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Supporting Information Text11

1. Architecture of Wireless Federated Learning12

Next, we introduce a practical scenario for the implementation of an federated learning (FL) algorithm, as shown in Fig. S1. In13

this figure, U devices and one central controller (base station) cooperatively participate in the FL training process. During the14

training process, each device first uses its collected data to train its local FL model. Then each device transmits it trained local15

FL parameters to the base station (BS). The BS will aggregate the received local FL parameters to generate the global FL16

model and broadcast it back to all devices. Since local FL parameters and the global FL model are transmitted over wireless17

links, the FL training performance will be affected by wireless network performance. In particular, the number of resource18

blocks (RBs) is limited and hence, the number of devices that can participate in FL is limited. Meanwhile, from Fig. S1,19

we can see that the devices in other service areas may use the same RBs to transmit data thus affecting the FL parameter20

transmission delay and FL convergence time.21

2. Universal FL Model Parameter Compression22

A. Rationale. Compression can be modeled as an encoding-decoding system. To faithfully represent the FL setup, we design23

our quantization strategy in light of the following requirements and assumptions:24

A1 All devices share the same encoding function. This requirement significantly simplifies FL implementation.25

A2 No a-priori knowledge or distribution of the model updates is assumed.26

A3 The devices and the central controller (CC) share a source of common randomness. This is achieved by, e.g., letting the27

CC share with each device a random seed along with the weights. Once a different seed is conveyed to each device, it can28

be used to obtain a dedicated source of common randomness shared by the CC and each of the devices for the entire FL29

procedure. These seeds can be conveyed along with the weight.30

Requirement A2 gives rise to the need for a universal quantization approach, namely, a scheme which operates reliably31

regardless of the distribution of the FL parameter updates and without its prior knowledge.32

B. Model Compression Algorithm. Here, we present the encoding and decoding functions. Following requirement A1, we utilize33

universal vector quantization, i.e., a quantization scheme which maps each set of continuous-amplitude values into a discrete34

representation in a manner which is ignorant of the underlying distribution. The source of common randomness assumed in A335

implies that the CC and the devices can generate the same realizations of a dither signal. We thus use a compression based on36

dithered vector quantization, and particularly, on lattice quantization, detailed in the following.37

Let L be a fixed positive integer, referred to henceforth as the lattice dimension, and let G be a non-singular L× L matrix,38

which denotes the lattice generator matrix. For simplicity, we assume that M , m
L

is an integer, where m is the number of39

elements in the weight matrices of the FL parameters used to represent an FL model, although the scheme can also be applied40

when this does not hold by replacing M with dMe. Next, we use L to denote the lattice, which is the set of points in RL that41

can be written as an integer linear combination of the columns of G, i.e.,42

L , {x = Gl : l ∈ ZL}. [1]43

A lattice quantizer QL(·) maps each x ∈ RL to its nearest lattice point, i.e., QL (x) = lx where lx ∈ L if ‖x− lx‖ ≤ ‖x− l‖44

for every l ∈ L. Finally, let P0 be the basic lattice cell, i.e., the set of points in RL which are closer to 0 than to any other45

lattice point:46

P0 , {x ∈ RL : ‖x‖ < ‖x− p‖, ∀p ∈ L/{0}}. [2]47

For example, when G = ∆ · IL for some ∆ > 0, then L is the square lattice, for which P0 is the set of vectors x ∈ RL whose48

`∞ norm is not larger than ∆
2 . For this setting, QL(·) implements entry-wise scalar uniform quantization with spacing ∆.49

Define the model update of the kth device at iteration t+ 1 as h(k)
t+1 , o

τ
k,t+1 − bt. Using the above definitions in lattice50

quantization, the encoding and decoding procedures, which are based on subtractive dithered lattice quantization, consist of51

the following steps:52

Encoder: The encoding function includes the following steps:53

E1 Normalize and partition: The kth device scales h(k)
t+1 by ζ‖h(k)

t+1‖ for some ζ > 0, and divides the result into M54

distinct L× 1 vectors, denoted {h̄(k)
i }Mi=1. The scalar quantity ζ‖h(k)

t+1‖ is quantized separately from {h̄(k)
i }Mi=1 using some55

fine-resolution quantizer.56

E2 Dithering: The encoder utilizes the source of common randomness, e.g., a shared seed, to generate the set of L × 157

dither vectors {z(k)
i }

M
i=1, which are randomized in an i.i.d. fashion, independently of h(k)

t+1, from a uniform distribution58

over P0.59

E3 Quantization: The vectors {h̄(k)
i }Mi=1 are discretized by adding the dither vectors and applying lattice quantization, i.e.,60

by computing {QL(h̄(k)
i + z

(k)
i )}.61
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Fig. S1. The architecture of an FL algorithm that is implemented over a wireless network that consists of multiple devices and one base station.
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E4 Entropy coding: The discrete values {QL(h̄(k)
i + z

(k)
i )} are encoded into a digital codeword u(k)

t+1 in a lossless manner.62

In order to utilize entropy coding in step E4, the discretized {QL(h̄(k)
i + z

(k)
i )} must take values on a finite set. This is63

achieved by the normalization in Step E1, which guarantees that {h̄(k)
i }Mi=1 all reside inside the L-dimensional ball with radius64

ζ−1, in which the number of lattice points is not larger than πL/2

ζLΓ(1+L/2) det(G) (1, Ch. 2), where Γ(·) is the Gamma function.65

The overhead in accurately quantizing the single scalar quantity ζ‖h(k)‖ is typically negligible compared to the number of bits66

required to convey the set of vectors {h̄(k)
i }Mi=1, hardly affecting the overall quantization rate.67

Decoder: The decoding mapping implements the following:68

D1 Entropy decoding: The CC first decodes each digital codeword u(k)
t+1 into the discrete value {QL(h̄(k)

i + z
(k)
i )}. Since69

the encoding is carried out using a lossless source code, the discrete values are recovered without any errors.70

D2 Dither subtraction: Using the source of common randomness, the CC generates the dither vectors {z(k)
i }, which can71

be carried out rapidly and at low complexity using random number generators as the dither vectors obey a uniform72

distribution. The CC then subtracts the corresponding vector from each lattice point, i.e., compute {QL(h̄(k)
i +z(k)

i )−z(k)
i }.73

An illustration of the subtractive dithered lattice quantization procedure is illustrated in Fig. S2.74

D3 Collecting and scaling: The values {QL(h(k)
i + z(k)

i )− z(k)
i } are collected into an m× 1 vector ĥ(k)

t+1 using the inverse75

operation of the partitioning and normalization in Step E1.76

D4 Model recovery: The recovered matrices are combined into an updated model. Namely,77

bt+1 = 1∑
k
Nk

∑
k

Nkĥ
(k)
t+1 + bt. [3]78

The usage of subtractive dithered lattice quantization in Steps E2-E3 and D2 allow obtaining a digital representation which79

is relatively close to the true quantity, as illustrated in Fig. S2, without relying on prior knowledge of its distribution. The joint80

decoding aspect of the proposed scheme is introduced in the final model recovery Step D4. The remaining encoding-decoding81

procedure, i.e., Steps E1-D3 is carried out independently for each device.82

3. Optimization of Resource Block Allocation83

Next, we explain how to solve the RB allocation optimization problem. We first define the data rate of device i transmitting its84

compressed local FL model to the CC as cU
i

(
χi,t
)

=
R∑
r=1

χri,tBlog2
(
1+ Phi

Ir+BN0

)
where χri,t ∈ {0, 1} is the RB allocation index85

with χri,t = 1 implying that RB r is allocated to device i at iteration t, otherwise, we have χri,t = 0, and χi,t =
[
χ1
i,t, . . . , χ

R
i,t

]
.86

Then, the transmission delay at each FL iteration is given by max
i∈Upt

Z

cU
i (χi,t) , where Upt is the subset of devices that transmit87

their compressed local FL model parameters to the CC at iteration t and Z is the data size of FL parameters. Given these88

definitions, we rewrite the optimization problem as follows:89

min
χt

max
i∈Upt

Z

cU
i

(
χi,t
) [4]90

s. t. χri,t ∈ {0, 1} , ∀i ∈ Upt , r ∈ R, [4a]∑
i∈Upt

χri,t = 1, ∀r ∈ R, [4b]

R∑
r=1

χri,t = 1,∀i ∈ Upt , [4c]

where R is the set of RBs that can be allocated to the devices and χt =
[
χ1,t, . . . ,χ|Upt |,t

]
with |Upt | being the number of91

devices in Upt . We assume that a variable q exists such that Z

cU
i (χi,t) ≤ q,∀i ∈ Upt . Hence, we can rewrite the problem in92

Eq. (4) as93

min
χt

q [5]94

s. t. χri,t ∈ {0, 1} , ∀i ∈ Upt , r ∈ R, [5a]∑
i∈Upt

χri,t = 1, ∀r ∈ R, [5b]

R∑
r=1

χri,t = 1,∀i ∈ Upt , [5c]

q ≥ Z

cU
i (χi,t) . [5d]
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Fig. S2. Subtractive dithered lattice quantization illustration.
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Here, q ≥ Z

cU
i (χi,t) is nonconvex. Therefore, we first need to transform it to a convex equation. We assume that the data rate95

of device i using RB r to transmit local FL model parameters is cU
ir,t = Blog2

(
1+ Phi

Ir+BN0

)
where Ir is the interference over RB96

r. Then, we have cU
i

(
χi,t
)

=
R∑
r=1

χri,tc
U
ir,t. In consequence, the problem in Eq. (5) can be expressed by97

min
χt

q [6]98

s. t. χri,t ∈ {0, 1} , ∀i ∈ Upt , r ∈ R, [6a]∑
i∈Upt

χri,t = 1, ∀r ∈ R, [6b]

R∑
r=1

χri,t = 1,∀i ∈ Upt , [6c]

R∑
r=1

χri,tc
U
ir,t ≥ Z

q
. [6d]

The problem in Eq. (6) is an integer linear programming problem, which can be solved by using Matlab toolbox. In this paper,99

we use Matlab intlinprog function to solve the problem in Eq. (6).100

4. Convergence Analysis101

Here, we can analyze the convergence, proving Theorem 1. Our proof follows a similar outline to that used in (2, 3), with the102

introduction of additional arguments for handling the quantization constraints. The unique characteristics of the quantization103

error which arise from the dithered strategy allow us to rigorously incorporate its contribution into the overall flow of the proof.104

As a preliminary step, we first recall the assumptions in light of which our analysis is carried out:105

AS1 The expected squared `2 norm of the random vector ∇f ik
(
o
)
, representing the stochastic gradient evaluated at b, is106

bounded by some ξ2 > 0 for all o ∈ Rm.107

AS2 The local objective functions {fk(·)} are all ρs-smooth, namely, for all v1, v2 ∈ Rm it holds that

fk(v1)− fk(v2) ≤ (v1 − v2)T∇fk(v2) + 1
2ρs‖v1 − v2‖2.

AS3 The local objective functions {fk(·)} are all ρc-strongly convex, namely, for all v1, v2 ∈ Rm it holds that

fk(v1)− fk(v2) ≥ (v1 − v2)T∇fk(v2) + 1
2ρc‖v1 − v2‖2.

AS4 The probabilistic device selection method selects the set Upt of devices, such that |Upt | = R and Upt is uniformly108

distributed over all R-sized subsets of U .109

A. Recursive Bound on Weights Error. From (4), it follows that the effect of substractive dithered quantization can be modeled
as additive noise, independent of the quantized value, whose distribution depends only on the properties of the lattice. In
particular, it holds that the distortion induced in quantizing the model update h(k)

t , denoted ε(k)
t , is an m × 1 zero-mean

additive noise vector independent of h(k)
t+1. Consequently, by defining the sequence e(k)

t such that e(k)
t = ε

(k)
t if t is an integer

multiple of τ and e(k)
t = 0 otherwise, the instantaneous weights at the kth device, defined as õ(k)

t , ot−bt/τcτ
k,bt/τcτ , can be written as

õ
(k)
t+1 =


õ

(k)
t −λ̃t∇f

i
(k)
t
k

(
õ

(k)
t )
)
+e(k)

t+1 t+1 /∈Tτ ,
U∑

k′=1
αk′

(̃
o

(k′)
t −λ̃t∇f

i
(k′)
t
k

(
õ

(k′)
t

)
+e(k′)

t+1

)
t+1∈Tτ ,

[7]

where λ̃t , λ
t−bt/τcτ
bt/τcτ , Tτ is the set of integer multiples of τ , and f ik is the objective evaluated at the ith sample of the kth110

device.111

The equivalent model update representation in Eq. (7) allows us to model the effect of subtractive dithered quantization112

on the overall FL procedure as additional noise corrupting the computation of the stochastic gradients. Building upon this113

representation, we now follow the strategy proposed in (2) and adapted to heterogeneous data in (3). This is achieved by114

defining a virtual sequence {vt} from {õ(k)
t } which can be shown to behave almost like mini-batch SGD with batch size τ ,115

while being within a bounded distance of the FL model weights {õ(k)
t }, by properly setting the step size λ̃t. In particular, we116

define the virtual sequence {vt} via117

v̄t ,

{∑U

k=1 αkõ
(k)
t t /∈ Tτ ,∑

k∈Upt/τ

αkõ
(k)
t t ∈ Tτ ,

[8]118
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which coincides with õ(k)
t when t is an integer multiple of τ . Also, let vt ,

∑U

k=1 αkõ
(k)
t be the virtual sequence representing

the averaged model over all devices (both participating and non-participating) at each time instance. Further define the
averaged noisy stochastic gradients and the averaged full gradients as

g̃t ,
U∑
k=1

αk

(
∇f i

(k)
t
k

(
õ

(k)
t

)
− 1
λ̃t
e

(k)
t+1

)
, [9a]

gt ,
U∑
k=1

αk∇fk
(
õ

(k)
t

)
, [9b]

respectively. Note that since the quantization error is zero-mean and each mini-batch consists of a single sample, whose119

indexes {i(k)
t } are independent and uniformly distributed, it holds that E{g̃t} = gt. Additionally, the virtual sequence satisfies120

vt+1 = vt − λ̃tg̃t. We use the following lemmas, proved in (3, Appendix B.4).121

Lemma 1 Under assumption AS4, v̄t is an unbiased estimation of vt, i.e. EUpt/τ
{v̄t} = vt.122

Lemma 2 The expected difference between vt and v̄t is bounded by123

EUpt/τ

{
‖v̄t − vt‖2

}
≤ 4(U −R)

(U − 1)Rη
2
t τ

2ξ2. [10]124

We next use these lemmas to bound the distance between the FL model parameters and the optimal one, as

‖v̄t+1 − b∗‖2 = ‖v̄t+1 − vt+1 + vt+1 − b∗‖2

= ‖v̄t+1 − vt+1‖2 + ‖vt+1 − b∗‖2 + 2 〈v̄t+1 − vt+1, vt+1 − b∗〉 .︸ ︷︷ ︸
A

[11]

The term EUpt/τ
{A} = 0 since v̄t is unbiased by Lemma 1. Further, using Lemma 2, it follows from Eq. (11) that125

E{‖v̄t+1 − b∗‖2} ≤ E
{
‖vt+1−b∗‖2

}
+ 4(U −R)

(U − 1)Rη
2
t τ

2ξ2. [12]126

The resulting term which has to be bounded in Eq. (12) is thus equivalent to that used in (3), and as a result, by assumptions
AS2-AS3, it follows from (3, Lemma 1) that if λ̃t ≤ 1

4ρs then

E
{
‖vt+1−b∗‖2

}
≤ (1−λ̃tρc)E

{
‖vt−b∗‖2

}
+6ρsλ̃2

tψ+λ̃2
tE
{
‖g̃t−gt‖

2}+2E

{
U∑
k=1

αk

∥∥∥vt−õ(k)
t

∥∥∥2
}
. [13]

Eq. (13) bounds the expected distance between the virtual sequence {vt} and the optimal weights b∗ in a recursive manner.127

We further bound the summands in Eq. (13), using the following lemmas:128

Lemma 3 If the step size λ̃t is non-increasing and satisfies λ̃t ≤ 2λ̃t+τ for each t ≥ 0, then, when assumption AS1 is satisfied,129

it holds that130

λ̃2
tE
{
‖g̃t − gt‖

2} ≤ (1 + 4Mζ2σ̄2
Lτ

2) λ̃2
t ξ

2
U∑
k=1

α2
k. [14]131

Lemma 4 If the step size λ̃t is non-increasing and satisfies λ̃t ≤ 2λ̃t+τ for each t ≥ 0, then, when assumption AS1 is satisfied,132

it holds that133

E

{
U∑
k=1

αk

∥∥∥vt − õ(k)
t

∥∥∥2
}
≤ 4(τ − 1)2λ̃2

t ξ
2. [15]134

Next, we define δt , E
{
‖v̄t − b∗‖2

}
. When t ∈ Tτ , the term δt represents the `2 norm of the error in the weights of the135

global model. Using Lemmas 3-4, while substituting Eq. (15) and Eq. (14) into Eq. (13) and Eq. (12), we obtain the following136

recursive relationship on the weights error:137

δt+1 ≤ (1− λ̃tρc)δt + λ̃2
t$, [16]138

where

$ ,
(
1 + 4Mζ2σ̄2

Lτ
2) ξ2

U∑
k=1

α2
k + 6ρsψ + 8(τ − 1)2ξ2 + 4(U −R)

(U − 1)Rτ
2ξ2.

The relationship in Eq. (16) is used in the sequel to prove the FL convergence bound stated in Theorem 1.139
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B. FL Convergence Bound. Here, we prove Theorem 1 based on the recursive relationship in Eq. (16). This is achieved by140

properly setting the step-size and the FL systems parameters in Eq. (16) to bound δt = E
{
‖v̄t − b∗‖2

}
, and combining the141

resulting bound with the strong convexity of the objective AS3 to prove the theorem.142

In particular, we set the step size λ̃t to take the form λ̃t = β
t+γ for some β > 0 and γ ≥ max

(
4ρsβ, τ

)
, for which λ̃t ≤ 1

4ρs143

and λ̃t ≤ 2λ̃t+τ , implying that Eq. (13) and Eq. (15) hold.144

Under such settings, we show that there exists a finite ν such that δt ≤ ν
t+γ for all integer l ≥ 0. We prove this by induction,

noting that setting ν ≥ γδ0 guarantees that it holds for t = 0. Consequently, we next show that if δt ≤ ν
t+γ , then δt+1 ≤ ν

t+1+γ .
It follows from Eq. (16) that

δt+1 ≤
(

1− β

t+ γ
ρc

)
ν

t+ γ
+
(

β

t+ γ

)2

b

= 1
t+ τ

((
1− β

t+ γ
ρc

)
ν + β2

t+ γ
b

)
. [17]

Consequently, δt+1 ≤ ν
t+1+γ holds when

1
t+ τ

((
1− β

t+ γ
ρc

)
ν + β2

t+ γ
$

)
≤ ν

t+ 1 + γ
,

or, equivalently,145 (
1− β

t+ γ
ρc

)
ν + β2

t+ γ
$ ≤ t+ γ

t+ 1 + γ
ν. [18]146

By setting ν ≥ 1+β2$
βρc

, the left hand side of Eq. (18) satisfies(
1− β

t+γ ρc
)
ν+ β2

t+γ$= t−1+γ
t+γ ν+

(
1−βρc
t+γ ν+ β2

t+γ$
)

= t− 1 + γ

t+ γ
ν+ 1

t+ γ

(
(1− βρc) ν + β2$

)
(a)
≤ t− 1 + γ

t+ γ
ν, [19]

where (a) holds since ν ≥ 1+β2$
βρc

. As the right hand side of Eq. (19) is not larger than that of Eq. (18), it follows that Eq. (18)
holds for the current setting, which in turn proves that δt+1 ≤ ν

t+1+γ . Finally, the smoothness of the objective AS2 implies that

E{f(bt)} − f(b∗) = E{f(v̄tτ )} − f(b∗)

≤ ρs
2 δtτ ≤

ρsν

2(tτ + γ) , [20]

which, in light of the above setting, holds for ν ≥ max
( 1+β2$

βρc
, γδ0

)
, γ ≥ max(τ, 4βρs), and β > 0. In particular, setting147

β = τ
ρc

results in γ ≥ τ max(1, 4ρs/ρc) and ν ≥ max
(
ρ2
c+τ2$
τρc

, γδ0
)
, which, when substituted into Eq. (20), proves the theorem.148

�149

B.1. Deferred Proofs. Here we detail the proofs of the intermediate lemmas used for obtaining the recursion Eq. (16).150

Proof of Lemma 3 To prove Eq. (14), we note that since the quantization noise and the stochastic gradients are mutually
independent, it follows from the definition of the gradient vectors in Eq. (9) that

λ̃2
tE
{
‖g̃t − gt‖

2} =
U∑
k=1

α2
kE
{∥∥∥e(k)

t+1

∥∥∥2
}

+ λ̃2
t

U∑
k=1

α2
kE

{∥∥∥∥∇f i(k)
t
k

(
õ

(k)
t

)
−∇fk

(
õ

(k)
t

)∥∥∥∥2
}

(a)
≤

U∑
k=1

α2
kE
{∥∥∥e(k)

t+1

∥∥∥2
}

+ λ̃2
t ξ

2
U∑
k=1

α2
k, [21]

where (a) holds since the uniform distribution of the random index ik implies that the expected value of the stochastic gradient is

the full gradient, i.e., E
{
∇f i

(k)
t
k

(
b
)}

= ∇fk(b), and consequently, E
{∥∥∇f i(k)

t
k

(
õ

(k)
t

)
−∇fk

(
õ

(k)
t

)∥∥2} ≤ E
{∥∥∇f i(k)

t
k

(
õ

(k)
t

)∥∥2} ≤ ξ2
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by assumption AS1. Furthermore, the definition of e(k)
t+1 implies that E

{∥∥e(k)
t+1

∥∥2} = 0 for t+ 1 /∈ T , while for t+ 1 ∈ T it
holds that E

{∥∥e(k)
t+1

∥∥2} = E
{∥∥ε(k)

t+1

∥∥2} = Mσ2
L. Now, the quantization error satisfies

E
{∥∥e(k)

t+1

∥∥2} ≤Mζ2σ̄2
LE

{∥∥∥∥∥
t+1∑

t′=t+1−τ

λ̃t′∇f
i
(k)
t′
k

(
õ

(k)
t′

)∥∥∥∥∥
2}

(a)
≤ Mζ2σ̄2

Lτ

t+1∑
t′=t+1−τ

λ̃2
t′E

{∥∥∥∥∇f i(k)
t′
k

(
õ

(k)
t′

)∥∥∥∥2
}

(b)
≤ Mζ2σ̄2

Lτ
2λ̃2
t+1−τξ

2
(c)
≤ 4Mζ2σ̄2

Lτ
2λ̃2
t ξ

2, [22]

where in (a) we used the inequality ‖
∑′

t
= t+ 1− τ t+1rt‖2 ≤ τ

∑t+1
t′=t+1−τ ‖rt‖

2, which holds for any multivariate sequence151

{rt}; (b) is obtained from assumption AS1; and (c) follows since λ̃t+1−τ ≤ 2λ̃t+1 ≤ 2λ̃t. Substituting Eq. (22) into Eq. (21)152

proves the lemma. �153

Proof of Lemma 4 Note that for t0 = bt/τcτ , which is an integer multiple of τ , it holds that vt0 = õ
(k)
t0 . Since Eq. (15) trivially

holds for t = t0, we henceforth focus on the case where t > t0. We now write

E

{
U∑
k=1

αk

∥∥∥õ(k)
t −vt

∥∥∥2
}

= E

{
U∑
k=1

αk

∥∥∥õ(k)
t −õ

(k)
t0 −(vt−vt0 )

∥∥∥2
}

(a)
≤ E

{
U∑
k=1

αk

∥∥∥õ(k)
t −õ

(k)
t0

∥∥∥2
}

=
U∑
k=1

αkE
{∥∥∥õ(k)

t −õ
(k)
t0

∥∥∥2
}
, [23]

where in (a) we used the fact that for every set {r(k)}, one can define a random vector r such that Pr(r = r(k)) = αk, and thus
U∑
k=1

αk

∥∥∥r(k) −
U∑
l=1

αlr
(l)
∥∥∥2

= E{‖r − E{r}‖2}

≤ E{‖r‖2} =
U∑
k=1

αk‖r(k)‖2.

Next, we recall that et′ = 0 for each t′ = t0 + 1, . . . , t. Consequently, similarly to the derivation in Eq. (22),

E
{∥∥∥õ(k)

t − õ
(k)
t0

∥∥∥2
}

= E

{∥∥∥∥∥
t−1∑
t′=t0

λ̃t′∇f
i
(k)
t′
k

(
õ

(k)
t′

)∥∥∥∥∥
2}

(a)
≤ (τ − 1)

t−1∑
t′=t0

λ̃2
t′E

{∥∥∥∥∇f i(k)
t′
k

(
õ

(k)
t′

)∥∥∥∥2
}

(b)
≤ (τ − 1)2λ̃2

t0ξ
2

(c)
≤ 4(τ − 1)2λ̃2

t ξ
2, [24]

where in (a) we used the inequality ‖
∑t−1

t′=t0
rt‖2 ≤ (t − 1 − t0)

∑t−1
t′=t0

‖rt‖2 ≤ (τ − 1)
∑t−1

t′=t0
‖rt‖2, which holds for any154

multivariate sequence {rt}; (b) is obtained from assumption AS1; and (c) follows since λ̃t0 ≤ λ̃t−τ ≤ 2λ̃t. Substituting Eq. (24)155

into Eq. (23) proves the lemma. �156

5. Handwritten Digit Identification157

Fig. S3 shows the architecture of the FL model used for handwritten digit identification. From Fig. S3, we can see that the FL158

model is a shallow fully-connected neural network that consists of 50 neurons. Since the size of one digit image is 28× 28, the159

input size is 784. The purpose of training FL is to identify 10 class handwritten digits and hence, the output size is 10. The160

activation functions in the hidden and output layers are trasig and softmax functions.161

6. Object Recognition in Images162

Fig. S4 shows the architecture of the FL model used for object recognition in images. The FL model is a convolutional neural163

network (CNN) that consists of 16 layers. In this figure, Conv2D, MaxPooling, AvgPooling, and FullyConnected are short for164

2D convolutional layer, maximum pooling layer, average pooling layer, and fully connected layer. The stride of each pooling or165

convolutional layer is 1 unless specified otherwise.166
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Input
(1x784)

…

Hidden layer with 
tansig activation

(50 neurons)

…

Output with 
softmax activation 

(10 neurons)

Digit 0

Digit 1

Digit 9

Fig. S3. The architecture of the FL model used for handwritten digit identification.
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Input
(32x32x3)

Conv2D_1
kernel=5x5
padding=2

NumFilters=32
+ReLU

MaxPooling
kernel=3x3
stride=2
+ReLU

Conv2D_2
kernel=5x5
padding=2

NumFilters=32
+ReLU

AvgPooling_1
kernel=3x3
stride=2

Conv2D_3
kernel=5x5
padding=2

NumFilters=64
+ReLU

AvgPooling_2
kernel=3x3
stride=2

FullyConnected_1
outputsize=64

+ReLU

FullyConnected_2
outputsize=10
+Softmax

+classoutput

Fig. S4. The architecture of the FL model used for object recognition in images.
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7. Finger Movement Detection167

Fig. S5 shows the raw data collected from a hand close finger movement within five seconds. From Fig. S5, we can see that the168

raw data consists of 20000 signal samples. Hence, it is impossible to directly use the raw data as an input vector to train the169

FL model. A windowing method is used to split the raw data. We assume that the window size is 500 and the interval between170

two windows is 50. Therefore, 20000 signal samples can be divided into 391 windows. Fig. S6 shows the hand close finger171

movement data processed by the windowing method. From Fig. S6, we can see that the signal samples at each window are172

different which increases the complexity of training FL models. Fig. S7 shows the architecture of the FL model used for finger173

movement detection. The FL model is a CNN that consists of 19 layers. We consider the signal data in one window as an input174

vector of the CNN and hence, the size of a CNN input is 500× 8. Since a CNN is used to detect 15 class finger movement, the175

size of a CNN output is 15× 1. In Fig. S7, BatchNormalization is short for batch normalization layer. Meanwhile, the stride is176

a vector [2, 1] with 2 being the vertical stride and 1 being the horizontal stride.177
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Fig. S5. Raw data collected from a close finger movement.
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Fig. S6. The close finger movement data processed by the windowing method.
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Input
(500x8)

Conv2D_1
kernel=2x4
padding=2

NumFilters=50
+BatchNormalization

+ReLU

Conv2D_2
kernel=10x2
padding=2

NumFilters=100
+BatchNormalization

+ReLU

Conv2D_3
kernel=10x2
padding=2

NumFilters=100
+BatchNormalization

+ReLU

MaxPooling_1
kernel=2x2
stride=[2,1]

MaxPooling_2
kernel=2x2
stride=[2,1]

Conv2D_4
kernel=10x1
padding=2

NumFilters=50
+ReLU

MaxPooling_3
kernel=2x1
stride=[2,1]

FullyConnected_1
outputsize=15

FullyConnected_2
outputsize=15
+Softmax

+classoutput

Fig. S7. The architecture of the FL model used for finger movement detection.
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