## Supplementary data for the article

## Targeting Superoxide dismutase confers enhanced Reactive Oxygen Species mediated eradication of Polymyxin B induced *Acinetobacter baumannii* persisters

Vineet Dubey,<sup>a</sup> Rinki Gupta,<sup>a</sup> Ranjana Pathania<sup>a\*</sup>

<sup>a</sup> Department of Biotechnology, Indian Institute of Technology, Roorkee-247667, India

\* Correspondences should be addressed to: (e-mail: ranjana.pathania@bt.iitr.ac.in)

Number of figures: 7 Number of tables: 2

## **Table of Content**

Table S1: MICs (in µg/ml) of different antibiotics against clinical isolates of A. baumannii.

**Figure S1:** Survival rate percent of *A. baumannii* AB5075, RPTC-1 and RPCT-13 against meropenem, rifampicin and tigecycline.

**Figure S2:** (A). EtBr accumulation assay of wild type *A. baumannii* AB5075 verse polymyxin B induced persister. (B). qRT-PCR analysis RND efflux genes expression in WT verse polymyxin B persister.

**Figure S3:** Schematic representation of dual fluorescent module and verification of knock-in strain.

**Figure S4:** Tolerance assay to assess the log fold reduction in CFU/ml of polymyxin B and rifampicin treatment in different clinical strains.

**Table S2:** List of primers used in this study.

**Figure S5:** Treatment of tigecycline leads to lower production of ROS as compared to rifampicin treatment in Polymyxin B induced *A. baumannii* persister.

Figure S6: Polymyxin B treatment does not eradicate rifampicin persisters of A. baumannii.

**Figure S7:** Fluorescence microscopy to assess DNA damage in cells treated with different antibiotics both alone and in combination. Scale bar for all images are  $100 \mu m$ .

|         | MIC (µg/ml) |             |            |          |
|---------|-------------|-------------|------------|----------|
| Strains | Meropenem   | Tigecycline | Rifampicin | Amikacin |
| RPTC1   | 32          | 0.25        | 1          | 256      |
| RPTC2   | 64          | 0.25        | 16         | 512      |
| RPTC3   | 32          | 0.25        | 1          | 512      |
| RPTC5   | 32          | 0.25        | 16         | 512      |
| RPTC6   | 32          | 0.25        | 0.5        | 512      |
| RPTC7   | 32          | 0.25        | 0.5        | 512      |
| RPTC9   | 64          | 0.25        | 2          | 512      |
| RPTC10  | 64          | 0.5         | 2          | 128      |
| RPTC11  | 32          | 0.25        | 2          | 32       |
| RPTC12  | 128         | 0.25        | 16         | 512      |
| RPTC14  | 32          | 0.5         | 1          | 256      |
| RPTC15  | 8           | 0.125       | 0.25       | 256      |
| RPTC16  | 8           | 0.25        | 0.5        | 256      |
| RPTC17  | 16          | 0.5         | 0.5        | 128      |
| RPTC19  | 32          | 0.25        | 0.5        | 64       |
| RPTC20  | 32          | 0.25        | 0.5        | 64       |
| RPTC21  | 64          | 0.25        | 16         | 512      |
| RPTC22  | 32          | 0.5         | 2          | 32       |
| RPTC23  | 128         | 0.5         | 2          | 512      |
| RPTC24  | 128         | 0.5         | 16         | 512      |
| AB5075  | 4           | 0.5         | 1          | 256      |

Table S1: MICs (in µg/ml) of different antibiotics against clinical isolates of A. baumannii.



**Figure S1:** Survival rate percent of *A. baumannii* AB5075, RPTC-1 and AYE against meropenem, tigecycline and rifampicin.



**Figure S2:** (A). EtBr accumulation assay of wild type *A. baumannii* AB5075 verses polymyxin B induced persister. (B). qRT-PCR analysis RND efflux genes expression in WT verses polymyxin B persister.



**Figure S3:** Schematic representation of dual fluorescent module and verification of knock-in strain. P indicates strong constitutive promoter.



**Figure S4:** Tolerance assay to assess the log fold reduction in CFU/ml of polymyxin B and rifampicin treatment in different clinical strains.

| Table S2. Primers used in this study |                          |                                                                               |  |  |
|--------------------------------------|--------------------------|-------------------------------------------------------------------------------|--|--|
| Gene                                 | Direction Sequence 5'→3' |                                                                               |  |  |
| FPUSCysI500SalI                      | Forward                  | AAAGTCGACGAAAAAACGTATTGGTACAA                                                 |  |  |
| RPUSCysI500BamHI                     | Reverse                  | AAAGGATCCACATGGCGTATGGCTAGTA                                                  |  |  |
| FPDSCysI500KpnI                      | Forward                  | AAAGGTACCATACAGCTCTACCTGTGCTT                                                 |  |  |
| RPDSCysI500EcoRI                     | Reverse                  | AAAGAATTCAGCCTTTTCACTTAGAAGCTA                                                |  |  |
| Up150CysIFP                          | Forward                  | AAGCCCGGATTTATCTGGGCTTTTTTTATG                                                |  |  |
| Ds150CysIRP                          | Reverse                  | TACAAAGCTTTTTTACCTTGAATGTTAGCC                                                |  |  |
| Fpsfbamh1                            | Forward                  | AAAGGATCCAATTGACGGCTAGCTCAGTCCTAGGTACAGTG<br>CTAGCACCCGTTTTTTTGGGCTAGAAATAATT |  |  |
| Rpsfxma1                             | Reverse                  | AAACCCGGGTTACTTGTACAGCTCGTCCATGCCGTG                                          |  |  |
| Fptdtxma1                            | Forward                  | AAACCCGGGACCCGTTTTTTTGGGCTAGAAATA                                             |  |  |
| Fptdtterknp1                         | Reverse                  | AAAGGTACCATTTGTCCTACTCAGGAGAGC                                                |  |  |
| FaraCpBADRBS                         | Forward                  | AAAGGATCCGTTACCAATTATGACAACTTGACGGCT                                          |  |  |
| RaraCpBADRBS                         | Reverse                  | AAACCCGGGTGTATATCTCCTTCTTAAAGTTAAAC                                           |  |  |
| fpSodBComp                           | Forward                  | AAACCCGGGTCGAGCTTATTTCTCTACACCAGCTGG                                          |  |  |
| rpSodBComp                           | Reverse                  | GGGGGTACCAGGAACCTGATTTCCAAAAAAT                                               |  |  |
| 16S                                  | Forward                  | TGTGAAATCCCCGAGCTTAAC                                                         |  |  |
| 16S                                  | Reverse                  | TATTAGGCCAGATGGCTGC                                                           |  |  |
| sodB                                 | Forward                  | GTTGTTGCAGCAGCAGTAAAT                                                         |  |  |
| sodB                                 | Reverse                  | GGAACAGCATGAAGCCAAAC                                                          |  |  |
| sodC                                 | Forward                  | CGTACCATGATGTGGGGGCTT                                                         |  |  |
| sodC                                 | Reverse                  | GGGCTTAATCATTACCCCTGCT                                                        |  |  |
| katE                                 | Forward                  | TCCTTCATCCGCCACTAAAC                                                          |  |  |
| katE                                 | Reverse                  | GGTAGCTCGCCATTACTTACTC                                                        |  |  |
| katG                                 | Forward                  | GCTCTAATCCGCTCGGTAAAG                                                         |  |  |
| katG                                 | Reverse                  | CCAGTCTTGGGAATCGGTTAAT                                                        |  |  |
| dnaK                                 | Forward                  | GATGCTGGTCTTTCGACTTCT                                                         |  |  |
| dnaK                                 | Reverse                  | CGTCTTTACGTGGTTCTCTACC                                                        |  |  |
| recA                                 | Forward                  | CCTAGTTGGTTAGTACCTTTACCGT                                                     |  |  |
| recA                                 | Reverse                  | TCTACGCTTCAGTTCGTTTAGA                                                        |  |  |
| groEL                                | Forward                  | CCAACCGAACAGGCTTATGT                                                          |  |  |
| groEL                                | Reverse                  | AGCACCTTGCCGTAGAAGAA                                                          |  |  |
| aceA                                 | Forward                  | TACCGCCACGGATTTCTTTAC                                                         |  |  |
| aceA                                 | Reverse                  | CACACTGCTGCTCTTTCTACTC                                                        |  |  |
| adeB                                 | Forward                  | CCGCATCACCTTGAACATAAAC                                                        |  |  |
| adeB                                 | Reverse                  | GGTGCTATGGGCGTTAGTATT                                                         |  |  |
| adeJ                                 | Forward                  | TCCATTGCTTTCATGGCATCACCAGA                                                    |  |  |
| adeJ                                 | Reverse                  | AGCCGTATGATGCCTGAAGACTTA                                                      |  |  |
| adeG                                 | Forward                  | CCGGTCGTTTAGAAGCAATG                                                          |  |  |
| adeG                                 | Reverse                  | TTGCGGTATATGTTACCTGTGC                                                        |  |  |
| tolC                                 | Forward                  | CTCGCTACTGCATCTATCTGTG                                                        |  |  |
| tolC                                 | Reverse                  | GCTCGATGAGTGGTTAGGATTAG                                                       |  |  |
| umuC                                 | Forward                  | CTTTATATAAAACATCAATTTGCTGCA                                                   |  |  |
| umuC                                 | Reverse                  | TCACCTTAACCGGGCACAT                                                           |  |  |
| umuD                                 | Forward                  | CAGTGAAATCATTATCGATAAGTGC                                                     |  |  |
| umuD                                 | Reverse                  | GCAAGCACTCGATTTAAATGAA                                                        |  |  |



**Figure S5:** Treatment of tigecycline leads to lower production of ROS as compared to rifampicin treatment in Polymyxin B induced *A. baumannii* persister.



Figure S6: Polymyxin B treatment does not eradicate rifampicin persister of A. baumannii.



Figure S7: Fluorescence microscopy to assess DNA damage in cells treated with different antibiotics both alone and in combination. Scale bar for all images are  $100 \ \mu m$