Supplementary Material

The conserved translation factor LepA is required for optimal synthesis of a porin family in *Mycobacterium smegmatis*

Skye R.S. Fishbein¹, Francesca G. Tomasi¹, Ian D. Wolf¹, Charles L. Dulberger¹, Albert Wang¹, Hasmik Keshishian², Luke Wallace², Steven A. Carr², Thomas R. Ioerger³, E. Hesper Rego⁴, Eric J. Rubin^{1*} ¹Department of Immunology and Infectious Disease, Harvard TH Chan School of Public Health, Boston, Massachusetts, 02115, United States

²Broad Institute of MIT and Harvard, Cambridge, 02142, United States

³Department of Computer Science and Engineering, Texas A&M University, Texas, 77843, United States ⁴Department of Microbial Pathogenesis, Yale University School of Medicine, New Haven, Connecticut, 06510, United States

*Correspondence: erubin@hsph.harvard.edu

This PDF contains:

Figure S1 to S3 Table S1 to S5

Other supplementary material for this manuscript includes:

Dataset S1 to S2

Supplementary Figures

Figure S1. a-b) Msm strains were treated with 10X concentrations of linezolid and isoniazid, and cell survival was measured by colony forming units per mL (CFU/mL) as in Figure 1. Values indicate mean survival with error bars indicating standard deviation of three biological replicates. c) *In vitro* translation was carried out using Venus mRNA with LepA, LepA H109A or storage buffer alone. Curves represent mean relative fluorescence (normalized by fluorescence at t=0) with error bars indicating the range across two technical replicates. Data in a-c) are representative of multiple experiments.

Figure S2. a) Fold-change in enrichment of InterPro functional annotation(1) terms in proteins altered by loss of LepA relative to the total Msm proteome. *** P<0.001, ** P<0.001, *P<0.05, calculated using a modified Fisher's exact test. b) A Clustal Omega alignment of mycobacterial porin family proteins in Msm. Black boxes indicate the 4 unique peptides that mapped to a mycobacterial porin in our proteomics data. Decreasing hue corresponds to decreasing percent identity across the four sequences. c) Changes in porin transcript levels due to LepA, as measured by RT-qPCR. Relative fold change of each mRNA was quantified by normalizing levels of each porin transcript to levels of *sigA* transcript. Points represent the mean of three biological replicates, with error bars depicting standard deviation. Fold changes were not significantly different from 1, as examined by a one-sided Student's t-test. d) Luminescence of candidate reporter fusions in Δ *lepA* deletion mutant and the complemented strain. *** P<0.001, * P<0.05, computed using a Student's t-test. Data in c-d) are representative of multiple experiments.

Figure S3. a) Localization of MspA-mRFP in Msm. Scale bar represents 5 microns and applies to all images. Visualization of phase-contrast and fluorescence in GroEL-Dendra2 (left), MmpL3-Dendra2 (middle) and MspA-mRFP expressing strains (right). b) Three sgRNAs with different PAM strengths (2) were chosen to achieve maximal knockdown of each porin. Black lines around a bar indicate selection of that sgRNA for future experiments. Fold repression, quantified using RT-qPCR, indicates the difference in knockdown between induced and uninduced strains. c) Calcein staining of luciferase-porin reporter strains was used to assess porin coding sequence contribution to permeability. 'Parent' indicates the complemented strain (filled bar) and Δ *lepA* (open bar), with no merodiploid porin reporter. Each subsequent set of bars indicates derivatives of those two parental strains containing the specified porin reporter used in Figure 2. Bars indicate mean fluorescence with error bars indicating standard deviation

around three replicates. ****P<0.0001, ***P<0.001 calculated using a one-sided ANOVA, where complemented strains were compared against one another and $\Delta lepA$ strains were compared against one another. Data in a-c) are representative of multiple experiments.

Drug †	Complemented strain	Deletion mutant
Tetracycline	0.250	0.250
Clarithromycin	0.125	0.125
Chloramphenicol	10	10
Amikacin	0.200	0.200
Erythromycin	0.500	0.500

<u>Supplementary Tables</u> Table S1: Minimum inhibitory concentration (MIC) of *lepA* mutant

+Values are averages of three replicates, in μ g/ml concentrations of drug.

Strain Number	Parental Background (Strain number)	Plasmid at L5 Integration Site (Plasmid #)	Plasmid at Tweety Integration Site (Plasmid #)
HR334	∆ <i>lepA</i> ::ZeoR	None	None
SF177	mc ² 155	p-empty-KanR(CT242)	None
SF178	∆ <i>lepA</i> ::ZeoR (HR334)	pP _{natp} - <i>lepA</i> -KanR(121)	None
SF181	<i>∆lepA</i> ::ZeoR (HR334)	p-empty-KanR(CT242)	None
SF290	∆ <i>lepA</i> ::ZeoR (HR334)	pP _{natp} - <i>lepA</i> -KanR(121)	pP _{UV15} - <i>mspA</i> -Nluc-NatR(283)
SF291	<i>∆lepA</i> ::ZeoR (HR334)	p-empty-KanR(CT242)	pPuv15- <i>mspA</i> -Nluc-NatR(283)
SF302	<i>∆lepA</i> ::ZeoR (HR334)	pP _{natp} - <i>lepA</i> -KanR(121)	pP _{UV15} -Nluc-NatR(287)
SF303	<i>∆lepA</i> ::ZeoR (HR334)	p-empty-KanR(CT242)	pP _{UV15} -Nluc-NatR(287)
SF432	<i>∆lepA</i> ::ZeoR (HR334)	None	pP _{natp} - <i>lepA</i> -HygR(417)
SF433	∆ <i>lepA</i> ::ZeoR (HR334)	None	p-emtpy-HygR(418)
SF434	<i>∆lepA</i> ::ZeoR (HR334)	pP _{UV15-Tet} - <i>dCas9</i> -sgRNA1 (<i>mspA1</i>)-KanR(419)	pP _{natp} - <i>lepA</i> -HygR(417)
SF435	<i>∆lepA</i> ::ZeoR (HR334)	pP _{UV15-Tet} -dCas9-sgRNA2 (<i>mspA2</i>)-KanR(420)	pP _{natp} - <i>lepA</i> -HygR(417)
SF436	<i>∆lepA</i> ::ZeoR (HR334)	pPuv15-Tet-dCas9-SgRNA3 (mspA3)-KanR(421)	pP _{natp} - <i>lepA</i> -HygR(417)
SF437	<i>∆lepA</i> ::ZeoR (HR334)	(mspB1)-KanR(422)	pP _{natp} - <i>lepA</i> -HygR(417)
SF438	<i>∆lepA</i> ::ZeoR (HR334)	sgRNA5(<i>mspB2</i>)-KanR(423)	pP _{natp} - <i>lepA</i> -HygR(417)
SF439	<i>∆lepA</i> ::ZeoR (HR334)	(<i>mspB3</i>))-KanR(424)	pP _{natp} - <i>lepA</i> -HygR(417)
SF440	<i>∆lepA</i> ::ZeoR (HR334)	pP _{UV15-Tet} - <i>dCas9</i> -sgRNA7 (<i>mspC1</i>)-KanR(425)	pP _{natp} - <i>lepA</i> -HygR(417)
SF441	∆ <i>lepA</i> ::ZeoR (HR334)	pP _{UV15-Tet} - <i>dCas9</i> -sgRNA8 (<i>mspC2</i>)-KanR(426)	pP _{natp} - <i>lepA</i> -HygR(417)
SF442	<i>∆lepA</i> ::ZeoR (HR334)	pPuv15-Tet-dCas9-sgRNA9 (<i>mspC3</i>)-KanR(427)	pP _{natp} - <i>lepA</i> -HygR(417)
SF443	∆ <i>lepA</i> ::ZeoR (HR334)	pP _{UV15-Tet} -dCas9-sgRNA10 (<i>mspD1</i>)-KanR(428)	pP _{natp} - <i>lepA</i> -HygR(417)
SF444	<i>∆lepA</i> ::ZeoR (HR334)	(<i>mspD2</i>)-KanR(429)	pP _{natp} - <i>lepA</i> -HygR(417)
SF445	<i>∆lepA</i> ::ZeoR (HR334)	(mspD3)-KanR(430)	pP _{natp} - <i>lepA</i> -HygR(417)
SF388	<i>∆lepA</i> ::ZeoR (HR334)	pP _{natp} - <i>lepA</i> -KanR(SF121)	Nluc-NatR(384)
SF389	<i>∆lepA</i> ::ZeoR (HR334)	p-empty-KanR(CT242)	Nluc-NatR(384)
SF390	<i>∆lepA</i> ::ZeoR (HR334)	pP _{natp} - <i>lepA</i> -KanR(121)	Nluc-NatR(383)
SF391	<i>∆lepA</i> ::ZeoR (HR334)	p-empty-KanR(CT242)	Nluc-NatR(383)
SF392	<i>∆lepA</i> ::ZeoR (HR334)	pP _{natp} - <i>lepA</i> -KanR(121)	Nluc-NatR(385)
SF393	<i>∆lepA</i> ::ZeoR (HR334)	p-empty-KanR(CT242)	PFUV15-111SPD(INISIVIEG_0057)- Nluc-NatR(385)
SF902	<i>∆lepA</i> ::ZeoR (HR334)	pP _{natp} - <i>lepA</i> -KanR(121)	NatR(896)
SF903	∆ <i>lepA</i> ::ZeoR (HR334)	p-empty-KanR(CT242)	NatR(896)
SF789	∆ <i>lepA</i> ::ZeoR/∆ <i>mspA</i> ::HygR	None	None
HR329	∆ <i>mspA</i> ::ZeoR	None	None
SF447	∆lepA::ZeoR (HR334)	pP _{UV15-Tet} - <i>dCas9</i> -sgRNA1 (<i>mspA1</i>)-KanR(419)	p-emtpy-HygR(418)

Table S2: Strain List

SF448	∆ <i>lepA</i> ::ZeoR (HR334)	pP _{UV15-Tet} - <i>dCas9</i> -sgRNA2 (<i>mspA2</i>)-KanR(420)	p-emtpy-HygR(418)
SF449	<i>∆lepA</i> ::ZeoR (HR334)	pP _{UV15-Tet} - <i>dCas9</i> -sgRNA3 (<i>mspA3</i>)-KanR(421)	p-emtpy-HygR(418)
SF450	∆ <i>lepA</i> ::ZeoR (HR334)	pP _{UV15-Tet} - <i>dCas9</i> -sgRNA4 (<i>mspB1</i>)-KanR(422)	p-emtpy-HygR(418)
SF451	∆ <i>lepA</i> ::ZeoR (HR334)	pP _{UV15-Tet} -dCas9- sgRNA5(<i>mspB2</i>)-KanR(423)	p-emtpy-HygR(418)
SF452	<i>∆lepA</i> ::ZeoR (HR334)	pP _{UV15-Tet} -dCas9-sgRNA6 (mspB3))-KanR(424)	p-emtpy-HygR(418)
SF453	<i>∆lepA</i> ::ZeoR (HR334)	pP _{UV15-Tet} -dCas9-sgRNA7 (mspC1)-KanR(425)	p-emtpy-HygR(418)
SF454	<i>∆lepA</i> ::ZeoR (HR334)	pP _{UV15-Tet} - <i>dCas9</i> -sgRNA8 (<i>mspC2</i>)-KanR(426)	p-emtpy-HygR(418)
SF455	<i>∆lepA</i> ::ZeoR (HR334)	pP _{UV15-Tet} - <i>dCas9</i> -sgRNA9 (<i>mspC3</i>)-KanR(427)	p-emtpy-HygR(418)
SF456	<i>∆lepA</i> ::ZeoR (HR334)	pP _{UV15-Tet} - <i>dCas9</i> -sgRNA10 (<i>mspD1</i>)-KanR(428)	p-emtpy-HygR(418)
SF457	<i>∆lepA</i> ::ZeoR (HR334)	pP _{UV15-Tet} - <i>dCas9</i> -sgRNA11 (<i>mspD2</i>)-KanR(429)	p-emtpy-HygR(418)
SF458	<i>∆lepA</i> ::ZeoR (HR334)	pP _{UV15-Tet} - <i>dCas9</i> -sgRNA12 (<i>mspD3</i>)-KanR(430)	p-emtpy-HygR(418)
SF502	<i>∆lepA</i> ::ZeoR (HR334)	pP _{UV15-Tet} - <i>dCas9</i> -sgRNA null- KanR(CT295)	p-natp-lepA-HygR(417)
SF503	<i>∆lepA</i> ::ZeoR (HR334)	pP _{UV15-Tet} - <i>dCas9</i> -sgRNA null- KanR(CT295)	p-emtpy-HygR(418)
SF504	<i>∆lepA</i> ::ZeoR (HR334)	pP _{UV15-Tet} - <i>dCas9</i> -sgRNA1- sgRNA6-sgRNA7-KanR(484)	p-natp- <i>lepA</i> -HygR(417)
SF505	<i>∆lepA</i> ::ZeoR (HR334)	pP _{UV15-Tet} - <i>dCas9</i> -sgRNA1- sgRNA6-sgRNA7-KanR(484)	p-emtpy-HygR(418)
SF740	BL21 <i>E.coli</i> /pET26-P⊤7-6xHisTag- <i>lepA</i> -KanR	None	None
SF1037	<i>∆lepA</i> ::ZeoR (HR334)	pPnatp-lepA H109A- KanR(1036)	none
SF1038	<i>∆lepA</i> ::ZeoR (HR334)	pPnatp-lepA H109A- KanR(1036)	pP _{UV15-Tet} - <i>mspA</i> -Nluc- NatR(283)
SF1039	<i>∆lepA</i> ::ZeoR (HR334)	pPnatp-lepA H109A- KanR(1036)	pP _{UV15-Tet} - <i>mspB</i> (MSMEG_0520)-Nluc- NatR(384)
SF1040	<i>∆lepA</i> ::ZeoR (HR334)	pPnatp-lepA H109A- KanR(1036)	pP _{UV15-Tet} - <i>mspC</i> (MSMEG_5483)-Nluc- NatR(383)
SF1041	<i>∆lepA</i> ::ZeoR (HR334)	pPnatp-lepA H109A- KanR(1036)	pP _{UV15-Tet} - <i>mspA</i> recode (AT- rich)-Nluc-NatR(555)
SF1042	<i>∆lepA</i> ::ZeoR (HR334)	pPnatp-lepA H109A- KanR(1036)	pP _{UV15-Tet} - <i>mspA</i> recode (AT- rich)-Nluc-NatR(555)
SF583	<i>∆lepA</i> ::ZeoR (HR334)	pPnatp-lepA H109A- KanR(1036)	pP _{UV15-Tet} - <i>mspA</i> recode (AT- rich)-Nluc-NatR(555)
WT	mc ² 155	None	None
MmpL3-	\A/T	pP _{myc1-tetO} -MSMEG_0250-	None
Dendra*	VV I	Dendra-ApR	NONE
GroEL-	WT	pP _{myc1-tetO} -MSMEG_0880-	None
	BL21 E.coli/pET26-PT7-6xHisTag-		
FT150	lepAH109A-KanR	None	None

*These strains were a kind gift from the Mycobacterial Systems Resource (PI, K. Derbshire)

Number	Contents	Selection	Parental Vector	Notes
121	pP _{natp} - <i>lepA</i> -KanR	Kan	CT94	
283	pPrpsA-mspA(MSMEG_0965)-Nanoluciferase(Nluc)-NatR	Nat	CT250	
287	pP _{rpsA} -Nluc-NatR	Nat	CT250	
383	pPrpsA-mspC(MSMEG_5483)-Nluc-NatR	Nat	CT250	
384	pP _{rpsA} - <i>mspB</i> (MSMEG_0520)-Nluc-NatR	Nat	CT250	
385	pP _{rpsA} - <i>mspD</i> (MSMEG_6057)-Nluc-NatR	Nat	CT250	
417	pP _{natp} - <i>lepA</i> -HygR	Hyg	CT204	
418	p-emtpy-HygR	Hyg	CT204	
419	pPrpsA-Tet-dCas9-sgRNA1 (mspA1)-KanR	Kan	CT295	
420	pPrpsA-Tet-dCas9-sgRNA2 (mspA2)-KanR	Kan	CT295	
421	pP _{rpsA} -Tet-dCas9-sgRNA3 (<i>mspA</i> 3)-KanR	Kan	CT295	
422	pP _{rpsA} -Tet-dCas9-sgRNA4 (<i>mspB</i> 1)-KanR	Kan	CT295	
423	pP _{rpsA} -Tet-dCas9-sgRNA5(<i>mspB</i> 2)-KanR	Kan	CT295	
424	pP _{rpsA} -Tet-dCas9-sgRNA6 (<i>mspB</i> 3)-KanR	Kan	CT295	
425	pP _{rpsA} -Tet-dCas9-sgRNA7 (<i>mspC</i> 1)-KanR	Kan	CT295	
426	pPrpsA-Tet-dCas9-sgRNA8 (mspC2)-KanR	Kan	CT295	
427	pP _{rpsA} -Tet-dCas9-sgRNA9 (<i>mspC</i> 3)-KanR	Kan	CT295	
428	pP _{rpsA} -Tet-dCas9-sgRNA10 (<i>mspD</i> 1)-KanR	Kan	CT295	
429	pP _{rpsA} -Tet-dCas9-sgRNA11 (<i>mspD</i> 2)-KanR	Kan	CT295	
430	pPrpsA-Tet-dCas9-sgRNA12 (<i>mspD</i> 3)-KanR	Kan	CT295	
711	pET26-PT7-6xHisTag- <i>lepA-</i> KanR	Kan	pET26	
741	pET21-P _{T7} -Venus-AmpR	Amp	pET21	
896	pP _{rpsA} - <i>mspA</i> -mRFP-NatR	Nat	CT250	
CT204	рР _{тв21} -eGFP- <i>wag31</i> -HygR	Нуд	Lab vector	Backbone of cloning vector for Tweety- integrating <i>lepA</i> alleles
CT242	p-empty-KanR	Kan	CT94	
CT250	pP _{rpsA} -eGFP-NatR	Nat	Lab vector	Backbone of cloning vector for Tweety- integrating porin alleles
CT295	pP _{rpsA} -Tet-dCas9-sgRNA null-KanR	Kan	Courteous gift of Jeremy Rock	
CT94	pP _{rpsA} -Tet-eGFP-KanR	Kan	Lab vector	Backbone of cloning vector for L5- integrating <i>lepA</i> alleles

1036	pP _{natp} - <i>lepA</i> H109A-KanR	Kan	Lab vector	Backbone of cloning vector for L5- integrating <i>lepA</i> alleles
FT150	pET26-P _{T7} -6xHisTag- <i>lepA</i> H109A-KanR	Kan	Lab vector	

Table S4: Primer List

Number	Name	Sequence	Purpose (vector number or description)
P315	CT133_nat_prom_4556_F	TTTGCGTTTAATACTGCATGCACTg aatcgagcatatgccagcgg	121
P422	4556_R_redo	CTAGGGTCCCCAATTAATTAGCTA Atcacttcttgggcttgtcgccc	121
P626	UV15-mspA_F	cttaattaagaaggagatatacatatgaaggcaat cagtcgggtgctg	283;896
P627	mspA-Nluc_R	ggctcacgtctgtTCCAGAACCgttcatgttcc agggttcgccg	283;944
P628	mspA-Nluc_F	aaccctggaacatgaacGGTTCTGGAaca gacgtgagccgaaagattcg	283
P629	Nluc-Ct250-R	GGGTCCCCAATTAATTAGCTAATC ACAGGTCTTCCTCGCTGATCAGCT TCTGCTCggcgaggatgcgctcgc	283;287;383;384;385
P632	UV15-Nluc_F	gcttaattaagaaggagatatacatatgacagac gtgagccgaaagattcg	287
P844	Nluc-F	gtcttcaccctggaggacttcgtcg	383;384;385
P772	UV15_MspC_F	cttaattaagaaggagatatacatatgaaggcaat cagtcgggtgctg	384
P773	MspC_Nluc_R	cctccagggtgaagacTCCAGAACCgttcat gttccagggttcgccg	384
P774	UV15_MspB_F	ttaattaagaaggagatatacatatgacggcattc aagcgggtgct	383
P775	MspB_Nluc_R	cctccagggtgaagacTCCAGAACCgttcat attccaaggctcgccgta	383
P776	UV15_MspD_F	ttaattaagaaggagatatacatgtgcgctacctc gtcatgatg	385
P777	MspD_Nluc_R	tccagggtgaagacTCCAGAACCgttcatgt tccagggctcgcc	385
P842	CT204_lepA_F	actgtttaaactctagaaatattattgcgggtgcgtt gttcgc	417
P843	CT204_lepA_R	tcgtcgccaccaatccccatatgTCGTACGC TAGTTAACTACGTCGACA	417
P807	mspA_R	AAAC <u>AATGGTGTGTTCCCCCTGGA</u>	419 (Figure 3a,Supp. Figure 2d#1)
P808	mspA_F	GGGA <u>GTCCAGGGGGAACACACCA</u> <u>TT</u>	419 (Figure 3a,Supp. Figure 2d #1)
P826	MspA_R2	AAAC <u>GTCGACGTCTCCGGCGCCG</u> AGGGT	420(Supp. Figure 2d #2)
P827	MspA_F2	GGGA <u>ACCCTCGGCGCCGGAGACG</u> TCGAC	420(Supp. Figure 2d #2)
P828	MspA_R3	AAAC <u>CTGGACCGCAACCGTCTTAC</u> CCGT	421(Supp. Figure 2d #3)
P829	MspA_F3	GGGA <u>ACGGGTAAGACGGTTGCGG</u> TCCAG	421(Supp. Figure 2d #3)
P811	mspB_R	AAAC <u>TGGTCGCTGGGTGTGGGCA</u> <u>TC</u>	422(Supp. Figure 2d #1)
P812	mpsB_F	GGGA <u>GATGCCCACACCCAGCGAC</u> CA	422(Supp. Figure 2d #1)

P830	MspB_R2	AAAC <u>GTCGACGTCTCGGGTCCTG</u> <u>C</u>	423(Supp. Figure 2d #2)
P831	MspB_F2	GGGA <u>GCAGGACCCGAGACGTCGA</u> <u>C</u>	423(Supp. Figure 2d #2)
P832	MspB_R3	AAAC <u>GTTGCTCGCAGGCACCACG</u> <u>GGAAT</u>	424(Figure 3a,Supp. Figure 2d #3)
P833	MspB_F3	GGGA <u>ATTCCCGTGGTGCCTGCGA</u> <u>GCAAC</u>	424(Figure 3a,Supp. Figure 2d #3)
P813	mspC_R	AAAC <u>GTTGGCTGCGGCCGTCGCG</u> <u>GGGT</u>	425(Figure 3a, Supp. Figure 2d #1)
P814	mspC_F	GGGA <u>ACCCCGCGACGGCCGCAG</u> <u>CCAAC</u>	425(Figure 3a, Supp. Figure 2d #1)
P834	MspC_R2	AAAC <u>GTCGACGTCTCGGGTCCCG</u> <u>CAGGC</u>	426(Supp. Figure 2d #2)
P835	MspC_F2	GGGA <u>GCCTGCGGGACCCGAGAC</u> <u>GTCGAC</u>	426(Supp. Figure 2d #2)
P836	MspC_R3	AAAC <u>TCGACGACGGTGACATCACC</u> <u>GGT</u>	427(Supp. Figure 2d #3)
P837	MspC_F3	GGGA <u>ACCGGTGATGTCACCGTCG</u> <u>TCGA</u>	427(Supp. Figure 2d #3)
P809	mspD_R	AAAC <u>TGGTCATTGGGCGTCGGCAT</u> <u>C</u>	428(Supp. Figure 2d #1)
P810	mspD_F	GGGA <u>GATGCCGACGCCCAATGAC</u> <u>CA</u>	428(Supp. Figure 2d #1)
P838	MspD_R2	AAAC <u>GTGGACGTGAAGGGCGCGA</u> <u>AAGGAGC</u>	429(Supp. Figure 2d #2)
P839	MspD_F2	GGGA <u>GCTCCTTTCGCGCCCTTCA</u> <u>CGTCCAC</u>	429(Supp. Figure 2d #2)
P840	MspD_R3	AAAC <u>TCGACGGAGGCGACATCAC</u> C	430(Supp. Figure 2d #3)
P841	MspD_F3	GGGA <u>GGTGATGTCGCCTCCGTCG</u> A	430(Supp. Figure 2d #3)
P1139	MspA_mRFP_R		896
P1144	mRFP_CT250_R	GGTCCCCAATTAATTAGCTAAAGC TTCAGCGGCCCTCGGCGCGCCCCG TACT	896
P1143	mRFP_F	GCCTCCTCCGAGGACGTCATCAA	896
P1042	pET26_venus_F	actttaagaaggagatatacatATGGTCTCG AAGGGCGAGGAGCTG	741
P1043	pET26_venus_R	gtggtggtggtggtgctcgatcaGTGATGGT GATGGTGATGACACTTGTACAGC	741
P845	mspA_F1_RT	CAGATGTGATCCTCTTAGATCTCC	RT-qPCR of porins
P846	mspA_R1_RT	CTCAGGCCCACCTGTTT	RT-qPCR of porins
P847	mspA_F2_RT	TAGATCTCCGAAGTCTCTGAA	RT-qPCR of porins
P848	mspA_R2_RT	GTTCTCCCTAACTGTATCGC	RT-qPCR of porins
P849	mspB_F1_RT	ATTCAAGCGGGTGCTGAT	RT-qPCR of porins
P850	mspB_R1_RT	ACGAGGCTCAATTCGTTGT	RT-qPCR of porins
P851	mspB_F2_RT	ACGGGAATGTTCGTGAGTG	RT-qPCR of porins

P852	mspB_R2_RT	GCTGCACGGTCAGAGTT	RT-qPCR of porins
P853	mspC_F1_RT	GAACGTAAGAACAGAGTGTGGAG	RT-qPCR of porins
P854	mspC_R1_RT	CACCGATGTTGTGGTGTAGG	RT-qPCR of porins
P855	mspC_F2_RT	TTTAATTCGCGCCACATGAC	RT-qPCR of porins
P856	mspC_R2_RT	GGGTCCACCGATGTTGT	RT-qPCR of porins
P857	mspD_F1_RT	CGTCATGATGTTCGCTCTACTC	RT-qPCR of porins
P858	mspD_R1_RT	TTGAGGAATGTCTCGGCTTG	RT-qPCR of porins
P859	mspD_F2_RT	CGCTACCTCGTCATGATGTT	RT-qPCR of porins
P860	mspD_R2_RT	AATCAGCTCAGCGTGGTC	RT-qPCR of porins
SF37	RTPCR_sigA_F	gactacaccaagggctacaag	RT-qPCR of porins
SF38	RTPCR_sigA_R	ttgatcacctcgaccatgtg	RT-qPCR of porins
P1017	pET28_LepA_myco_R	agtggtggtggtggtggtggtgctcgactacttcttggg cttgtcgcccgc	711
P1018	pET28_LepA_myco_F	ttaactttaagaaggagatataccatgggcagca gccatcatcatcatcatcaccgcttgacccacgct caccag	711
P1018	pET28_LepA_myco_F	ttaactttaagaaggagatataccatgggcagca gccatcatcatcatcatcaccgcttgacccacgct caccag	711
P1236	lepA_H109A_F	GTGCTGCACCTGATCGACACCCC GGGCGCCGTCGACTTCACCTACG AGGTGTCGC	GTPase mutant (1036)
P1237	lepA_H109A_R	GCGACACCTCGTAGGTGAAGTCG ACGGCGCCCGGGGTGTCGATCAG GTGCAGCAC	GTPase mutant (1036)

Note: underlined basepairs indicate sequence-specific region of sgRNA

Table S5: Recombinant DNA

mRFP gene

GCCTCCTCCGAGGACGTCATCAAGGAGTTCATGCGCTTCAAGGTGCGCATGGAGGGCTCCGTGAACGGCCA CGAGTTCGAGATCGAGGGCGAGGGCGAGGGCCGCCCCTACGAGGGCACCCAGACCGCCAAGCTGAAGGTG ACCAAGGGCGGCCCCCTGCCCTTCGCCTGGGACATCCTGTCCCCTCAGTTCCAGTACGGCTCCAAGGCCTA CGTGAAGCACCCCGCCGACATCCCGGACTACTTGAAGCTGTCCTTCCCCGAGGGCTTCAAGTGGGAGCGCG TGATGAACTTCGAGGACGGCGGCGTGGTGACCGTGACCCAGGACTCCTCCCTGCAGGACGGCGAGTTCATC TACAAGGTGAAGCTGCGCGGCACCAACTTCCCCTCCGACGGCCCCGTAATGCAGAAGAAGACCATGGGCTG GGAGGCCTCCACCGAGCGGCGTGATCACCGAGGACGGCGCCCTGAAGGGCGAGATCAAGATGAGGCTGAAG CTGAAGGACGGCGGCCACTACGACGCCGAGGTCAAGACGCCCCGTGAAGGCCAAGATGAGGCTGAAG CTGAAGGACGGCGGCCACTACGACGCCGAGGTCAAGACCACCTACATGGCCAAGAAGACCGTGCC CGGCGCCTACAAGACCGACATCAAGCTGGACATCACCTCCCACAACGAGGACTACACCATCGTGGAACAGTA CGAGCGCCGCGAGGGCCGC

Nanoluciferase gene

ATGGTCTTCACCCTGGAGGACTTCGTCGGCGACTGGCGTCAGACCGCAGGCTACAACTTGGACCAGGTGCT GGAACAGGGGGGCGTGTCCTCGCTCTTCCAGAACCTCGGCGTGTCCGTGACCCCGATCCAGCGGATCGTCT TGTCGGGCCAAAACGGACTGAAGATCGACATCCACGTCATCATCCCATACGAAGGCCTGAGCGGTGACCAGA TGGGCCAGATCGAAAAGATCTTCAAGGTCGTCTACCCCGTTGATGACCACCACTTCAAGGTGATCCTGCACTA CGGTACTCTGGTCATCGACGGCGTCACCCCAAACATGATCGACTACTTCGGGCGTCCTTACGAAGGCATCGC CGTGTTCGACGGCAAGAAAATCACCGTCACCGGCACGTTGTGGAACGGCAACAAGATCATCGACGAGGCGC TCATCAACCCCGACGGATCGCTGTTCCGGGTCACCATCAACGGCGTCACCGGTTGTGCGAG CGCATCCTCGCCTGA

Additional dataset S1 (separate file)

Quantitative proteomics of wildtype, lepA deletion mutant, and complemented strain

Additional dataset S2 (separate file)

RNA-sequencing data for wildtype, *lepA* deletion mutant, and complemented strain

Supplementary Material References

- 1. Huang da W, Sherman BT, Lempicki RA. 2009. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 4:44-57.
- 2. Rock JM, Hopkins FF, Chavez A, Diallo M, Chase MR, Gerrick ER, Pritchard JR, Church GM, Rubin EJ, Sassetti CM, Schnappinger D, Fortune SM. 2017. Programmable transcriptional repression in mycobacteria using an orthogonal CRISPR interference platform. Nat Microbiol 2:16274.