
134     EP2: A New Target to Increase Amyloid β Phagocytosis and Decrease Amyloid β-Induced Neuronal Damage—Shie et al

Pathologic processes of AD are thought 
to precede clinically diagnosed de-
mentia by as much as 2 or 3 decades. 

Indeed, as early as 1976, Katzman applied 
the chronic disease model to AD and pro-
posed the existence of a latent stage where 
some structural damage accrues but there 
are no functional or behavioral changes, 
followed by a prodromal stage during which 
more structural damage accrues and mild 
functional and behavioral changes occur, 
and ultimately a clinical stage with substan-
tial irreversible damage and behavioral ab-
normalities (14). AD latency and prodrome 
are receiving increasing attention because it 
is here that interventions would have the 
greatest impact and because of a growing 
realization that treatment strategies for 
these earlier stages may be different from 
treatment of established dementia (18).

Large observational studies repeatedly 
have associated a markedly decreased inci-
dence of AD with use of NSAIDs for more 
than 2 years (2, 12, 30, 34); indeed, these 
and other observations studies form a large 
part of the evidence in support of the pro-
posal that AD derives significantly from in-
nate immune activation in diseased regions 
of brain. In contrast, a randomized clini-
cal trial that evaluated 2 different NSAIDs 

failed to show benefit in patients with estab-
lished AD (1). One interpretation of these 
results is that while COX inhibition pre-
vents AD by suppressing processes impor-
tant in latency, inhibiting these mechanisms 
later in clinical AD is no longer capable 
of significantly impeding disease progres-
sion. Although these associative studies 
show only partial effectiveness—along 
with results from transgenic mouse mod-
els of cerebral Aβ amyloidogenesis (13, 17, 
33)—they provided sufficiently compelling 
rationale to embark on a large clinical trial 
to evaluate a non-selective COX inhibitor, 
naproxen, and a COX-2 selective inhibi-
tor, celecoxib, in the prevention of AD, the 
Alzheimer Disease Anti-inflammatory Pre-
vention Trial (ADAPT) (18). 

NSAIDs are thought to act primarily 
through inhibition of the cyclooxygenases 
(COXs), enzymes that catalyze the com-
mitted step in prostaglandin (PG) and 
thromboxane (Tx) synthesis (Figure 1). 
The immediate product of COX is an un-
stable intermediate that is efficiently cata-
lyzed to a group of PGs and TxA2 that exert 
potent autocrine and paracrine effects via 
activation of a growing family of G pro-
tein-coupled receptors (5). While NSAIDs 
have other effects in vitro, we are unaware 

of any study demonstrating that the major 
therapeutic effect of NSAIDs is mediated 
by mechanisms other than COX inhibi-
tion. For example, the recent proposal from 
tissue culture experiments that some COX 
inhibitors may act by alteration of γ-secre-
tase activity (32) has not been supported in 
vivo (15). 

NSAIDs are a chemically diverse group of 
drugs that can be divided into three groups: 
aspirin (acetylsalicylic acid or ASA), non-
selective COX inhibitors (such as ibuprofen 
and naproxen), and COX-2-selective inhib-
itors (such as celecoxib). These agents differ 
in their clinical use. ASA is most commonly 
used for thromboembolic prophylaxis be-
cause it irreversibly inhibits COX-1 there-
by preventing platelet production of TxA2, 
while COX inhibitors are less effective for 
thrombosis prophylaxis because they re-
versibly inhibit COX-1 as well as suppress 
the anti-platelet aggregating factor, PGI2. 
In contrast, non-selective COX inhibitors 
have stronger COX-2 suppressing activity 
than ASA and so are widely used as anti-
inflammatory agents. Protracted use of se-
lective COX-2 inhibitors may indeed have 
the opposite effect of ASA; by suppressing 
prostaglandin PGI2 (prostacyclin) but not 
platelet TxA2 (COX-1-derived) these drugs 
appear to promote thrombotic events (11). 
This is one explanation for the untoward ef-
fects recently associated with protracted use 
of highly selective COX-2 inhibitors and 
is part of the rationale behind withdrawal 
of one COX-2 selective inhibitor from the 
market. These concerns coupled with unex-
pected toxicity observed with long term use 
of naproxen, a non-selective COX inhibi-
tor, also formed the rationale for the recent 
suspension of ADAPT.
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The growing concern over toxicity asso-
ciated with protracted treatment not only 
with COX-2-selective inhibitors but also 
naproxen appropriately clouds the potential 
of these drugs as neuroprotective agents. 
However, despite these toxicity concerns, 
the epidemiologic data underpinning AD-
PAT and the data from transgenic models 
that support COX inhibition as a means 
of suppressing Aβ accumulation remain 
sound. In other words, the PG pathway 
is still a promising target for the preven-
tion of AD; however, we need to identify 
pharmacologic targets in this pathway that 
are more focused than COX inhibition. In-
deed, a major shift in research is now oc-
curring with attention turning away from 
COX inhibition to blockade of specific PG 
receptors.

PGE2 is distinct from other eicosanoid 
products of COX because of the existence 
of widely expressed multiple receptor sub-
types, EP1, EP2, EP3, and EP4, linked 
to functionally antagonistic second mes-
senger systems; because of this PGE2 has 
versatile and often opposing actions in tis-
sues and cells (5). All of the EP receptors 
are expressed in rodent brain, where there 
are regional and cell-specific differences in 
expression and activity (4, 7-9, 23-25, 31, 
36). EP4 expression is highly restricted to 
some hypothalamic nuclei (36). EP3 is pre-
dominantly expressed on neurons (8, 9, 24, 
31), whereas EP1 and EP2 are expressed 
on glia and neurons (6, 16). Others have 
shown that EP2-/- mice are more vulnera-
ble to ischemia-reperfusion injury (19). We 
have shown that indirect neuronal damage 
by CD14-dependent innate immune acti-
vation in vivo is completely suppressed in 
2 different strains of mice that are null for 
EP2 (20, 21, 35). 

While CD14 activation is one mecha-
nism by which Aβ fibrils lead to microg-
lial activation (10), determining the role of 
microglial activation in our in vivo experi-
ments was limited because EP2 is expressed 
on multiple cell types in brain. Therefore 
we pursued the role of microglial EP2 in re-
sponse to Aβ exposure in cell culture. Our 
first experiments examined the neurotoxic-
ity of Aβ peptides by exposing primary cul-
tures of neurons or co-cultures of neurons 
and microglia to aggregated Aβ1-42 (Table 
1) (28). Similar to the results of several oth-
er laboratories, we observed that aggregated 
Aβ1-42 is directly toxic to wt neurons, and 

the neurotoxicity of Aβ1-42 is significantly 
further increased in the presence of wt mi-
croglia (26). Moreover, direct and indirect 
neurotoxicity of Aβ1-42 can be completely 
suppressed by NSAIDs such as ibuprofen 
(IBU). These last results are difficult to in-
terpret precisely because COX inhibitors 
are active in both neurons and microglia 
in co-cultures. However, genetically modi-
fied microglia can help resolve these issues. 
Indeed, in sharp contrast to wt microglia, 
when wt neurons co-cultured with EP2-/- 
microglia were exposed to aggregated Aβ1-42 
there was no increase in neurotoxicity; in 

fact, neuronal damage was slightly but sig-
nificantly lower than control in the pres-
ence of EP2-/- microglia. These data show 
that unlike wild type microglia, EP2-/- mi-
croglia do not mount a neurotoxic response 
following exposure to Aβ1-42 and may even 
mildly protect neurons from the direct tox-
ic effects of Aβ1-42.

Several potential effectors of innate im-
munity mediated neuronal damage have 
been proposed and include products of 
several enzymes, principal candidates being 
inducible nitric oxide synthase (iNOS) and 
COX-2, either alone or in combination. We 

Figure 1. Diagram of eicosanoid products generated from COX and their receptors.

Neuron wt wt wt wt

Microglia none wt wt EP2-/-

Aβ
1-42

+ + + +

IBU none none + none

% Change in TUNEL +  
Neurons

196 ± 10 259 ± 13 109 ± 8 59 ± 5

Table1. Suppression of neurotoxicity from Aβ
1-42

 by ibuprofen or ablation of microglial EP2. Co-cultures of 
primary mouse cerebral neurons and microglia were exposed to aggregated synthetic Aβ

1-42
 and then 

assayed for neurotoxicity by counting MAP-2-immunoractive (IR) cells (neurons) that also were positive 
for TUNEL staining. Data are expressed as % of wt neurons not exposed to Aβ

1-42
. 
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examined these proposed sources of neuro-
toxic products in wt and EP2-/- microglia 
following activation by aggregated Aβ1-42. 
As seen in the Western blots in Figure 2, 
microglia from EP2-/- mice had signifi-
cantly less induction of iNOS and COX-2 
following incubation with Aβ1-42 (28).

While the precise mechanisms by which 
EP2-mediated signaling contributes to in-
creased levels of iNOS and COX-2 are not 
clear from these experiments, others have 
demonstrated the capacity of PGE2 to mod-
ulate expression or activity of both of these 
enzymes (22). Nevertheless, our results do 
clearly show that microglia specifically lack-
ing EP2 do not cause neurotoxicity in vitro 
following activation by Aβ1-42, likely re-
lated to diminished induction or activation 
of enzymes that catalyze the formation of 
known neurotoxic products. It is notewor-
thy that these results are in complete agree-
ment with our in vivo studies where we 
have specifically stimulated CD14-depen-
dent innate immune response in microg-
lia and shown ablation of neurotoxicity in 

EP2-/- mice (20, 21, 35). In combination, 
these data provide a mechanistic rationale 
for the observed apparent protective effects 
of NSAIDs like IBU in decreasing the risk 
for developing AD. Most exciting is that 
they appear to replicate the effect of COX 
inhibitors while focused on a much more 
specific pharmacologic target, EP2.

Our cell culture data suggested that EP2-/- 
microglia might protect neurons from the 
direct toxic effects of Aβ1-42. One possible 
mechanism for this could be increased Aβ 
phagocytosis by EP2-/- microglia. There-
fore, we quantified microglial phagocytosis 
of fluorescein-labeled aggregated Aβ1-42 in a 
cell cytometric assay that measures cellular 
incorporation of label (Figure 3). Our data 
showed that EP2-/- microglia had greatly 
increased fluorescein uptake. Moreover, 
our data showed that bisindolylmaleimide 
(BIM), an inhibitor of protein kinase C 
(PKC), partially suppressed wt microglial 
uptake of label and returned EP2-/- mi-
croglia to wt levels; this last finding strongly 
suggests that post-receptor signaling cas-

cades are intact in EP2-/- microglia. These 
results show that EP2-/- microglia have 
substantially increased phagocytic activity 
for aggregated Aβ1-42 compared to wt mi-
croglia. 

We tested the hypothesis that EP2-/- mi-
croglia had enhanced phagocytosis for Aβ 
peptides by adapting the assay used by oth-
ers to test the feasibility of Aβ vaccination 
by measuring the clearance of opsonized 
Aβ peptides from sections of human brain 
(3, 27, 29). It needs to be stressed that no 
antibodies were used in our experiments to 
opsonize Aβ or any other peptide; rather 
tissue sections from hippocampi of patients 
who died of AD were simply incubated with 
wt or EP2-/- microglia (Figure 4). In agree-
ment with the work of others who showed 
that wt microglia do not detectably reduce 
Aβ peptide tissue burden without opsoniza-
tion, our wt microglia did not significantly 
reduce Aβ-immunoreactive plaque material 
compared to tissue sections not incubated 
with microglia. In striking contrast, tissue 
incubated with EP2-/- microglia showed 
marked reduction in Aβ-immunoreactive 
plaque material as well as increased microg-
lial CD11b immunoreactivity, a feature of 
microglial activation. Extraction of mul-
tiple tissue samples following incubation 
with either wt or EP2-/- microglia followed 
by Western blots for Aβ peptides showed 
an approximately 50% reduction in both 
Aβ1-40 and Aβ1-42 in tissue incubated with 
EP2-/- microglia compared to tissue incu-
bated with wt microglia (28).

Figure 2. Primary cultures of mouse cerebral 
microglia were untreated or exposed to 12 μM 
Aβ

1-42
 plus 10 ng/ml interferon-γ (required for Aβ-

mediated activation of microglia in culture) for 24 
hr and then solubilized and analyzed by Western 
blot for COX-2 or iNOS. 

Figure 3. Primary cultures of mouse cerebral 
microglia were incubated fluoroscein-labeled Aβ

1-

42
 with and without BIM (10 μM), a PKC inhibitor. 

Data are % of wt microglia incubated with 
fluoroscein-labeled Aβ

1-42
 only. Two-way ANOVA 

had P<0.0001 microglia genotype, presence 
or absence of BIM, and interaction between 
these terms. Bonferroni-corrected posttests had 
*P<0.0001 for wt versus EP2-/- without BIM, but 
P>0.05 for cultures with BIM. Wt microglia with 
and without BIM had +P<0.01.

Figure 4. Aβ phagocytosis was evaluated ex 
vivo by incubating primary cultures of mouse 
cerebral microglia with consecutive cryosections 
of hippocampus from a patient who died of AD 
(×250). Compared to wt, EP2-/- microglia showed 
decrease tissue Aβ immunoreactivity (green) and 
increase in one marker of microglial activation, 
CD11b (red). Nuclei are stained blue. 

Figure 5. Primary cultures of mouse cerebral 
microglia were exposed to drug for 24 hours and 
then to drug plus fluoroscein-labeled Aβ

1-42
 (100 

nM) for another 24 hours prior to measurement 
of fluoroscein uptake by flow cytometry. Data 
are % of wt microglia incubated with fluoroscein-
labeled Aβ

1-42
 only. Solid bars are for results from 

wt microglia incubated with no drug, ibuprofen 
(IBU, 10 μM), NCX (NCX, 1 μM), or a-tocopherol (AT, 
10 μM). Striped bar is for EP2-/- microglia with no 
drug added. One-way ANOVA had P<0.0001 with 
Bonferroni-corrected repeated paired comparisons 
having *P<0.001 for wt/AT or EP2-/- versus wt/no 
treatment.
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Finally, we sought to determine if IBU, 
or another NSAID, NCX-2216 (NCX), a 
nitric oxide-releasing flurbiprofen deriva-
tive, could mimic the effects of EP2-/- with 
respect to Aβ1-42 phagocytosis (Figure 5). 
Neither NSAID at concentrations achieved 
by free drug in plasma altered Aβ1-42 phago-
cytosis by wt microglia. These results show 
that these two NSAIDs, which have the ef-
fect of suppressing all eicosanoid products 
derived from COX, have no net effect on 
Aβ1-42 phagocytosis, yet specific interrup-
tion of signaling by one PGE2 receptor 
greatly enhances Aβ1-42 phagocytosis. As 
a positive control, we observed that α-to-
copherol (AT), at concentrations achieved 
in plasma with dietary supplementation, 
did modestly increase Aβ1-42 phagocytosis 
by wt microglia. However, this increase in 
microglia Aβ1-42 phagocytosis was small 
compared to the increase achieved by spe-
cifically ablating EP2. 

In conclusion, while epidemiologic and 
animal model data support a role for the PG 
pathway in AD pathogenesis, the unexpect-
ed toxicity from protracted use of NSAIDs 
compels investigation of specific therapeu-
tic targets in this pathway other than COX 
inhibition. Previously, we have shown that 
EP2-/- mice are protected from the indi-
rect neurotoxic effects of cerebral innate 
immune response mediated by CD14-de-
pendent activation. Here, we reviewed data 
showing that microglia lacking EP2 have a 
highly desirable combination of features: 
ablated indirect neurotoxicity following ex-
posure to Aβ1-42 and enhanced phagocyto-
sis of Aβ peptides, both synthetic and those 
deposited in human brain. Together, these 
data point to microglial EP2 as a more fo-
cused target for therapy in AD.
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