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Dendritic cells (DCs) are a subclass of antigen-pre-
senting cells critical in the initiation and regulation
of adaptive immunity against pathogens and
tumors, as well as in the triggering of autoimmunity.
Recent studies have provided important knowledge
regarding distribution of DCs in the central nervous
system (CNS) and their role in intrathecal immune
responses. DCs are present in normal meninges,
choroid plexus, and cerebrospinal fluid, but absent
from the normal brain parenchyma. Inflammation is
accompanied by recruitment and/or development of
DCs in the affected brain tissue. DCs present in dif-
ferent compartments of the CNS are likely to play a
role in the defence against CNS infections, and also
may contribute to relapses/chronicity of CNS
inflammation and to break-down of tolerance to CNS
autoantigens. CNS DCs can therefore be viewed as
a future therapeutic target in chronic inflammatory
diseases such as multiple sclerosis.
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Dendritic Cells and the Central Nervous System:
Old Concept Challenged

The brain is traditionally termed “an immunoprivi-
leged site.” The basis for this has been laid by observa-
tions that many foreign antigens inoculated into the
parenchyma of the brain, such as allografts or heat-
killed BCG, escape recognition by the adaptive
immune system (48, 53). However, brain pathogens and
even autoantigens can be targeted by T-cell responses,
which play a pivotal role in a variety of inflammatory dis-
eases of the central nervous system (CNS), ranging
from infections to multiple sclerosis (MS) (23, 39). To
cross the blood-brain barrier (BBB), T-cells directed
against foreign or self antigens residing in the brain
must be activated in the periphery (30). In experimental
animals, this is often achieved by peripheral immuniza-
tion with respective antigens emulsified in complete
Freund’s adjuvant (45, 90). In real human diseases,

however, the mechanisms behind activation of the
brain-directed T-cells are far less clear.

The key role in the initiation and regulation of T-cell
responses belongs to dendritic cells (DCs) (1). Immature
DCs, located in non-lymphoid tissues, efficiently endo-
cytose antigens, but cannot yet present them. Addition-
al immature DCs are recruited from surrounding tissues
and blood to the sites of inflammation, microbial inva-
sion, and/or tumor growth (52, 68). Microbial products,
inflammatory cytokines, and products of tissue necrosis
trigger maturation of DCs, which then lose the ability to
take up antigens, but upregulate the expression of MHC
and costimulatory molecules, becoming the most potent
antigen presenting cells (APCs) in the body (22, 70).
Mature DCs migrate via afferent lymphatics to T-cell
areas of draining lymph nodes and activate naive T-
cells (81). Mature DCs are virtually the only type of
APCs that can induce a primary T-cell response (1).
Aimed at elimination of pathogens and tumors, DCs
can also trigger responses against autoantigens released
in tissues during inflammation; one prerequisite for this
is sustained presentation of the autoantigens by a suffi-
ciently large number of mature DCs (15, 42, 43).

Until recently, this concept did not appear to apply to
the CNS, which was presumed to be devoid of DCs.
However, the pathway connecting the CNS with the
lymphatic system, in particular with deep cervical
lymph nodes (DCLNs), had been studied in detail (29).
In rodents, soluble antigens injected into either brain
ventricles or brain parenchyma reach the DCLNs equal-
ly well (via perineural and periarterial spaces of the
olfactory nerves—submucosa of the upper nasal
ducts—conventional afferent lymphatics) (5, 12, 29,
41). In both cases, T-cell-dependent antibody production
is induced in the DCLNs, indicating that the immune priv-
ilege of the brain is not absolute (25, 29). However, this
antibody response is much stronger when the proteins are
injected into the cerebrospinal fluid (CSF), as com-
pared to injections into the brain parenchyma (25, 29).
The difference is even more striking with particulate
antigens, less prone to passive diffusion: when careful-
ly inoculated into the brain parenchyma, they are not rec-
ognized by the adaptive immune system; when inoculated
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into the CSF, they induce primary T-cell responses as in
conventional sites (47, 82; Table 1).
Studies of DCs provide a clue to this dissociation. Vass
and colleagues were probably the first to report that
normal rat leptomeninges contain a distinct population
of dendriform cells located predominantly around
blood vessels, constitutively expressing of MHC class II
molecules, and apparently capable of taking up protein
antigens, such as horseradish peroxidase, injected into the
CSF (87). Using a panel of double immunostainings,
McMenamin subsequently confirmed these MHC class
II-positive cells to be DCs and also demonstrated their
presence in the rat dura mater (50). Several groups
detected DCs in normal choroid plexus in the rat and in
man (28, 46, 50). Thus, DCs are normally present in all
non-neural structures that are in direct contact with the
CSF (Table 1). Notably, no other cells in rat meninges and
choroid plexus express MHC class II under normal con-
ditions (50). Furthermore, mature DCs injected into the
subarachnoid space of the rat migrate via the above-
mentioned olfactory pathway to T-cell areas of the
DCLNs (7), suggesting that meningeal and choroid
plexus DCs, after maturation, can travel by the same route
and induce a primary T-cell response against pathogens
invading the CSF compartment. 

In contrast, normal brain parenchyma contains no
DCs (46, 74, 84) and thus no vehicle to transport anti-
gens to DCLNs in the form recognizable by T-cells.
Antigens reaching the DCLNs on their own would
encounter lymph node DCs, most of which are mature and

hence have low capacity of antigen uptake (70, 81). The
reason for the absence of DCs from normal brain
parenchyma is unclear: either DCs are not recruited or
do not survive there (40).

However, in case of infection or autoimmune
inflammation, DCs do appear in the affected brain
parenchyma. In acute models, such as acute experi-
mental autoimmune encephalomyelitis (EAE) in Lewis
rats, DC infiltration in the brain is relatively minor and
restricted to perivascular cuffs (46). In models of chron-
ic CNS inflammation, such as delayed-type hypersensi-
tivity (DTH) reaction against BCG sequestered in the
brain parenchyma (46), chronic EAE (19, 74, 84), and
experimental toxoplasmic encephalitis (18), brain DCs
are numerous and located not only perivascularly, but also
throughout the brain parenchyma. During the initial
phase of chronic EAE, DCs appear in the brain relatively
late, after infiltration of macrophages and simultane-
ously with the onset of clinical disease (84), suggesting
their involvement in chronicity of inflammation, rather
than in its initiation. 

The source of brain DCs, particularly in mouse EAE,
may be diverse. Based on perivascular localization of
these cells, their phenotype (CD11b-CD11c+DEC-205+)
and co-localization with cells expressing the chemokine
CCL20 (MIP-3�), Serafini et al suggested that brain
DCs are recruited from the systemic circulation (74). On
the other hand, Fischer and colleagues described
CD11b+CD11clow/+ DEC-205- myeloid brain DCs (18,
19) and generated similar cells from glial cultures (17),
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CSF compartment* Brain parenchyma

Drainage of soluble Yes Yes
proteins to DCLNs

Immune responses to 
antigens injected into
respective compartments

Soluble proteins Ab production in DCLNs More delayed and weak Ab
response

Heat-killed BCG DTH response at the site of No systemic response
injection

Live influenza virus Proliferation in DCLNs, No systemic response initially, 
cytotoxic T-cell response very delayed T-cell response in

a proportion of animals

DCs Present Absent

* Including meninges and choroid plexus

Table 1. Comparison of immune responses induced from different compartments of normal CNS and their relationship with DCs (5,
28, 29, 46, 47, 50, 60, 74, 82, 84, 87).



suggesting DC development from microglia or another
co-isolated CNS-resident DC precursor; the latter pos-
sibility has been confirmed by another group (73). Dif-
ferent types of DCs may have been described in these
reports, and their proportions in the total pool of brain
DCs remain to be determined. DCs isolated from the
chronically inflamed brain are mature, as they produce
IL-12 and can activate naive T-cells (18, 19); intrathecal
maturation of brain DCs is likely to be driven by
inflammatory cytokines and infiltrating T-cells express-
ing CD40 ligand (9, 24). Importantly, as noted by Fischer
and Reichmann (19), DCs do not require IFN-� for
their optimal function, which distinguishes them from
other types of brain APCs. A key question to be
answered is whether mature brain DCs can migrate to
DCLNs or other secondary lymphoid organs.

DCs in Human CSF
The interior of human body is surveyed by two DC

types: myeloid DCs and plasmacytoid DCs. Both of
them circulate in blood (37, 69, 77; Table 2). Circulat-
ing myeloid DCs are potent APCs, while plasmacytoid
DCs, when freshly isolated from blood, essentially lack
this capacity (37). At the same time, circulating plas-
macytoid DCs produce large amounts of type I interfer-
ons (IFNs) upon infection with enveloped viruses and cer-
tain bacteria (77), which makes them important effector
cells of the anti-infectious immunity. Plasmacytoid
DCs become strong APCs after a several-day maturation
process, which can be induced in vitro by enveloped

viruses, cytokines such as TNF-�, or CD40 ligand (26,
34, 37).

We have recently reported that human CSF contains
both myeloid and plasmacytoid DCs, phenotypically
similar to those circulating in blood (60-62). A few cells
of each subset are present in the CSF in non-inflamma-
tory neurological diseases (NIND; Figure 1). This is
expected, as DCs are normally present in tissues that sur-
round the CSF space. Numbers of CSF DCs are elevat-
ed in clinically definite MS, early MS in the form of acute
monosymptomatic optic neuritis (ON) with oligoclonal
IgG in the CSF, acute bacterial meningitis (BM), and
Lyme meningoencephalitis (LM) (60-62). Highest DC
numbers are observed in LM CSF, with striking accu-
mulation of plasmacytoid DCs.

Further experiments showed that in BM and LM,
CSF supernatants are strongly chemotactic for immature
monocyte-derived DCs (myeloid DCs generated in
vitro from blood monocytes [70]), suggesting that
recruitment of DCs to the CSF in these diseases is
mediated by chemoattractants present in the CSF (61).
Myeloid blood DCs respond to an array of chemoat-
tractants, including CXCL12 (SDF-1), CCL2 (MCP-1),
CCL4 (MIP-1�), CCL5 (RANTES) and C5a; plasma-
cytoid DCs respond strongly to CXCL12, much weak-
er to CCL2, and do not respond to other chemoattractants
studied (8, 61, 65). CXCL12 is elevated in the CSF in
both BM and LM; in addition, C5a, CCL2, CCL4, and
CCL5 are elevated in BM CSF (61). These chemoat-
tractants, acting in concert, appear to play a key role in
recruitment of respective DC subsets to the CSF in BM
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Myeloid DCs Plasmacytoid DCs

Morphological features Pseudopods, vacuolized Smooth plasma membrane, 
cytoplasm abundant endoplasmic reticulum

Surface markers

CD11c ++ –

CD123 (�-chain of IL-3 receptor) +/– ++

Growth factor GM-CSF IL-3

Differentiation into macrophages Yes No

Phagocytosis Yes No

HLA-DR (MHC class II) ++ +

Co-stimulatory molecules (CD80, CD86) + +/–

Ability to activate naive T-cells ++ – †

Production of IFN-�/� +/– +++

* Data refer to DC subsets freshly isolated from blood of healthy donors.
† Become potent T-cell stimulators after a maturation process, which can be induced by enveloped viruses, TNF-� or CD40L and takes
a few days.

Table 2. Comparison of myeloid and plasmacytoid blood DCs (34, 37, 69, 77)*.



and LM. In ON and MS, chemotactic activity of the
CSF does not differ from that in NIND (62). Accumu-
lation of DCs in CSF of these patients is more likely due
to shedding from juxta-CSF brain lesions, where CCL2,
CCL4, and CCL5 are expressed (4, 49, 79), or from lep-
tomeningeal mononuclear infiltrates typically observed
in MS (27). Expression of the chemokine receptor
CCR5 by blood myeloid DCs is elevated in MS and
ON, which may facilitate recruitment of myeloid DCs to
the CNS in response to CCR5 ligands CCL4 and CCL5
(62).

Thus, accumulation of DCs in human CSF is direct-
ly related to the CNS inflammation. Plasmacytoid DCs
in CSF have the same immature phenotype as in blood
(60), suggesting their low antigen-presenting capacity and
strong ability to produce type I IFNs. This awaits further
investigation. Considering a beneficial effect of type I
IFNs in MS, one may wonder whether plasmacytoid
DCs play any anti-inflammatory role in this disease.
Myeloid DCs, on the other hand, are potent APCs and
may activate T-cells either within the CNS, or in the
regional lymph nodes. The next section of this review will
focus mainly on the myeloid DCs.

CNS DCs in Human Diseases: a Model
The primary task of DCs during the immune

response is to activate T helper (Th) cells. It has been
known for a long time that naive Th cells, after priming,
can differentiate either into Th1 cells, which produce IFN-
�, IL-2 and TNF-� and promote cell-mediated immuni-
ty, or into Th2 cells, which produce IL-4, IL-5 and IL-
13 and promote humoral immunity (56). More recently,
it was shown that naive T-cells can also develop into aner-
gic regulatory T-cells, which constitutively express the
�-chain of the IL-2 receptor (CD25), do not proliferate
and suppress activation of other naive Th cells (32, 33).
Myeloid DCs, depending on their maturity, numbers,
cytokine profiles and other conditions, can drive naive
Th cells towards any of these subsets (32, 35, 38, 85;
Table 3), which should be taken into account when esti-
mating the role of DCs in different CNS diseases.
Based on the findings by Carson et al, who showed that
mature DCs injected into the CSF migrate to T-cell
areas of DCLNs (7), we assume here that the same
process occurs during the natural course of inflammation;
however, it should be noted that this awaits direct
experimental proof. Below, we shall consider 3 situations:
i) non-inflammatory conditions, ii) CNS infections, and
iii) MS.
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Figure 1. Numbers of myeloid (A) and plasmacytoid (B) DCs in
CSF from patients with non-inflammatory neurological dis-
eases (NIND); acute monosymptomatic optic neuritis (ON) with
oligoclonal IgG in the CSF, regarded as early multiple sclerosis
(MS); clinically definite MS; acute bacterial meningitis (BM);
Lyme meningoencephalitis (LM). Patients with ON were sam-
pled within 4 weeks after disease onset. Patients with BM were
sampled within 3 days and those with LM within 10 weeks after
disease onset, and before antibiotic treatment. None of the MS
or ON patients had been treated with any kind of immunomod-
ulatory drugs, including steroids. DCs were detected by 3-color
flow cytometry as cells negative for CD3, CD14, CD16, CD19,
CD20 and CD56, positive for HLA-DR, and positive for either
CD11c (myeloid DCs) or CD123/IL-3R� (plasmacytoid DCs)
(60-62). Bars = medians.



Non-inflammatory conditions. In the non-inflamed
CNS, DCs are only present in the CSF compartment
(meninges, choroid plexus and CSF) (28, 46, 50, 60,
74, 84). The connection between the CNS and the
DCLNs, described earlier in rodents and potentially
allowing DCs to migrate out of the CNS, exists in
humans as well, although the main pathway of the lym-
phatic drainage appears to be the one along major brain
arteries, rather than along the olfactory nerves (41, 91).
In non-inflammatory conditions, however, the absence
of DC maturation factors and of significant antigen
release in the CSF would not allow DC to mature and
migrate to the DCLNs; thus no substantial T-cell acti-
vation will occur (Figure 2).

Little is known so far about the influence of the nor-
mal CSF on the immunoregulatory properties of DCs.
Several reports have suggested that normal CSF envi-
ronment suppresses Th1 responses, such as DTH, and
favors Th2 responses. For instance, macrophages after
culture with normal CSF supernatants become able to
inhibit DTH; this has been attributed to the presence of
TGF-� in the CSF (93). Soluble proteins infused into the
CSF, such as ovalbumin, induce stronger Th2 respons-
es than those elicited by the same dose of antigen
injected subcutaneously (25). On the other hand,
microorganisms inoculated into the CSF of rodents
induce same types of primary T-cell responses as when
injected outside of the CNS, including DTH (47, 82). Fur-
thermore, culture of monocyte-derived DCs with non-
inflammatory CSF does not impair DCs’ ability to stim-
ulate IFN-� production by naive allogeneic T-cells in vitro
(63), indicating that the effect of normal CSF on DCs may
differ from that on macrophages. In all, the available data
suggest that DCs normally present in the CSF compart-
ment can induce both Th1 and Th2 responses, depend-
ing on the type of antigen, possibly with an enhanced abil-
ity to elicit Th2 responses to soluble proteins.

CNS infections. In CNS infections, such as BM and
LM, myeloid DCs are actively recruited from blood to
the CSF (61). These DCs, together with resident
meningeal and choroid plexus DCs, can be expected to
mature and migrate to the DCLNs in order to generate
the anti-infectious T-cell response. DC maturation at
the sites of infections is usually driven by inflammato-
ry cytokines such as TNF-� and IL-1�, and by microbial
products such as LPS (1, 70). In contrast, the anti-
inflammatory cytokine IL-10 inhibits maturation of
myeloid DCs (6, 80) or even converts them into CD14+

macrophage-like cells with low antigen-presenting
capacity (20). In BM, the CSF does contain TNF-�, IL-
1� and LPS (88); yet, monocyte-derived myeloid DCs
fail to mature when cultured with BM CSF supernatants
and are deficient in priming IFN-� production by naive
T-cells (63). In contrast, DCs cultured with LM CSF
supernatants undergo maturation and prime a strong
IFN-� production by naive T-cells (63). The opposing
effects of the CSF from the 2 patient groups correlate with
CSF levels of IL-10, which are high in BM and are sev-
eral-fold lower in LM (21, 63). These data are consistent
with the character of T-cell responses in vivo: relative-
ly minor intrathecal T-cell response in BM and strong Th1
response in LM (16, 23). Although more studies will be
required, the data allow us to suggest that the function-
al status of CNS DCs, modulated by the cytokine
milieu, can influence differentiation of naive T-cells in
CNS infections (Figure 2).

Multiple sclerosis. MS is characterized by multiple
foci of chronic inflammation, demyelination, and axon-
al loss in the brain and spinal cord (39). The present con-
sensus is that inflammation in MS is initiated by Th1 cells
that after activation in the periphery cross the BBB, rec-
ognize their target antigen and activate non-specific
effectors such as macrophages and microglia, which are
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Th1 Th2 Regulatory T-cells 
or T-cell anergy 

DC maturation time Short Long Immature DCs

Antigen concentration High Low ?

Cytokines and other Molecules that Molecules that Molecules that inhibit  
molecules present augment production suppress production DC maturation
during DC maturation of IL-12 by DCs of IL-12 by DCs (IL-10, glucocorticoids)

(IFN-�, CD40L, viral (PGE2, cholera toxin)
RNA, pertussis toxin)

DC:T ratio High Low ?

Table 3. Conditions favoring the induction of different types of T-cell responses by myeloid DCs (6, 32, 35, 38, 80, 85).



principal mediators of myelin and axonal damage (11, 30,
39, 54). The dissemination of inflammatory lesions in
time indicates that peripheral T-cell activation in MS is
repetitive or continuous. The cause of this is still uncer-
tain. Furthermore, it remains unclear why the infiltrating
T-cells persist in MS lesions and are not eliminated by
apoptosis, unlike in the monophasic T-cell-mediated

demyelinating disease acute disseminated encephalo-
myelitis (2, 64). DCs present in the CSF compartment
and, presumably, in MS lesions may represent one of the
factors contributing to the chronicity of MS.

DCs in meninges, choroid plexus and CSF. Although
the etiology of MS is unknown, subclinical viral infec-
tion persisting in the CNS is considered to be a likely

28 Dendritic Cells in the CNS—Pashenkov et al

Figure 2. A proposed model of the role of myeloid dendritic cells (DCs) present in the CSF compartment in immune responses in
the CNS. DCs are recruited from blood to the CSF compartment in non-inflammatory neurological diseases (NIND), acute bacter-
ial meningitis (BM), Lyme meningoencephalitis (LM) and multiple sclerosis (MS), and may migrate further to the deep cervical lymph
nodes (DCLNs) (7). Weight of arrows corresponds to the possible magnitude of migration. In NIND, the DC traffic is minor, no for-
eign antigens or maturation factors are present, and therefore no significant T-cell activation is induced in the DCLNs. In BM and
LM, the DC traffic is increased, and foreign antigens (ags) and maturation factors (such as TNF-�) are present in the CSF, poten-
tially allowing DCs to activate T-cells in the DCLNs . However, IL-10 present at high levels in BM CSF may inhibit maturation of DCs
or even convert them into macrophages, thereby limiting their T-cell-stimulatory potential. In MS, recruited DCs take up myelin anti-
gens released into the CSF, migrate to the DCLNs and activate autoreactive myelin antigen-specific T-cells. Hatched pattern of DCs
in MS indicates that DCs may bear certain aberrations that contribute to the development of MS, eg, expression of certain HLA mol-
ecules or increased ability to produce pro-inflammatory cytokines. Note: this scheme is referred only to DCs in the CSF compart-
ment (meninges, choroid plexus and CSF) and may not be applicable to the DCs infiltrating brain parenchyma upon inflammation.



cause of the disease (10). The initial immune attack in
MS may be directed against the persisting virus, the
myelin damage being a bystander phenomenon at this
stage. Indeed, a Th1 response against a microorganism
sequestered in the brain (eg, heat-killed BCG) produces
all pathological hallmarks of the MS lesion, including
edema, demyelination and axonal transsection (45, 57).
However, since normal brain parenchyma lacks DCs, the
immune response against the putative virus has to be
elicited by DCs at other locations. Two scenarios are pos-
sible: i) systemic reinfection with the same pathogen,
involving DCs outside of the CNS and leading to acti-
vation of pathogen-specific T-cells in the lymph nodes
draining the site of reinfection; and ii) release of the
virus from the brain parenchyma into the CSF and
uptake by meningeal, choroid plexus and/or CSF DCs,
which would migrate to, and activate T-cells in the
DCLNs. The former scenario is predicted by the above-
mentioned experiments with BCG performed by Perry
and colleagues (45, 57). The latter scenario gained
some support from experiments by Stevenson et al (82),
who showed that live influenza virus inoculated into
the brain parenchyma in mice and initially ignored by the
adaptive immune system, does induce a very delayed sys-
temic T-cell response in some animals, suggesting that
the virus is released from the infected cells, taken up by
CNS APCs (eg, DCs) and presented to T-cells in the
secondary lymphoid organs. 

Even if MS is initiated by a T-cell attack against the
persisting virus, a true autoimmune Th1 response
against myelin antigens develops rather early in the dis-
ease (78, 83), possibly due to cross-reactivity between
viral and myelin antigens, or due to epitope spreading (55,
58). We propose that DCs in CSF, meninges and
choroid plexus participate in systemic activation of
these autoreactive T-cells. In early MS, myeloid DCs
accumulate in the CSF (Figure 1) and remain elevated
over several months; thus, relatively high traffic of DCs
to the DCLNs and high DC:T-cell ratios could be
expected, favoring a Th1 response (Table 3). Myelin
antigens, such as myelin basic protein (MBP)-like
material, are released into the CSF during MS exacer-
bations (92) and could be captured by DCs (Figure 2).
After maturation in the presence of inflammatory
cytokines and products of tissue destruction, myelin
antigen-loaded DCs could migrate to the DCLNs and
induce an anti-myelin Th1 response (Figure 2). These Th1
cells, recirculating via blood back to the CNS, would
incite new lesions with release of more myelin antigens
into the CSF, which may eventually render MS a self-per-
petuating disease. This hypothesis is partly supported by

data in EAE, the commonly used animal model of MS:
i) in acute EAE in monkeys, cells with a phenotype of
mature DCs and containing myelin antigens are found in
the DCLNs (14); and ii) aggravation of murine EAE by
surface cryotrauma of the brain can be abolished by
removal of the DCLNs (66). 

In addition, there are indications of some DCs inter-
acting with T-cells directly in the meninges. Mononuclear
infiltrates in the leptomeninges are typical features of both
MS and EAE (27, 86, 87). Vass et al, who were the first
to identify meningeal DCs as a distincT-cell population,
noted that these cells constitute a large proportion of
MHC class II-positive cells in the meningeal infiltrates
in EAE and are closely apposed with the infiltrating T-
cells (87). In MBP-induced EAE in Lewis rats, T-cells
in the meningeal infiltrates preferentially express TCR
V�8.2 (ie, are directed against MBP) and proliferate in
situ (76), which is consistent with the presence of pro-
fessional APCs presenting MBP. In MS, the nature of anti-
gens being presented by meningeal APCs is unknown;
these could be myelin or viral peptides.

Brain DCs. Evidence for the presence of DCs in MS
brain lesions remains indirect (3). In chronic EAE,
however, brain DCs are numerous (19, 74). They under-
go intrathecal maturation (74) and can be expected to
migrate to DCLNs. This process is normally directed by
the chemokines CCL19 (ELC, MIP-3�), CCL21 (SLC,
6Ckine) and CXCL12 produced in the afferent lym-
phatics and lymph nodes (65, 71). However, a recent
report indicates that CCL19 is expressed de novo in
chronic EAE lesions (75) and is likely to retain mature
DCs. Retention of mature DCs in the inflamed tissue has
been recently suggested as a critical event in development
of chronic inflammation (42, 72). Retained DCs can
activate naive T-cells directly in the target organ, drive
a Th1 response by producing IL-12 (19), and prevent
apoptosis of activated T-cells by secreting cytokines
such as IL-15 (89). Mature DCs persisting in the
inflamed tissue are proposed to serve as a framework for
the formation of ectopic secondary lymphoid structures
frequently observed at the sites of chronic inflammation
(72), including old MS plaques (67).

Summarizing, this model implies the existence of 2
pools of CNS DCs in chronic EAE and MS: i)
meningeal, choroid plexus and CSF DCs, which after
uptake of myelin antigens migrate to DCLNs, activate
naive T-cells outside of the CNS, and contribute to
onset of new MS lesions; and ii) brain DCs, which are
recruited and retained in already existing lesions and acti-
vate T-cells intrathecally, contributing to lesion activity.
Further characterization of CNS DCs and their migration
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will be required to validate this model. A key question
to be answered in this context is why chronic inflam-
mation and autoimmunity do not develop in other neu-
rological diseases associated with tissue damage and
release of myelin antigens, such as stroke (92). We sug-
gest that immunological aberrations at the level of DCs
may contribute to the break-down of immune tolerance
to myelin antigens, leading to development of MS.
Some of these aberrations could be: i) expression of
HLA molecules that can present specific myelin antigens;
ii) increased recruitment and survival of DCs in the
CNS, caused by uncontrolled intrathecal expression of
DC chemoattractants and growth factors and/or by
increased expression of chemokine receptors by DCs
(4, 49, 62, 79); iii) increased ability of DCs to induce a
Th1 response (31); and iv) systemic or intrathecal defi-
ciency of DC anti-maturation factors (such as IL-10)
and predominance of pro-maturation factors (such as
TNF-�) (59), determined genetically or caused by com-
mon infections. These factors may enable DCs to drive
chronic CNS inflammation resulting in the large
demyelinating plaques typical for MS.

Conclusions and Future Prospectives
Recent studies have shed light on the role of DCs in

immune responses in the CNS. Available data suggest that
depending on the situation, the effect of DCs can be
beneficial or deleterios, resulting not only in the elimi-
nation of pathogens, but also in chronic inflammation and
autoimmunity. The CNS DCs can therefore be considered
as a therapeutic target in chronic inflammatory diseases
of the CNS, first of all in MS. Possible strategies could
interfere with recruitment of DCs to the CNS and with
intrathecal DC survival/ maturation. In this context,
experimentation with IL-10 appears to be promising.
For instance, intrathecal inoculation of a viral vector
expressing the IL-10 gene almost totally suppresses
relapses of chronic EAE in SJL mice (13); one target of
IL-10 in these mice could be brain DCs, which are
numerous in this model (74). IFN-�, one of the few
drugs with some clinical effect in MS, may also affect
DCs, decreasing their ability to produce IL-12 and to
prime the Th1 response (36, 51). Recent advances in the
fields of chemokine receptor antagonists and matrix
metalloproteinase inhibitors open up the prospect of
developing drugs that would target migration of specif-
ic cell types, including DCs (44). Further studies are
warranted to define more efficient approaches to influ-
ence CNS DCs, in particular: i) detailed characterization
of molecular mechanisms of DC recruitment at the
BBB, and of DC survival in the brain; ii) further search

for immunological aberrations at the level of DCs in
MS patients vs. controls; iii) defining the role of DC
migration from the CNS to secondary lymphoid organs
in initiation and progression of MS; and iv) search for
tools to “inactivate” CNS DCs in MS.
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