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Protein aggregation and misfolding characterize
most age-related neurodegenerative diseases
including Alzheimer, Parkinson and Huntington dis-
eases. Protein aggregation has generally been
assumed to be responsible for neurodegeneration in
these disorders due to association and genetics.
However, protein aggregation may, in fact, be an
attempt to protect neurons from the stress resulting
from the disease etiology. In this review, we weigh the
evidence of whether removal of amyloids, aggre-
gates and neuronal inclusions represent a reasonable
strategy for protecting neurons.
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Introduction
Highly insoluble protein aggregates, within and out-

side the plasma membrane, are an invariant feature of a
number of neurodegenerative diseases. Amyloid-�
(A�), senile plaques, and intracellular neurofibrillary
tangles (NFT) containing tau protein occur in
Alzheimer disease (AD) (97); Lewy bodies of Parkinson
disease (PD) contain fibrillar �-synuclein; prion dis-
ease contains prion aggregates; Huntington disease
(HD) contains huntingtin aggregates. The central
hypothesis in most neurodegenerative disease research
is that such protein aggregates, specific to each disease,
are the major cause of neurodegeneration (105). This idea
is supported by the fact that protein aggregates, such as
A� and �-synuclein, have been shown to kill neurons in
vitro (77, 113, 115) and therefore, it is assumed they must
be responsible for the damage observed in the affected
human brain. The increasingly sophisticated approach-
es being developed and applied to the removal of protein
aggregates lead us to remember Hawthorne’s admonition
of almost two centuries ago (37). In a story questioning
the arrogance of the approaches of science, he considers
a scientist who marries a beautiful woman with one

defect, a birthmark. His concerted efforts to remove the
“ugly” blemish are successful but with them, he loses the
part of her that was essential to her humanity and she dies.
Might we again be looking at “birthmarks” in these pro-
tein aggregates, when efforts to remove A� have hastened
the demise of patients? In contrast to the view
expressed above, we have argued for the innocence of A�,
thinking instead that A� is a much maligned protector of
the brain (85), and here we extend our arguments to the
aggregations found in other neurodegenerative diseases
such as PD and HD. 

The Ugly?
AD, PD, HD, Pick disease, and motor neuron disor-

ders have been suggested to be caused by protein aggre-
gation. 

Alzheimer disease. Study of the brain in cases of AD
demonstrates that the A� peptide is the major con-
stituent in 2 of the hallmark pathologies, namely senile
plaques and cerebral amyloid angiopathy (28, 29, 60). A�
is derived by proteolytic cleavage from the amyloid-�
protein precursor (A�PP), a protein with multiple cellular
functions that has the general properties of a cell surface
receptor (47, 68). A�PP was first identified as a trans-
membrane protein in the neuronal plasma membrane, but
in a more recent study, it was shown that the protein is
also processed into a secreted form in the Golgi apparatus
before it ever reaches the cell surface (11, 15, 52). A� was
originally thought to be an abnormal cleavage product.
However, A� has since been established as a normal
metabolic product of neuronal A�PP and is found in the
cerebrospinal fluid (CSF) and serum of healthy indi-
viduals (33, 94). A�PP metabolism is regulated by 3
different proteolytic enzymes, �, � and �-secretases, at
their specific cleavage sites, which yields a number of dif-
ferent products, including A�1-40 and A�1-42 (96). While
A�1-40 is the predominant product of this proteolytic
pathway, A�1-42 is far more fibrillogenic in vitro and is the
major A� species present in the core of senile plaques
(both AD and non-AD related plaques) (8, 43). The
deposition of A�1-40 and A�1-42 into senile plaques likely
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begins with the nucleation of soluble A�1-42 into fibrils fol-
lowed by recruitment of normally soluble A�1-40 (43).
Microenvironmental changes in the brain, such as pH,
metal ion availability and oxidants likely impact A�
conformation and its subsequent deposition into senile
plaques (1, 98). Recently, a great deal of attention has also
been focused on the fact that soluble forms of A�, that
are “prefibrillar,” may be involved in the pathogenesis
of AD (53).

Parkinson disease. Protein aggregation in dopamin-
ergic neurons of the substantia nigra is the most common
pathology associated with neurodegeneration in PD.
For instance, �-synuclein and Parkin are present in
Lewy bodies as dense filamentous aggregates in sporadic
PD (13, 65). Accumulation of �-synuclein in cultured
human cells also causes selective degeneration of
dopaminergic neurons in the presence of dopamine, but
not in non-dopaminergic neurons, suggesting a selective
toxicity that is dependent upon accumulation of aggre-
gates (113). In addition, mice expressing the human
Ala53Thr �-synuclein mutation exhibit adult onset neu-
rodegeneration and �-synuclein aggregation in the
brain (54). Moreover, mutations in either �-synuclein or
Parkin are associated with inherited PD (90). Parkin is
similar to the ubiquitin family of proteins, which is
associated with the pathogenesis of several neurode-
generative diseases and is a component of Lewy bodies
in PD (42) as well as of NFT in AD (64). Parkin is a pro-
tein-ubiquitin E3 ligase (93) and a variety of mutations
exist in the Parkin gene of patients with autosomal
recessive (55) or sporadic PD (88). Many of these
mutations appear to be clustered in the ubiquitin-like
domain and the RING (Really Interesting New Gene) fin-
ger domains (27), suggesting that the E3 ligase activity
of Parkin is crucial for preventing PD. It was also
shown that Parkin is bound to �-synuclein in conditions
associated with �-synuclein aggregation (13, 87). Fur-
thermore, Parkin has been found to be upregulated dur-
ing the coordinated cellular response to unfolded protein-
induced stress (41).

Huntington disease. The conformational change
and aggregation of huntingtin is thought to be responsi-
ble for neurodegeneration in HD (3). HD is an autoso-
mal dominant genetic disorder and the underlying
genetic defect is expansion of an unstable DNA seg-
ment, which contains the polymorphic trinucleotide
CAG repeat. The coding sequence of the IT15 gene is
located on chromosome 4, which encodes the highly
conserved protein, huntingtin (40) and expanded CAG

trinucleotide repeats are linked to the development of neu-
rologic disease (83). However, while polyglutamine
expansion appears to be a common element in several
genetic disorders that may lead to a toxic gain of func-
tion, the underlying mechanism of its toxicity in HD
remains unknown. Recent evidence suggests that the
selective neuronal resistance or vulnerability to the
degenerative process in HD may depend on the intrinsic
level of normal huntingtin expression in either unaf-
fected or affected cell types and their regional distribu-
tion (22). In transgenic mouse and cell culture studies,
the expanded CAG repeat of huntingtin was shown to
result in intranuclear and cytosolic aggregates and dys-
trophic neurites (16, 19). Although it is unclear what role
huntingtin aggregation plays in the pathogenesis of HD,
it has been hypothesized that the inclusions are formed
by the aggregated N-terminal truncation product of
huntingtin causing neuronal death through alterations in
nuclear transport, or by affecting chromatin structure
affecting transcription (19, 83).

The Beautiful?

Alzheimer disease. Investigators studying the pri-
mary culprit associated with AD have, as highlighted
above, primarily focused on A� such that the amyloid
hypothesis (Figure 1A) is the predominant mechanism
thought to be responsible for the disease (35). Howev-
er, a number of important caveats have led us to seriously
question the validity of this hypothesis (76, 85). First, the
temporal occurrence of amyloid during disease devel-
opment argues against its importance. In cell culture
“models,” A� can lead to oxidative stress, yet it is
apparent from cell (23, 114), animal (21, 79) and human
(70, 72) studies that oxidative stress temporally pre-
cedes A� deposition. Moreover, such oxidation-mediated
increases in A� are associated with a decrease in oxida-
tive stress indicating a potential antioxidant action of A�
(Figure 1B) (71, 72). Therefore, the early interpreta-
tions based on the cell culture “models,” which were
instrumental in formulating the amyloid hypothesis, are
clearly neither an accurate reflection of in vivo nor dis-
eased conditions, and simply reflect artifactual cell cul-
ture conditions (84) that fail to provide insights on the
role of A� in vivo (85). Additionally, it should be noted
that the deposition of A� into senile plaques is by no
means specific to AD patients and, in fact, seems to be
a part of normal aging (18). The incidence of senile
plaques in control individuals increases with age, as
does the incidence of AD, and the number of senile
plaques in cognitively normal individuals can rival that



found in patients with advanced disease (57). Even con-
sidering only those patients with AD, there is a weak cor-
relation between the burden of A� and neuronal loss or
cognitive impairment (18, 67). Moreover, increased
production and deposition of A� in the central nervous
system is observed in response to injury, including
ischemia and head trauma (25, 26, 81). Also, despite
marked A� deposition in the brains of Down syndrome
patients by the second decade of life, there is little evi-
dence of further cognitive decline until advanced age.
Could it instead be that A� is a protective cellular fac-
tor necessary to maintain homeostatic balance from the
insults that cause AD (45, 99)? Recent reports support the
view that A� peptides, which are normal metabolic
products, have a protective effect; in some conditions,
they may function as either an antioxidant (39, 120),  a
trap or sink (82). In this light, A� would likely serve an
analogous function in the brain to that of albumin in the
systemic circulation, which binds metals, drugs,

metabolites, and proteins (50). These findings are con-
sistent with the trophic and neuroprotective action of A�
at physiological concentrations under serum-deprived cul-
ture conditions and in neonatal cells (4, 46, 49, 56, 78,
95, 101, 103, 110, 111, 115).

Second, if, as we suggest, A� is protective, how can
we explain the A� toxicity demonstrated in in vitro
studies? As mentioned above, while A� can be toxic
for animal or human cells in culture, it does so only at
high concentrations. One can infer significance for
A�’s LD50 like one can for any compound, for even NaCl
and H2O are toxic in excess and must be viewed in the
context of in vivo concentrations and environment. In
brain there is generally little cell death associated with
A� deposition (57) and, consequently, only a weak cor-
relation with cognitive decline (67). Additionally, neu-
ronal cells in culture actively grow on isolated AD
plaques unless the plaques are modified by microglial
cells (20). Overall, A� deposition appears correlated
best with responses to neuronal injury (26), of which the
most pronounced and chronic is aging, rather than
being the mediator of such an injury. This scenario is con-
sistent with a protective function for A� (2, 45, 85). We
suspect that the underlying stress in AD is energetic,
since a depletion of the energy supply induces upregu-
lation of A�PP expression such that ischemia, hypo-
glycemia and traumatic brain injury, a condition that
has been shown to put neurons under metabolic stress
(112), all upregulate A�PP and its mRNA in animal
models and cell culture systems (34, 44, 66, 91, 92,
116). Not only does energy shortage and Ca2+ dysregu-
lation promote A�PP expression, but they also route the
metabolism of A�PP from the non-amyloidogenic to
the amyloidogenic pathway. Inhibition of mitochondri-
al energy production alters the processing of A�PP to gen-
erate amyloidogenic derivatives (23, 24, 62), while
oxidative stress has been specifically shown to increase
the generation of A� (23, 63, 75). Consistent with this
response, A� has been detected in the human brain sev-
eral days after traumatic brain injury (26). This fits well
with the role of A�PP as an acute phase reactant upreg-
ulated in neurons, astrocytes and microglial cells in
response to inflammation and a multitude of associated
cellular stresses including axonal injury (6, 26), loss of
innervation (108), excitotoxic stress (74, 104), heat
shock (14), oxidative stress (23, 114), aging (38, 69,
106) and inflammatory processes (7). Other pro-inflam-
matory stimuli that mediate the synthesis and release of
A�PP include IL-1� (9, 30) and TNF� converting
enzyme (10). The increased expression of A�PP under
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Figure 1. A. The amyloid hypothesis proposes that all risk fac-
tors for disease, sporadic as well as genetic through mutations
(A�PP*/PS*), lead to increases in A� that then directly leads to
oxidative stress and AD. B. Our alternate hypothesis proposes
that these same risk factors for disease lead to increased
oxidative stress that then leads to increases in A� and AD. Fur-
ther, such oxidatively-induced A� actually serves to attenuate
oxidative stress by an antioxidant action.



these stress conditions is likely a reaction to decreased
energy supply.

The strongest evidence supporting the A� hypothesis
of AD is provided by familial forms of the disease,
which involve a mutation in A�PP, or polymorphisms in
genes that are directly involved in A�PP processing
(35, 89). In the past decade, a tremendous amount of
effort and resources have been dedicated to determining
the pathological mechanism underlying AD using mod-
els based on these mutations. However, mutations in
A�PP have been identified in only 20 to 30 families
worldwide and represent less than 0.1% of the 15 mil-
lion known cases of AD; mutations in both presenilin (PS)
1 and 2 account for only an additional 120 to 130 affect-
ed families. It is clear that mutations in these proteins
affect A�PP processing and are capable of inducing
amyloid deposition and dementia. The key question is,
however, whether the link between the mutations and dis-
ease development is direct or indirect (Figure 2).
Indeed, since the sensitivity of the neuronal environ-
ment to insults increases with advancing age, it is very
likely that the most important parameter in the devel-
opment of AD involves mechanisms, ie, oxidative
stress, that are strongly associated with aging. In this
regard, it is noteworthy that no aberrant neuropatholo-
gies are observed prior to the onset of dementia in mid-
dle age. Therefore, we think A� aggregation and amy-
loid deposition may be viewed as either the savior of
neurons from devastating conditions, or the result of a cel-
lular response to protect neurons from injury (Figure 1B). 

That A� and senile plaques might represent a pro-
tective adaptation to preserve homeostasis begs the
question of whether a similar attribute might be
ascribed to the tau protein and neurofibrillary tangles. In
this regard, there is significant evidence that tau phos-
phorylation is controlled by oxidative stress (102, 117-
119) and consequently serves as an oxidative sink (12,
31, 109) that reduces oxidative damage to key macro-
molecules (70, 72). Therefore, we suspect that tau, like
A�, is serving a protective antioxidant function in the
aging and diseased brain (100).

Parkinson and Huntington diseases. As in AD, the
easy assumption is that the aggregation of disease spe-
cific proteins is a major cause of PD and HD. However,
we propose that the protein aggregates associated with
PD and HD have a protective function in response to pri-
mary insult. 

Again, as for A�, aggregation of �-synuclein in vitro
was shown to result in the selective degeneration of
dopaminergic neurons (54, 113). However, the toxic

mechanism by which this occurs remains relatively
obscure, and other studies using different models failed
to show consistent neurotoxicity by �-synuclein (36,
59, 61, 73). Furthermore, there are several lines of evi-
dence suggesting that �-synuclein may, like A�, play a
protective role (36, 58). For example, the oxidative
stress caused by the herbicide paraquat causes �-synu-
clein aggregation in experimental animal brain and this
increased expression and aggregation of �-synuclein
was shown to be neuroprotective (58). Given that many
different types of neurotoxins such as MPTP and
rotenone increase �-synuclein expression in brain (5,
107), it is quite possible that the increase of �-synucle-
in represents an adaptive response to toxic stimuli.
Indeed, overexpression of �-synuclein in transgenic
mice does not consistently result in neuronal damage (59,
61), nor does it exacerbate neurodegeneration caused by
MPTP (80). Therefore, �-synuclein itself may possess
properties that counteract toxic injury, and its expression
could be associated with cell survival strategies as sug-
gested by Manning-Bog and colleagues (58).

The other constituent of the Lewy body in PD is
Parkin. As with �-synuclein, the expression of Parkin is
also known to be regulated by cellular stress. Parkin is
upregulated as part of the unfolded protein response
and specifically blocks unfolded protein stress-induced
cell death (41). The mechanism of neuroprotection by
Parkin is thought to be mediated through ubiquitin-pro-
teasome mediated protein degradation. This view is
supported by the observation that the protective effect of
Parkin is significantly reduced by treatment with lacta-
cystin, a potent proteasome inhibitor (17).
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Figure 2. The current amyloid hypothesis supposes that the
mutations in A�PP and PS (A�PPmut / PS1/2mut), as well as
other risk factors, affect A�PP processing, leads to amyloid
deposition and this increase in A� causes AD. We propose an
alternate indirect hypothesis, which proposes that these muta-
tions, as well as other risk factors, lead to increased cellular stress
that then leads to AD as well as a disease-independent
increase in A�.



We view the role of huntingtin and its aggregation in
HD in a similar way, since the emerging data supports a
neuroprotective role for it. In a postmortem study, it
was reported that the immunocytochemical distribution
of the N-terminus of huntingtin nuclear aggregates in HD
does not correspond with neuropathology (32, 51). In
addition, the nuclear aggregation of huntingtin is not
required for the initiation of neurodegeneration, nor is it
a predictor of neuronal death (48, 86). In primary neu-
ronal cultures, Saudou and colleagues (86) found no
correlation between the presence of nuclear inclusions
and mutant huntingtin-induced death. This implies that
aggregation may sequester mutant huntingtin and play a
protective role in the disease. The comparisons to the
scheme depicted in Figure 2 are compelling. Thus,
aggregation, particularly nuclear aggregation, may be of
less importance to the cascade of events leading to neu-
ronal cell death in HD than was previously implied.
Rather than being a harbinger of neuronal death, hunt-
ingtin aggregation may be a cytoprotective mechanism
that inactivates polyglutamine-induced neurotoxicity.

Does Removal of the Ugly Create Beauty?
Are amyloids, aggregates, and neuronal inclusions

toxic to neurons? Are we focusing on them merely
because they, as birthmarks (or better stated, age
marks), are ugly? If so, as in the case of the beautiful wife,
will we lose our humanity by neglecting to realize that
we need as much the ugly as the beautiful? It is the bal-
ance of these and so much else that defines a healthy life.
While we by no means intend to suggest that protein
aggregates play a negligible role in disease pathogene-
sis or that modulating them may have some clinical
benefits, it is very unlikely that they are the proximal
mediator of neurodegeneration. As detailed above,
many lines of evidence exist to support an alternate role
for them in the neurodegenerative process. It may be pre-
mature to determine that they are saviors of neurons,
although such a statement would not be without evi-
dence. Nonetheless, we hope that by opening up the
weaknesses that challenge “dogma,” we can clarify that
the “ugly” has little to do with initiating disease and
therapeutic focus on removing the “devil” will have lit-
tle efficacy.
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