Supplementary Information Appendix

Targeting DDX11 in cancers causes replication stress and pharmacologically exploitable DNA repair defects

Nanda Kumar Jegadesan¹ and Dana Branzei^{1, 2, *}

 ¹ IFOM, the FIRC Institute of Molecular Oncology, Via Adamello 16, 20139, Milan, Italy
² Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), Via Abbiategrasso 207, 27100, Pavia, Italy
* Corresponding author

E-mail: dana.branzei@ifom.eu (D.B.)

Fig. S1. Kaplan-Meier survival probability plots stratified by DDX11 expression levels

A and B, Kaplan–Meier overall survival plot of patients with lung adenocarcinoma and ovarian serous carcinoma, stratified by DDX11 median expression level. Patients sample numbers are indicated below the Kaplan-Meier plots.

В

HeLa *ddx11* (alleles) HeLa DDX11 WT allel

HeLa DDX11 WT allele	TGAGGTGAAGAAGAGCCCCTTTGG_CATCCCTGCAG	CCCAGGTGAGGG <mark>CCC</mark>
HeLa <i>ddx11</i> allele 1	TGAGGTGAAGAAGAGCCC	AGCCCAGGTGAGGGCCC
HeLa <i>ddx11</i> allele 2	TGAGGTGAAGAAGAGCCC	AGCCCAGGTGAGGGCCC

U2OS ddx11 (alleles)

U2OS DDX1 U2OS ddx11 U2OS ddx11

1 WT allele	TGAGGTGAAGAAGAGCCCCTTTGG_	
allele 1	TGAGGTGAAGAAGAGCCC	GCCCTCCCTGCAGCCCAGGTGAGGGCCC
allele 2	TGAGGTGAAGAAGAGCCC	GCCCTCCTGCAGCCCAGGTGAGGGCCC

Fig. S2 Loss of DDX11 sensitizes ovarian cancer cell lines and establishment of *DDX11* knockout

A, Sensitivity assay of different ovarian cancer cell lines transfected with siCtrl and si*DDX11* upon Olaparib treatment with the indicated drug concentrations (n=3 for OVCAR8 and COV362 and n=2

Α

for IGROV1). Cell viability was determined using crystal violet staining after 5 days of drug treatment. Error bars show average \pm SEM. **B**, Sangers sequencing of *DDX11* genomic loci of HeLa and U2OS Ctrl and *DDX11* KO cells respectively. **C**, Immunofluorescence analysis of DDX11 in HeLa and U2OS Ctrl and *DDX11* KO cells respectively. **D**, Cellular proliferation assay in HeLa and U2OS Ctrl and *DDX11* KO, respectively, using CellTiter-Glo at the indicated time points (n=3). Error bars show average \pm SEM.

A, Cell viability assay of HeLa Ctrl and *DDX11* KO cells treated with Olaparib and Mitomycin-C (MMC) with the indicated concentrations (n=3). Cell viability was determined using crystal violet after 5 days of incubation. Error bars show average \pm SEM. **B**, Colony formation assay of HeLa Ctrl and *DDX11* KO cells treated with ATR inhibitor VE-821 (n=3) with the indicated drug concentrations. Colonies were stained with crystal violet after 10 to 15 days of incubation. Error bars show average \pm SEM. **C**, Cell viability assay of hTERT RPE-1, MCF10A and BJ cells transfected

with siCtrl and siDDX11. Cells were treated with Olaparib with the indicated concentrations (n=3). Cell viability was determined using crystal violet after 5 days of incubation. Error bars show average \pm SEM.

Fig. S4 DDX11 loss associates with micronucleation and DNA damage accumulation

A, Quantification of micronuclei and mitotic catastrophes in HeLa Ctrl and *DDX11* KO cells in untreated conditions and upon Olaparib (1 μ M) drug treatment for the indicated time points. Error bar shows average ± SEM. **B**, Representative micrographs of 53BP1 and γ -H2AX focus formation in U2OS Ctrl and *DDX11* KO cells upon Olaparib (2 μ M) drug treatment for 24 hours (scale bar, 10 μ M). Quantification of foci is shown (n=2). Statistical analysis was performed using Students *t*-test. Error bar shows average ± SD.

в

Fig. S5 DDX11 promotes homology-directed repair of DSBs downstream of 53BP1

A, Representation of flow cytometry scatter plot analysis of U2OS TRI DR-GFP cells transfected with indicated siRNAs for Fig. 4B. The analysis was performed 72 hours after I-SceI induction by doxycycline (n=3). Error bar shows average \pm SEM. **B**, Colony formation assay of HeLa Ctrl and *DDX11* KO cells transfected with the indicated siRNAs. Cell were chronically treated with Cisplatin (n=3) and Olaparib (n=2) and colonies were stained with crystal violet after 10 to 15 days of incubation. Error bar shows average \pm SEM.

Fig. S6 DDX11 has complementary functions to both BRCA1 and BRCA2 upon DNA damage HeLa Ctrl and *DDX11* KO cells were transfected with indicated siRNAs. Cell viability was determined using crystal violet staining after 5-6 days of incubation with the indicated concentrations of Telomestatin and Cisplatin, $n \ge 3$. Error bars show average \pm SEM.

Fig. S7. *DDX11* KO sensitivity is suppressed by 53BP1 depletion. HeLa Ctrl and *DDX11* KO cells were transfected with indicated siRNAs. Cell viability was determined using crystal violet staining after 5-6 days of incubation with the indicated concentrations of Olaparib and Cisplatin, n=3. Error bars show average \pm SEM. Representative Western blot showing the depletion of indicated proteins using siRNAs is shown.

Fig. S8 DDX11 is required for viability in *BRCA1* Shieldin depleted cells exposed to chemotherapeutic drugs. A and B, Cell viability assay of HeLa Ctrl and *DDX11* KO cells transfected with indicated siRNAs. Cells were treated with Olaparib and Cisplatin with the indicated drug concentrations for 6 days (n=3). Cell viability was determined by using crystal violet staining. Error bars show average \pm SEM.

<u> </u>	<u> </u>	
Name	Target	HeLa DDX11 KO
(+) JQ-1	BRD4	S
Abitrexate (Methotrexate)	DHFR	-
ABT-263 (Navitoclax)	Bcl-2	-
Adrucil (Fluorouracil)	DNA/RNA Synthesis	-
Alisertib	Aurora A	-
Alvocidib (Flavopiridol)	CDK	-
Aphidicolin	DNA polymerase	-
AT9283	Aurora, Abl, JAK2	-
Azacitidine	DNA methyltransferase	-
AZD1152-HQPA (Barasertib)	Aurora B	-
AZD1775	WEE1	-
AZD5363	AKT	S
AZD6738	ATR	S
AZD7762	CHK1/2	S
AZD8186	РІЗК	S
AZD8835	РІЗК	S
BAY-1895344	ATR	-
Bleomycin sulfate	DNA/RNA Synthesis	S
Bortezomib (Velcade)	Proteasome	-
Buparlisib (BKM-120)	PI3K	-
Carboplatin	DNA/RNA Synthesis	S
Carfilzomib	Proteasome	S
Carmofur	DNA/RNA Synthesis	-
Chlorambucil	DNA/RNA Synthesis	-
Cisplatin	DNA/RNA Synthesis	S
Cladribine	DNA/RNA Synthesis	-
Clofarabine	DNA/RNA Synthesis	-
Cytarabine	DNA/RNA Synthesis	S
Danusertib (PHA-739358)	Aurora kinase	-
Decitabine	DNA/RNA Synthesis	-
Dinaciclib	CDK	-
Doxorubicin (Adriamycin)	Topoisomerase	S
Epirubicin Hydrochloride	Topoisomerase	S
Etoposide (VP-16)	Topoisomerase	S
Floxuridine	DNA/RNA Synthesis	-
Fludarabine Phosphate (Fludara)	DNA/RNA Synthesis	-
Ftorafur (Tegafur)	DNA/RNA Synthesis	-
Gemcitabine HCl (Gemzar)	DNA/RNA Synthesis	-
Hesperadin	Aurora B	М
Iniparib (BSI-201)	PARP1	-
KU-55933	ATM, DNA-PK, PI3K	S

Supplementary Table 1. Summary of drug screen results for HeLa DDX11 knockout

Mitoxantrone Hydrochloride	Topoisomerase	S
NU7441	DNA-PK	-
Nutlin-3	p53/MDM2	-
Obatoclax mesylate	Bcl-2	-
Olaparib	PARP1/2	S
Omipalisib (GSK2126458)	PI3K	-
Paclitaxel (Taxol)	Microtubule Associated	-
Palbociclib	CDK4/6	-
Pemetrexed	DHFR, DNA/RNA Synthesis	-
Ralimetinib (LY2228820)	p38 MAPK	S
Rapamycin (Sirolimus)	mTOR	S
RITA	p53/MDM2	М
Seliciclib (Roscovitine)	CDK1/2/5	-
Selumetinib (AZD6244)	MEK1/2	-
Thioguanine	DNA methyltransferase	R
Topotecan HCl	Topoisomerase	-
Tozasertib (VX-680)	Aurora A	-
Trabectedin (Yondelis)	DNA synthesis	-
Trametinib	MEK1/2	S
Vinblastine	Microtubule Associated	-
Vistusertib (AZD2014)	mTOR	S
Vorinostat (SAHA)	HDAC	-
YM155 (Sepantronium bromide)	Survivin	-

Abbreviation:

Sensitization (S), Resistance (R), Moderate (M)

Data Set Table 2 available as Excel File.