Little killing occurs with wild-type and the *evgS* (E701G) mutant. Panel *b*. An *evgS* point mutation, which by itself is protective, has no protective effect for a *ydeO* deletion. Panel *c*. Slight hypersensitivity to acid by a *safA* deletion mutant is reversed by an additional point mutation in *evgS*. Panel *d*. Hypersensitivity to acid by an *rpoS* deletion is reversed by a point mutation in *evgS*.

Supplementary references

- 1. Jiang Y, Chen B, Duan C, Sun B, Yang J, Yang S. 2015. Multigene editing in the *Escherichia coli* genome via the CRISPR-Cas9 system. Appl Environ Microbiol 81:2506-14.
- Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, Datsenko KA, Tomita M, Wanner BL, Mori H. 2006. Construction of *Escherichia coli* K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:2006 0008.
- 3. Cherepanov PP, Wackernagel W. 1995. Gene disruption in *Escherichia coli*: TcR and KmR cassettes with the option of Flp-catalyzed excision of the antibiotic-resistance determinant. Gene 158:9-14.