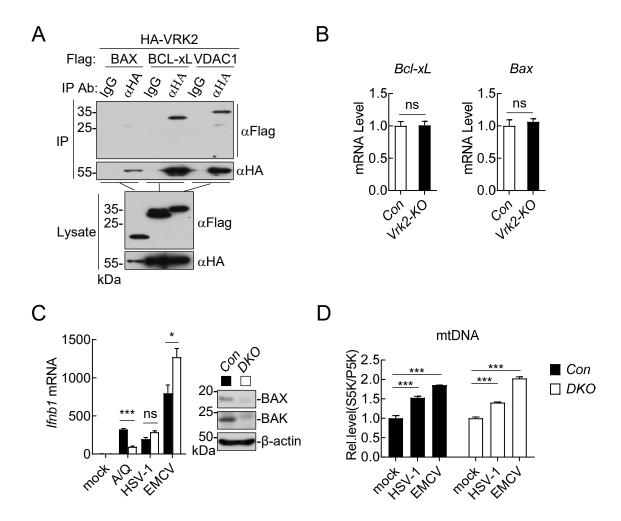
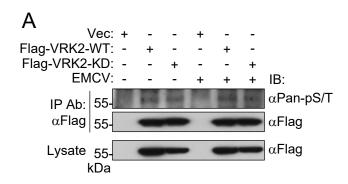
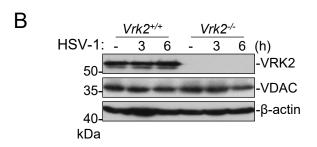

Supplementary information Fig. S1. Effects of VRK2 knockout on innate antiviral signaling

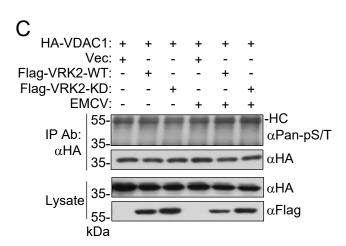
- A. Effects of CRISPR-knockout of Vrk2 on HSV-1 infection-triggered transcription of Ifnb1 and CxcI10 genes. The control and Vrk2-gRNA stably transduced MLF cells (1x10⁶) were left uninfected or infected with HSV-1 for the indicated times, followed by qPCR analysis of the indicated genes. The knockout efficiency of Vrk2-gRNA was shown on the right panel. Data shown are mean \pm SD from one representative experiment performed in triplicates. ***P < 0.001 (unpaired t-test).
- B. Effects of CRISPR-knockout of *Vrk2* on HSV-1-triggered phosphorylation of STING, TBK1 and IRF3. The control and *Vrk2*-gRNA stably transduced MLF cells (1x10⁶) were left uninfected or infected with HSV-1 for the indicated times, followed by immunoblotting analysis with the indicated antibodies.


Supplementary information Fig. S2. Generation of *Vrk2*-knockout mice and characterization analysis

- A. Strategy for knockout of *Vrk2* by the CRISPR-Cas9 method.
- B. Genotyping of *Vrk2*-knockout mice.
- C. Genotypes of the offspring from the breeding of *Vrk2* heterozygous mice.
- D. The lung and brain sections of sex- and age-matched *Vrk2*^{+/+} and *Vrk2*^{-/-} mice were used for histological analysis (H&E staining). Scale bars, 100 µm.
- E. Cells from peripheral lympho nodes (PLNs), spleen and thymus were analyzed by FACS after staining with the indicated antibodies.
- F. Effects of VRK2-deficiency on IFN-β-triggered transcription of *Ifit1* and *Cxcl10* genes. The primary MLF cells $(1x10^6)$ from WT and $Vrk2^{-/-}$ mice were left unstimulated or stimulated with IFN-β (100 ng/ml) for the indicated times, followed by qPCR analysis of the indicated genes. Data shown are mean \pm SD from one representative experiment performed in triplicates. ns, no significance, P>0.05 (unpaired t-test).

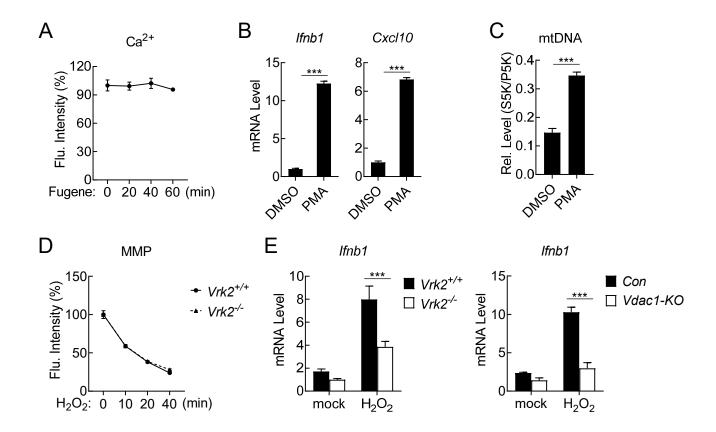

Supplementary information Fig. S3. Effects of JIP1-, KSR- or NFAT-deficiency on innate antiviral immune responses .


- A. Knockout efficiency of the indicated gRNAs. HEK293 cells were transfected with the indicated plasmids for 24 hours before cells were lysed, followed by immunoblotting analysis with the indicated antibodies.
- B. Effects of JIP1-, KSR- or NFAT-deficiency on transcription of *Ifnb1* and *Cxcl10* genes induced by HSV-1, EMCV, or transfected HT-DNA or poly(I:C). The control and indicated knockout MLFs (1x10⁶) were infected with HSV-1 or EMCV, or transfected with HT-DNA (2 μ g) or poly(I:C) (2 μ g) by Fugene (4 μ g) for 6 hours, followed by qPCR analysis of the indicated genes. Data shown are mean \pm SD from one representative experiment performed in triplicates. ns, no significance, P>0.05; .***P < 0.001 (unpaired t-test).



Supplementary information Fig. S4. Effects of BAX/BAK-deficiency on virus-induced expression of antiviral genes and mtDNA release

- A. Association of VRK2 with BAX and BCL-xL. HEK293 cells were transfected with the indicated plasmids for 20 hours, and then lysed for coimmunoprecipitation with IgG or anti-HA, followed by immunoblotting analysis with the indicated antibodies.
- B. Effects of VRK2-deficiency on transcription of *Bax* and *Bcl-xL*. The control and *Vrk2* knockout Raw264.7 cells (1x10⁶) were lysed for qPCR analysis of the indicated genes.
- C. Effects of BAX/BAK-deficiency on transcription of antiviral genes. The control and BAX/BAK-deficient MLFs ($1x10^6$) were left un-stimulated or stimulated with A/Q ($10~\mu$ M each), infected with HSV-1 or EMCV (MOI=1) for 6 hours, followed by qPCR analysis of the indicated genes. The knockout efficiency of was shown by immunoblots.
- D. Effects of BAX/BAK-deficiency on virus-induced mtDNA release. The control and BAX/BAK-deficient MLFs $(2x10^7)$ were left uninfected or infected with HSV-1 or EMCV (MOI=2) for 1 hour, followed by subcellular fractionation and mtDNA measurement. P5K, mitochondrial fraction; S5K, non-mitochondrial cytosolic fraction. Data shown are mean \pm SD from one representative experiment performed in triplicates. ns, no significance, P>0.05; .***P < 0.001 (unpaired t-test).



Supplementary information Fig. S5. VRK2 regulates innate immune response independent of its kinase activity

- A. Phosphorylation of VRK2 and VRK2-KD. HEK293 cells were transfected with the indicated plasmids for 18 hours, infected with EMCV (MOI=2), and lysed for immunoprecipitation with anti-Flag, followed by immunoblotting analysis with the indicated antibodies.
- B. Effects of VRK2-deficiency on expression of VDAC. WT and *Vrk2*-- MLFs (1x10⁶) were left uninfected or infected with HSV-1 (MOI=1) for the indicated times, followed by immunoblotting analysis with the indicated antibodies.
- C. Effects of VRK2 on phosphorylation of VDAC1. HEK293 cells were transfected with the indicated plasmids for 18 hours, infected with EMCV (MOI=2), and lysed for immunoprecipitation with anti-HA, followed by immunoblotting analysis with the indicated antibodies. HC, IgG heavy chain.

Supplementary information Fig. S6. VRK2 is essential for mtDNA-mediated innate immune responses triggered by non-viral factors

- A. Fugene-triggered changes of cytosolic Ca²⁺ levels. Raw264.7 cells (2x10⁶) were left untreated or treated with Fugene (20 μg/ml) for the indicated times before stained with Fluo 3-AM (5 μM) for 20 minutes, followed by fluorescence detection for cytosolic Ca²⁺ levels.
- B. PMA-induced transcription of *Ifnb1* and *Cxcl10* genes in MLF cells. MLFs ($1x10^6$) were treated with PMA ($20~\mu$ M) for 4 hours, followed by qPCR analysis of the indicated genes.
- C. PMA-induced mtDNA release. MLFs (2x10⁷) were left untreated or treated with PMA (20 μM) for 2 hours, followed by subcellular fractionation and mtDNA measurement. P5K, mitochondrial fraction; S5K, non-mitochondrial cytosolic fraction.
- D. Effects of H_2O_2 on MMP. WT and $Vrk2^{-/-}$ MLFs (2x10⁶) were left untreated or treated with H_2O_2 (400 μ M) for the indicated times before stained with JC-10 (4 μ M) for 20 minutes, followed by fluorescent detection for MMP.
- E. Effects of VRK2- or VDAC1-deficiency on H_2O_2 -induced transcription of *Ifnb1* gene. The indicated MLFs (1x10⁶) were treated with H_2O_2 (400 μ M) for 4 hours, followed by qPCR analysis of the indicated gene. Data shown are mean \pm SD from one representative experiment performed in triplicates (B, C, E). ***P < 0.001 (unpaired t-test).