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SUPPLEMENTARY METHODS  

Study Design, Setting, and Participants 

In the prospective, population-based birth-cohort study––the Steps to the Healthy 

Development and Well-being of Children (STEPS Study), families of Finnish children are 

followed until early adulthood [1]. From all children born in the Hospital District of Southwest 

Finland from January 2008 through April 2010 to Finnish or Swedish-speaking mothers (eligible 

cohort—9811 mothers and 9936 infants), families of 1827 infants (30 pairs of twins) were 

recruited either during the first trimester of pregnancy or soon after birth. An intensive follow-up 

of acute respiratory infections (ARIs) from birth to age 24 months was offered to these families, 

and 923 children were enrolled [2, 3]. The children were followed for development of asthma 

until age 7.5 years [4]. No selection criteria other than language (Finnish or Swedish speaking 

family) were applied to recruiting the families in the STEPS Study or in the subcohort. All data 

were reviewed at the Turku Centre for Child and Youth Research. The Ministry of Social Affairs 

and Health and the Ethics Committee of the Hospital District of Southwest Finland approved the 

study. Parents of participating children gave their written, informed consent. The study complies 

with the Declaration of Helsinki.  

Based on data from the Finnish National Birth Registry [1], the participating and 

nonparticipating children were similar in the baseline characteristics, such as sex, gestational 

age, birth weight, 5-minute Apgar-points, and maternal BMI (all P>0.10) while the participating 

children were more often first-borns. 
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Exposure 

The primary exposure was exposure to systemic antibiotic use for any indication, 

including ARIs and non-ARIs, during infancy (age 0-11 months). Antibiotic treatments were 

classified in therapeutic classes as previously described by Poole and colleagues [5]. Narrow-

spectrum penicillins (amoxicillin, phenoxymethylpenicillin, benzylpenicillin, and ampicillin), 

first-generation cephalosporins, sulfonamides, and nitrofurantoin were considered narrow-

spectrum antibiotics [5]. All other antibiotics, including combination of b-lactam and b-

lactamase inhibitors (e.g., amoxicillin-clavulanate) and macrolides, were considered broad-

spectrum. Data of antibiotic use was captured through multiple sources. Parents were instructed 

to record all respiratory and other symptoms as well as physician visits with antibiotic treatments 

into a daily diary during age 0-11 months. Families were also instructed to visit the study clinic 

during ARIs at the Turku Centre for Child and Youth Research, Turku University Hospital and 

University of Turku (Turku, Finland), and children were examined by a study physician using a 

structured form. Data on emergency department visits, outpatient visits, and hospitalizations 

during age 0-11 months with antibiotic treatments were retrieved from medical and prescription 

records of the Hospital District of Southwest Finland [4].  

Of 923 children in the STEPS respiratory cohort, 886 (96%) children had data of 

antibiotic treatments during age 0-11 months. Overall, 468 antibiotic treatments were identified 

through daily diaries and 739 antibiotic treatments (either new prescription or on-going use of 

antibiotics) were identified through physician visits (204 study clinic visits, 381 other outpatient 

clinic visits, and 154 emergency department visits or hospitalizations). With combining these 

data and filtering out duplicated treatments (e.g., multiple visits during the same antibiotic 
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treatment), a total of 754 antibiotic treatments were identified in 697 children during age 0-11 

months. 

 

Mediator 

The mediator of interest was longitudinal changes in nasal airway microbiota during age 

0-24 months. Using a standardized protocol [2, 3], nasal swab specimens were collected by study 

personnel using flocked nylon swabs (Copan, Brescia, Italy) at a scheduled participant visit at 

age 2, 13, and 24 months during healthy state.  

 

16S rRNA Gene Sequencing of Nasal Airway Microbiota 

The nasal swab samples were stored at -80°C after the collection. Swabs were suspended 

in phosphate buffered saline and tested by using 16S rRNA gene sequencing. 16S rRNA gene 

sequencing methods were adapted from the methods developed for the National Institutes of 

Health (NIH) Human Microbiome Project [6, 7]. Nasal swab samples were eluted in 500 µl of 1 

x PBS by vortexing. An aliquot of 200 µl was used as a starting material for bacterial DNA 

extraction. The DNAs were isolated from nasal swab samples with automated MagNA Pure 96 

System using MagNA Pure 96 DNA and Viral NA SV 2.0 kit (Cat. No 6543588001, Roche 

Diagnostics, Mannheim, Germany) with Pathogen Universal 200 3.1 protocol and an elution 

volume of 50 µl. ZymoBiomics Microb Community standard was used as a positive control (Cat. 

No. D6300, Zymo Research). DNA extractions were performed at Turku Centre for 

Biotechnology (Turku, Finland) and extracted DNAs were sent to Baylor College of Medicine 

(Houston, TX, USA) for microbiota testing. 
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The 16S rDNA V4 region was amplified by PCR and sequenced on the MiSeq platform 

(Illumina; SanDiego, CA) using the 2x250 bp paired-end protocol yielding pair-end reads that 

overlap almost completely. The primers used for amplification contain adapters for MiSeq 

sequencing and single-end barcodes allowing pooling and direct sequencing of PCR products [8, 

9]. Sequencing read pairs were demultiplexed based on the unique molecular barcodes, and reads 

were merged using USEARCH v7.0.1090 [10], allowing zero mismatches and a minimum 

overlap of 50 bases. Samples with suboptimal amounts of sequencing reads were re-sequenced to 

ensure that the majority of bacterial taxa were encompassed in our analyses. 16S rRNA gene 

sequences were clustered into operational taxonomic units (OTUs) at a similarity cutoff value of 

97% using the UPARSE algorithm [11]. The use of 97% cutoff value has been a widely used cut-

off in the microbiota literature [7, 12, 13] because it offers a compromise between the potential 

inflation of the number of OTUs due to sequencing errors and the cutoff used for taxonomic 

classification. OTUs were determined by mapping the centroids to the SILVA database [14] 

version 128 containing only the 16S V4 region to determine taxonomies. Rarefaction curves of 

bacterial OTUs were constructed using sequence data for each sample to ensure coverage of the 

bacterial diversity present. A custom script constructed a rarefied OTU table (rarefaction was 

performed at only one sequence depth) from the output files generated in the previous two steps 

for downstream analyses. Analyses were conducted at the genus level using bacterial relative 

abundances. For clustering, relative abundances of zero were imputed with 1 / rarefaction cutoff 

and relative abundance data were log2-transformed.  

Quality control 

 The processes involving microbial DNA extraction, 16S rRNA gene amplification, and 

amplicon sequencing included a set of controls that enabled us to evaluate the potential 
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introduction of contamination or off-target amplification. Nontemplate controls (extraction 

chemistries) were included in the microbial DNA extraction process and the resulting material 

was subsequently used for PCR amplification. In addition, at the step of amplification, another 

set of nontemplate controls (PCR-mix) was included to evaluate the potential introduction of 

contamination at this step. Similarly, a positive control composed of known and previously 

characterized microbial DNA was included at this step to evaluate the efficiency of the 

amplification process. Before samples (unknowns) were pooled together, sequencing controls 

were evaluated and the rejection criteria were the presence of amplicons in any of the 

nontemplate controls or the absence of amplicons in the positive control. In the present study, no 

amplicons were observed in the nontemplate controls and a negligible amount of raw reads was 

recovered after sequencing. A total of 46,441,397 high-quality merged sequences were obtained 

by 16S rRNA gene sequencing of the nasal airway samples, of which 45,854,654 (99%) were 

mapped to 16S reference data. 

A total of 2,261 nasal swab samples were collected at age 2, 13, and 24 months, and 

2,172 (96%) met the quality control requirements and had sufficient sequence depth for 16S 

rRNA gene sequencing; 89 (4%) samples did not meet the quality control requirements and 160 

(7%) nasal samples were excluded because of missing follow-up or baseline samples. 

Longitudinally collected qualified samples and data on antibiotic use were available for 697 

children who comprised the analytical cohort, with 1,923 nasal samples collected. 

 

Longitudinal Clustering of Nasal Microbiota 

To minimize model misspecification in the causal mediation analysis due to the high-

dimensionality of microbiota data over time, the microbiota data were summarized into a 
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summarized variable (or longitudinal profiles). To identify profiles of longitudinal changes in the 

nasal microbiota during age 2-24 months, we applied an unsupervised clustering (longitudinal k-

means clustering) approach [15] based on correlation distance [16] to the individual longitudinal 

trajectories based on log2-transformed relative abundances of the 100 most common genera 

which accounted for 99% of overall abundance. We used correlation-based distance––which was 

computed between the observed longitudinal patterns for each pair of observations (rather than 

between variables)––as the dissimilarity measure because it focuses on the shapes of longitudinal 

patterns rather than the abundance of individual bacteria at each time point [16]. This 

unsupervised clustering approach has advantages, such as effectively summarizing high 

dimension data, taking the characteristics of microbiota as dynamic ecology into account, and 

improving interpretability. We chose the number of profiles based on Calinski-Harabasz methods 

[15, 17]. To complement this approach, we also utilized a priori knowledge of the nasal 

microbiota during early childhood. Indeed, these derived microbiota clusters are biologically 

plausible because the four profiles (profiles A-D) are characterized by major airway bacteria: 

Moraxella (profile A); Streptococcus and Moraxella (profile B); Dolosigranulum, 

Corynebacteriaceae and Staphylococcus (profile C); as well as Haemophilus and Streptococcus 

along with Moraxella sparsity (profile D); in addition to the fifth profile that is characterized by 

mixed pattern (profile E; Figure 3a). These profiles are consistent with earlier studies [3, 13, 18-

23]. 

 

Outcome 

The primary outcome was physician-diagnosed asthma defined as a diagnosis of asthma 

in the medical records at age 6.5-7.5 years (age 7 years) with or without a prescription of inhaled 
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corticosteroids for asthma at age 6.5-7.5 years. Physician-diagnosis of asthma was retrieved from 

the medical records using ICD-10-CM codes J45-J46 (Supplementary Table 1) or, if the code 

was missing, written physician-diagnosis of “asthma”, and asthma medication use from nation-

wide electronic prescription records. All asthma diagnoses and prescriptions were made by 

attending physicians. The electronic prescription was introduced in Finland in 2010, and all 

public health care providers had taken up its use by 2013 and private health care providers by 

2015. All pharmacies have been able to deliver electronic prescriptions since 2011. Electronic 

prescription became the main form of prescription in the beginning of 2017, and paper or phone 

prescriptions have been allowed only in exceptional situations. Medical records and electronic 

prescription data were available for 910 (99%) of the cohort children.  

 

Potential Confounders 

Patient demographics, family history, pre-, peri-, and post-natal history, and 

environmental information (e.g., parental history of asthma, household siblings, and 

breastfeeding) were collected from the National Birth Registry and by structured questionnaires 

during the first trimester of pregnancy, at the time of birth, and at child’s age 13 and 24 months, 

and with the diary. Children’s sex, parental history of asthma, household siblings, breastfeeding 

during age 0-2 months, and ARIs during infancy (age 0-11 months) were considered potential 

confounders (Figure 1). An ARI was defined as presence of rhinitis or cough (with or without 

fever or wheezing) documented in the symptom diary by the parents, or as any physician-

diagnosed ARI [2]. The duration of 97% of ARIs was ≤30 days. To account for sequential 

infections, the length of an ARI was limited to 30 days; longer ARIs (3%) were considered as 
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separate episodes with a maximum duration of 30 days. If the symptom data were missing, 

repeated diagnoses of ARIs within 14 days were considered as one episode. 

 

Statistical Analysis 

The patient characteristics were compared by antibiotic exposure during age 0-11 months 

in Table 1. Relative abundances of most abundant genera at each sampling age were compared 

between the mediator groups (two longitudinal microbiota profiles) by using Welch's unequal 

variances t-test, adjusting for multiple comparisons with the use of the Benjamini-Hochberg false 

discovery rate (FDR) method [24]. 

A directed acyclic graph (DAG; Figure 1) was constructed to represent our proposed 

model linking the exposure (antibiotic exposures during age 0-11 months) to the outcome 

(asthma at age 7 years) with the mediator (longitudinal microbiota profiles during age 2-24 

months) and potential confounders (sex, parental history of asthma, household siblings, 

breastfeeding during age 0-2 months, and frequency of ARIs during age 0-11 months). The 

model was constructed based on clinical plausibility and a priori knowledge [21, 25-29]. Next, 

to examine the association between the frequency of antibiotic treatments and the derived 

longitudinal microbiome profiles, multinomial regression models adjusting for the confounders 

were constructed.  

To examine the direct and indirect effects (i.e., estimands) in a counterfactual framework, 

the causal mediation analysis was performed [30-33]. This method enables us to examine the 

extent to which the effect of exposure on the outcome is direct (direct effect) and to what extent 

it is mediated by the mediator (indirect effect). More specifically, the natural direct effect  

represents how much asthma risk would change on average if patient were set to be exposed 
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versus to be unexposed but for each individual the longitudinal microbiota pattern were kept at 

the level it would have taken in the absence of the exposure [30-33]. The natural indirect effect 

represents how much asthma risk change if patient were set to be exposed, but the longitudinal 

microbiota pattern were changed from the level it would take if unexposed to the level it would 

take if exposed [30-33]. In the causal mediation analysis, the number of antibiotic exposures 

during age 0-11 months was dichotomized based on the empirical distribution of exposure— 

0-1 antibiotic treatment and ≥2 antibiotic treatments (the highest quartile), which also addresses 

the effect of multiple antibiotic exposures [25, 27, 28, 34]. Additionally, to improve the 

interpretability of inference, the longitudinal microbiota profiles were further consolidated into 

the profile with the highest Moraxella abundance (low-risk profile [with regard to asthma risk]) 

vs. other profiles (high-risk profile [with regard to asthma risk, Supplementary Table 2]). 

Stratification by Moraxella abundance was chosen based on its dominance of the nasal 

microbiota and the literature reporting the relations of Moraxella with ARIs, wheezing, and 

asthma [3, 13, 21, 23, 35]. In the mediation models, the data on exposure and mediator were 

available for all children in the analytic cohort, while part of covariate data were missing in 68 

children and asthma outcome in 6 children, leaving 623 children. 

 

The detailed notations of variables and definitions of estimated effects in the causal 

mediation analysis are following: 

!: Exposure of interest (i.e., exposures to systemic antibiotic treatments during 0-11 months) 

for each individual.  

": Mediator (i.e., longitudinal patterns of the nasal airway microbiota during age 2-24 months) 

for each individual.  
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#: Outcome of interest (i.e., asthma status at age 7 years) for each individual 

$: A set of covariates (sex [binary], parental history of asthma [binary], household siblings 

[binary], breastfeeding during age 0-2 months [binary], and acute respiratory infections 

[frequency] during age 0-11 months in the primary analysis) for each individual 

#%: Counterfactual outcome #	for each individual when intervening to set ! to ' 

#%(: Counterfactual outcome # for each individual when intervening to set ! to ' and " to ) 

"%: Counterfactual mediator " for each individual when intervening to set ! to ' 

Total effect: The total average effect comparing treatment level ! = 1 to ! = 0 

-. = .[#0 − #2|$] 

Natural direct effect: The average natural direct effect comparing treatment level ! = 1 to ! =

0,	with setting " = "2 

67. = .[#089 − #289|$] 

Natural indirect effect: The average natural indirect effect comparing the effect of " = "0	vs. 

" = "2, with setting ! = 1 

6:. = .[#08; − #089|$] 

Controlled direct effects: The average controlled direct effect comparing treatment level ! = 1 

to ! = 0	with setting " = ). Of note, in the absence of exposure-mediator interactions, the 

controlled direct effects coincide with the natural direct effects. 

<7.()) = .[#0( − #2(|$] 

Proportion mediated: ?" =
@AB

CB
 

To account for confounding, we used inverse probability weighting for marginal structural 

models [36, 37]. First, we estimated the individual-specific inverse probability weight by 

constructing a logistic regression model adjusting for the potential confounders (sex, parental 
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history of asthma, household siblings, breastfeeding, and acute respiratory infections), according 

to the assumed causal structure (Figure 1). Next, we constructed outcome and mediator logistic 

regression models to the pseudo-population which was simulated by inverse probability 

weighting—that is, fitting weighted outcome and mediator regression models in order to estimate 

the parameters of interest (D0, DE, F0) in the following marginal structural models: 

GHIJK{?(# = 1|',)} = D2 + D0 + DE) 

GHIJK{?(" = 1|')} = F2 + F0' 

Then, these parameter estimates were used to estimate the estimands of the analysis—the 

average natural direct and indirect effects—with the use of the R mediation package [38]. 

 

Identifiability Assumptions of Causal Mediation Analysis 

 There are four identifiability assumptions in causal mediation [30]: 1) no unmeasured 

exposure-outcome confounders given measured confounders, 2) no unmeasured mediator-

outcome confounders given both the measured confounders and exposure, 3) no unmeasured 

exposure-mediator confounders given the measured confounders, and 4) no mediator-outcome 

confounders affected by the exposure. It is plausible to assume that the first and third 

assumptions hold, by accounting for measured sex, household siblings, breastfeeding, and 

frequency of acute respiratory infections) in the analysis. However, the second assumption might 

not have hold. For example, the child’s genetics may have served as an unmeasured confounder. 

Yet, this potential confounding has been mitigated, at least partially, by controlling the parental 

history of asthma because it is strongly correlated to the asthma-risk genetics of the parents 

thereby being correlated to child’s genetics. The fourth assumption is difficult to verify. For 

example, a potential unmeasured mediator-outcome confounder affected by the exposure is 
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intestinal microbiota. Yet, within the sparse literature, it remains unclear how much the intestinal 

microbiota affects the airway microbiota in young children.  

 

Sensitivity Analysis 

In sensitivity analyses, the analysis was repeated with 1) any use of broad-spectrum 

antibiotics during age 0-11 months as the exposure, 2) use of a different cut-off for antibiotic 

exposure (0-2 vs. ³3), 3) restriction of antibiotic use to age 0-2 months, and 4) use of a different 

mediator categorization (the lowest Moraxella abundance [profile D] vs. other profiles). This 

categorization was chosen because antibiotic exposures were associated with a higher probability 

of having a profile D (Supplementary Tables 4 and 5) and children with a profile D had the 

highest risk of developing asthma (Supplementary Table 2). Two-tailed P-values were 

reported, with P<0.05 considered statistically significant. Data were analyzed using R version 

3.6.1.  
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Supplementary Figure 1. Enrolment and follow-up of children in the STEPS Study 

 

 923 children enrolled in the STEPS respiratory cohort 

37    children without data on    
        antibiotics use 

697 children with data on antibiotics use during infancy  
and qualified nasal samples during age 2-24 months  

(analytical cohort) 

886 children with data on antibiotics use 
during infancy 

 1827 children enrolled in the STEPS Study 

 

21    children with a missing  
        age 2-month sample 
61    children with an unqualified  
        age 2-month sample 
107  children with missing or    
        unqualified follow-up samples 
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Supplementary Table 1. ICD-10-CM codes used for retrieving physician-diagnosis of 

asthma from the medical recordsa 

ICD-10-CM code 

J45.0 Asthma praecipue allergicum 

J45.1 Asthma non allergicum 

J45.8 Asthma mixtum 

J45.9 Asthma non specificatum 

J46 Status asthmaticus 

a Physician-diagnosis of asthma was retrieved from the medical records using ICD-10-CM codes 
J45-J46 or, if the code was missing, written physician-diagnosis of “asthma”. Asthma medication 
use was retrieved from nation-wide electronic prescription records.   
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Supplementary Table 2. Longitudinal nasal microbiota profiles during age 2-24 months 

and asthma at age 7 years (n=697) 

Longitudinal nasal microbiota profilesa 

Children with asthma, 

n (%)b 

Profile A with persistent Moraxella dominance (n=279) 18 (6.5%) 

Profile B with Streptococcus-to-Moraxella transition (n=84) 5 (6.1%) 

Profile C with early Dolosigranulum/Corynebacteriaceae 

   dominance (n=139) 

11 (7.8%) 

Profile D with early Moraxella sparsity with its subsequent increase  

   (n=100) 

15 (15.2%) 

Profile E with mixed longitudinal patterns (n=92) 6 (6.6%) 

a Longitudinal clustering of nasal microbiota during age 2-24 months identified 6 distinct 
profiles. Of these, the profile F included only 3 children and is not shown in the table. For the 
mediation analysis, longitudinal nasal microbiota profiles were dichotomized to 1) profile with 
persistent Moraxella dominance (profile A) and 2) profile with early Moraxella sparsity (profiles 
B-F, Figure 3b). 
b Medical records data for asthma were missing from 6 children. 
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Supplementary Table 3. Comparison of children between the analytical and non-analytical 

cohorts 

Characteristic 

Analytical cohorta 

n=697 (76%) 

Non-analytical cohort 

n=226 (24%) 

 

P-value 

Male sex 369 (53) 119 (53) 0.99 

Household sibling 302 (43) 74 (33) 0.006 
 

Maternal history of asthma 52 (7) 19 (8) 0.75 
 

Parental history of asthma 86 (12) 34 (15) 0.35 
 

Maternal smoking during 

 pregnancy 

32 (5) 18 (8) 0.08 
 

Birth by Caesarean section 90 (13) 34 (15) 0.48 

Prematurity (< 37 weeks) 30 (4) 8 (4) 0.76 

Low birth weight (< 2500 g) 21 (3) 4 (2) 0.45 

Small for gestational age 14 (2) 4 (2) 0.99 

Breastfed during age 0-2 monthsb 555 (80) 72 (32) 0.33 
 

Parental smokingc 88 (13) 16 (7) 0.37 

Eczema by age 13 months 108 (15) 24 (11) 0.22 

Outside home day care at age 13  

 months 

154 (22) 31 (14) 0.50 

Asthma at age 7 years 56 (8) 19 (8) 0.90 
 

Data are no. (%) of children unless otherwise indicated. 
a Analytical cohort comprised children with data on antibiotic use during age 0-11 months and 
microbiota data during age 2-24 months. 
b Data on breastfeeding available for 716 (78%) children. 
c Data on parental smoking available for 635 (69%) children. 
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Supplementary Table 4. Unadjusted and adjusted associations of antibiotic treatments during age 0-11 months with 

longitudinal nasal microbiota profiles during age 2-24 monthsa in 697 children enrolled in the STEPS Study 

 Antibiotic treatments during age 0-11 months (exposure) 

 Unadjusted analysis Multivariable-adjusted analysisb 

 

Longitudinal microbiota profiles  

(dependent variable) 

RRR (95% CI), 

per each antibiotic 

treatment  

P-value RRR (95% CI), 

per each antibiotic 

treatment  

P-value 

Profile A with persistent Moraxella dominance 

 (n=279, 40%) 

reference  Reference  

Profile B with Streptococcus-to-Moraxella transition 

 (n=84, 12%) 

0.98 (0.82-1.18) 0.82 1.16 (0.92-1.45) 0.21 

Profile C with early Dolosigranulum/ 

 Corynebacteriaceae dominance (n=139, 20%) 

1.09 (0.95-1.25) 0.24 1.20 (1.01-1.43) 0.04 

Profile D with early Moraxella sparsity with its 

 subsequent increase (n=100, 14%) 

1.18 (1.02-1.37) 0.03 1.38 (1.15-1.66) <0.001 

Profile E with mixed longitudinal patterns (n=92, 13%)  1.05 (0.89-1.24) 0.56 1.20 (0.98-1.48) 0.08 
 

Abbreviations: CI, confidence interval; RRR, relative rate ratio 
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a Longitudinal clustering of nasal microbiota during age 2-24 months identified 6 distinct profiles. Of these, the profile F included only 
3 children and was excluded from the analysis. To examine the association between frequency of antibiotic treatments and derived 
longitudinal microbiota profiles, multinomial logistic regression models were constructed. Profile A with persistent Moraxella 
dominance (low-risk profile) was used as the reference. 
b Multinomial logistic regression model adjusting for potential confounders (sex, parental history of asthma, household siblings, 
breastfeeding during age 0-2 months, and ARIs during age 0-11 months). 
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Supplementary Table 5. Unadjusted and adjusted associations of broad-spectrum antibiotic treatments during age 0-11 

monthsa with longitudinal nasal microbiota profiles during age 2-24 monthsb in 697 children enrolled in the STEPS Study  

 

Broad-spectrum antibiotic treatments during age 0-11 months 

(exposure) 

 Unadjusted analysis Multivariable-adjusted analysisc 

Longitudinal nasal microbiota profiles  

(dependent variable) 

RRR (95% CI), 

per each antibiotic 

treatment 

P-value RRR (95% CI), 

per each antibiotic 

treatment 

P-value 

Profile A with persistent Moraxella dominance 

  (n=279, 40%) 

reference  reference  

Profile B with Streptococcus-to-Moraxella transition   

   (n=84, 12%) 

1.02 (0.74-1.40) 0.90 1.16 (0.80-1.67) 0.44 

Profile C with early Dolosigranulum/  

   Corynebacteriaceae dominance (n=139, 20%) 

1.12 (0.87-1.44) 0.39 1.16 (0.87-1.55) 0.32 

Profile D with early Moraxella sparsity with its 

  subsequent increase (n=100, 14%) 

1.47 (1.16-1.88) <0.001 1.74 (1.31-2.30) <0.001 
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Profile E with mixed longitudinal patterns (n=92, 13%)  1.14 (0.86-1.52) 0.37 1.30 (0.94-1.79) 0.12 

Abbreviations: CI, confidence interval; RRR, relative rate ratio 
a Broad-spectrum antibiotics included broad-spectrum penicillins (e.g., amoxicillin-clavulanate), second and third generation 
cephalosporins, macrolides, and aminoglycosides. 
b Longitudinal clustering of nasal microbiota during age 2-24 months identified 6 distinct profiles. Of these, the profile F included 
only 3 children and was excluded from the analysis. To examine the association between frequency of antibiotic treatments and 
derived longitudinal microbiota profiles, multinomial logistic regression models were constructed. Profile A with persistent Moraxella 
dominance (low-risk profile) was used as the reference. 
c Multinomial logistic regression model adjusting for potential confounders (sex, parental history of asthma, household siblings, 
breastfeeding during age 0-2 months, and ARIs during age 0-11 months).  
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Supplementary Table 6. Richness, alpha-diversity, and relative abundance by longitudinal 

nasal microbiota profile during age 2-24 months in 697 children enrolled in the STEPS 

Study 

 

 Longitudinal nasal microbiota 
profile (age 2-24 months) 

 

 

 

 
 

Age, 
months 

Low-risk 
 profile with 

persistent 
Moraxella 
dominance 

n=279 (40%) 

High-risk 
profile 

with early 
Moraxella 
sparsity  

n=418 (60%) 
 
P-value 

Richness     

 Number of OTUs, median (IQR) 2 15 (9-23) 24 (15-37) <0.001 

 13 15 (8-24) 46 (31-62) <0.001 

 24 12 (6-21) 28 (11-58) <0.001 

Alpha-diversity     

 Shannon index, median (IQR) 2 0.73 (0.36-1.05) 1.15 (0.71-1.64) <0.001 

 13 0.51 (0.19-0.78) 1.51 (0.82-2.35) <0.001 

 24 0.58 (0.26-0.93) 0.85 (0.38-1.89) <0.001 

Relative abundance of 20 most abundant genera, mean (SD)  

 Moraxella 2 0.38 (0.43) 0.18 (0.34) <0.001* 

 13 0.72 (0.33) 0.31 (0.38) <0.001* 

 24 0.70 (0.33) 0.48 (0.41) <0.001* 

 Dolosigranulum 2 0.23 (0.30) 0.13 (0.24) <0.001* 

 13 0.14 (0.23) 0.19 (0.27) 0.009* 

 24 0.12 (0.20) 0.15 (0.25) 0.09* 

 Streptococcus 2 0.09 (0.18) 0.19 (0.21) <0.001* 

 13 0.06 (0.16) 0.12 (0.16) <0.001* 

 24 0.09 (0.20) 0.11 (0.19) 0.19* 

 Staphylococcus 2 0.11 (0.25) 0.20 (0.28) <0.001* 

 13 0.01 (0.06) 0.03 (0.09) <0.001* 
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 24 0.00 (0.02) 0.03 (0.10) <0.001* 

 Corynebacteriaceae genus 1  2 0.08 (0.16) 0.07 (0.16) 0.44* 

 13 0.02 (0.05) 0.05 (0.11) <0.001* 

 24 0.02 (0.05) 0.03 (0.08) 0.04* 

 Haemophilus 2 0.01 (0.03) 0.01 (0.07) 0.05* 

 13 0.03 (0.14) 0.05 (0.12) 0.09* 

 24 0.04 (0.15) 0.04 (0.10) 0.73* 

 Corynebacteriaceae genus 2  2 0.04 (0.13) 0.06 (0.13) 0.09* 

 13 0.00 (0.00) 0.01 (0.04) <0.001* 

 24 0.00 (0.00) 0.00 (0.03) 0.02* 

 Neisseriaceae genus 1 

 

2 0.02 (0.09) 0.04 (0.13) 0.03* 

 13 0.01 (0.03) 0.02 (0.07) <0.001* 

 24 0.01 (0.03) 0.01 (0.05) 0.04* 

 Neisseria 2 0.00 (0.01) 0.00 (0.01) 0.17* 

 13 0.00 (0.00) 0.03 (0.04) <0.001* 

 24 0.00 (0.02) 0.02 (0.04) <0.001* 

 Gemella 2 0.01 (0.03) 0.02 (0.04) <0.001* 

 13 0.00 (0.00) 0.02 (0.03) <0.001* 

 24 0.00 (0.00) 0.01 (0.02) <0.001* 

 Veillonella 2 0.00 (0.01) 0.01 (0.03) <0.001* 

 13 0.00 (0.00) 0.01 (0.02) <0.001* 

 24 0.00 (0.00) 0.01 (0.01) <0.001* 

 Alloprevotella 2 0.00 (0.00) 0.00 (0.01) 0.15* 

 13 0.00 (0.00) 0.02 (0.03) <0.001* 

 24 0.00 (0.00) 0.01 (0.02) <0.001* 

 Granulicatella 2 0.00 (0.00) 0.00 (0.01) <0.001* 

 13 0.00 (0.00) 0.02 (0.02) <0.001* 

 24 0.00 (0.00) 0.01 (0.01) <0.001* 

 Lactococcus 2 0.00 (0.02) 0.00 (0.00) 0.49* 
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 13 0.00 (0.00) 0.01 (0.03) <0.001* 

 24 0.00 (0.00) 0.01 (0.05) 0.002* 

 Acinetobacter 2 0.01 (0.06) 0.00 (0.02) 0.73* 

  13 0.00 (0.00) 0.00 (0.01) <0.001* 

 24 0.00 (0.00) 0.01 (0.03) 0.001* 

 Lactobacillus 2 0.01 (0.06) 0.01 (0.04) 0.44* 

 13 0.00 (0.00) 0.00 (0.01) <0.001* 

 24 0.00 (0.00) 0.00 (0.01) 0.004* 

 Rothia 2 0.00 (0.01) 0.01 (0.01) <0.001* 

 13 0.00 (0.00) 0.00 (0.01) <0.001* 

 24 0.00 (0.00) 0.00 (0.01) <0.001* 

 Prevotellaceae genus 1 2 0.00 (0.00) 0.00 (0.02) 0.004* 

 13 0.00 (0.00) 0.01 (0.02) <0.001* 

 24 0.00 (0.00) 0.00 (0.01) <0.001* 

 Enhydrobacter 2 0.00 (0.00) 0.00 (0.01) <0.001* 

 13 0.00 (0.00) 0.00 (0.01) <0.001* 

 24 0.00 (0.00) 0.00 (0.01) <0.001* 

 Porphyromonas 2 0.00 (0.01) 0.00 (0.00) 0.44* 

 13 0.00 (0.00) 0.01 (0.01) <0.001* 

 24 0.00 (0.00) 0.00 (0.01) <0.001* 

Abbreviations: IQR, interquartile range; OTU, operational taxonomic unit; SD, standard 

deviation 

* Benjamini-Hochberg false-discovery rate adjusted P-value accounting for multiple 

comparisons
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Supplementary Table 7. Association of antibiotic treatments during age 0-11 months with two longitudinal nasal microbiota profiles 

during age 2-24 months (n=697)a 

 

Antibiotic treatments  

during age 0-11 months  

(exposure) 

Broad-spectrum antibiotic 

treatments during  age 0-11 monthsb 

(exposure) 

Dichotomized longitudinal nasal microbiota profiles 

(dependent variable) 

RRR (95% CI), 

per each antibiotic 

treatment 

P-value RRR (95% CI), 

per each antibiotic 

treatment 

P-value 

Low-risk profile with persistent Moraxella dominance  

   (profile A) n=279 (40%) 

reference  reference  

High-risk profile with early Moraxella sparsity  

   (profiles B-F), n=418 (60%) 

1.24 (1.09-1.42) 0.001 1.35 (1.09-1.67) 0.006 

Abbreviations: CI, confidence interval; OR, odds ratio 
a Longitudinal clustering of nasal microbiota during age 2-24 months identified 6 distinct profiles. For the mediation analysis, longitudinal 
nasal microbiota profiles were dichotomized to 1) low-risk profile with persistent Moraxella dominance (profile A) and 2) high-risk profile 
with early Moraxella sparsity (profiles B-F, Figure 3b). Logistic regression model adjusting for potential confounders (sex, parental history 
of asthma, household siblings, breastfeeding during age 0-2 months, and ARIs during age 0-11 months). Low-risk profile with persistent 
Moraxella dominance was used as the reference. 
b Narrow-spectrum antibiotics were defined as narrow-spectrum penicillins (amoxicillin, phenoxymethylpenicillin, benzylpenicillin, and 
ampicillin), first generation cephalosporins, and sulfonamides. All other antibiotics were defined as broad-spectrum antibiotics, including 
broad-spectrum penicillins (e.g., amoxicillin-clavulanate), second and third generation cephalosporins, macrolides, and aminoglycosides.
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Supplementary Table 8. Antibiotic treatments during age 0-11 months and asthma at age 7 years (n=697) 

Number of antibiotic treatments  

during age 0-11 months 

Children with asthma, n (%)a 

0 (n=338) 21 (6.2%) 

1 (n=163) 13 (8.0%) 

≥2 (n=196) 22 (11.2%) 

a Medical records data for asthma were missing from 6 children.
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Supplementary Table 9. Sensitivity analysis for mediation analysis, using a cut-off of 0-2 vs. ³3 antibiotic treatments during age 0-11 

months as the exposure (n=623)a 

 Antibiotic treatments (³3)  

during age 0-11 months 

 Absolute risk difference  

(95% CI) 

P-value 

Total effect 4.8% (1.5% - 8.3%) <0.001 

Natural direct effect 4.2% (1.1% - 7.5%) 0.008 

Natural indirect effect  0.6% (0.1% - 1.3%)b 0.03 

Abbreviation: CI, confidence interval. 
a Causal mediation analysis estimating the total and direct effects of antibiotic exposure (0-2 vs. ³3) during age 0-11 months on risk of 
developing asthma by age 7 years as well as indirect effect by longitudinal changes in nasal microbiota during age 2-24 months (low-risk 
profile with persistent Moraxella dominance vs. high-risk profile with early Moraxella sparsity). Inverse probability weighting with marginal 
structural models was used in the mediation analysis to account for potential confounders (i.e., sex, parental history of asthma, household 
siblings, breastfeeding during age 0-2 months, and acute respiratory infections during age 0-11 months). 
b Proportion of indirect effect by antibiotic exposure was 11.4% (0.9-40.9%) 
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Supplementary Table 10. Sensitivity analysis for mediation analysis, with antibiotic treatments during age 0-2 months as the exposure 

(n=623)a 

 Antibiotic treatment (³1) 

during age 0-2 months 

Broad-spectrum antibiotic  

treatment (³1)  

during age 0-2 months 

 Absolute risk difference  

(95% CI) 

P-value Absolute risk difference  

(95% CI) 

P-value 

Total effect 2.9 (−0.3 - 6.2) 0.08 6.2 (2.9 - 9.5) <0.001 

Natural direct effect 2.4 (−0.7 - 5.5) 0.14 5.8 (2.7 - 9.1) <0.001 

Natural indirect effect 0.5 (0.0 - 1.2) 0.06 0.3 (−0.3 - 1.1) 0.36 

Abbreviation: CI, confidence interval. 
a Causal mediation analysis estimating the total and direct effects of antibiotic exposure during age 0-2 months on risk of developing asthma 
by age 7 years as well as indirect effect by longitudinal changes in nasal microbiota during age 2-24 months (low-risk profile with persistent 
Moraxella dominance vs. high-risk profile with early Moraxella sparsity). Inverse probability weighting with marginal structural models was 
used in the mediation analysis to account for potential confounders (i.e., sex, parental history of asthma, household siblings, breastfeeding 
during age 0-2 months, and acute respiratory infections during age 0-2 months). 
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Supplementary Table 11. Sensitivity analysis for mediation analysis, with the longitudinal nasal microbiota profiles being 

dichotomized into the profile with the lowest Moraxella abundance vs. other profiles (n=623)a  

 Antibiotic treatments (³2)  

during age 0-11 months 

Broad-spectrum antibiotic  

treatment (³1) during 

age 0-11 months 

 Absolute risk difference  

(95% CI) 

P-value Absolute risk difference  

(95% CI) 

P-value 

Total effect 4.0% (0.9% - 7.1%) 0.01 3.6% (0.5% - 6.6%) 0.02 

Natural direct effect 3.6% (0.5% - 6.7%) 0.02 3.0% (−0.0% - 6.0%) 0.05 

Natural indirect effect  0.4% (−0.0% - 1.2%)b 0.08 0.6% (0.1% - 1.4%)c 0.02 

Abbreviation: CI, confidence interval. 
a Causal mediation analysis estimating the total and direct effects of antibiotic exposure during age 0-11 months on risk of developing asthma 
by age 7 years as well as indirect effect by longitudinal changes in nasal microbiota during age 2-24 months. The longitudinal nasal 
microbiota profiles were dichotomized into the profile with the lowest Moraxella abundance (profile D) vs. other profiles (profiles A, B, C, E, 
F) as the mediator. Inverse probability weighting with marginal structural models was used in the mediation analysis to account for potential 
confounders (i.e., sex, parental history of asthma, household siblings, breastfeeding during age 0-2 months, and acute respiratory infections 
during age 0-11 months). 
b Proportion of indirect effect by antibiotic exposure was 10.1% (95% CI, −1.0% - 43.8%).  
c Proportion of indirect effect by broad-spectrum antibiotic exposure was 16.6% (95% CI, 1.1% - 76.1%) 


