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1 Supplemental Methods

1.1 DeCompress algorithm

DeCompress takes in two expression matrices from similar bulk tissue as inputs: the target matrix T, an
n × k matrix from a targeted panel of gene expression, and the reference matrix R, an N × K matrix from
an RNA-seq or microarray panel, such that K > k. For a user-defined c cell-types, DeCompress outputs
Ŝ, a c × K ′ matrix of cell-type specific expression profiles and P̂, a c × n matrix of cell-type proportions.
The method follows three general steps, as detailed in Figure 1: (1) selection of approximate cell-type spe-
cific genes, (2) compressed sensing to expand the feature space of T, and (3) ensemble reference-free de-
convolution on expanded expression dataset. DeCompress is freely available as an R package on Github
(https://github.com/bhattacharya-a-bt/DeCompress).

1.1.1 Selection of cell-type specific genes

The first step of DeCompress is to find a set of K ′ < K genes that are representative of the different cell types
that comprise the bulk tissue. These K ′ genes, called the cell-type specific (CTS) genes, can be supplied by the
user if prior gene signatures can be applied. If any such gene signatures are not available, DeCompress borrows
methods from two previous reference-free deconvolution methods to select a parsimonious gene set.

We include methods from Zaitsev et al.’s LINear Subspace identification for gene Expression Deconvolution
(LINSEED) method1 that assumes mutual linearity (i.e. y1 = ky2, where y1 and y2 are the expressions of gene
1 and gene 2, respectively) between cell-type specific genes to generate gene signatures. Briefly, LINSEED
transforms the gene expression space to form a c-vertex simplex, where each vertex represents a distinct cluster
of mutually linear genes corresponding to a cell type. The algorithm then picks the closest genes to each vertex
to represent a cell-type specific gene signature1. We also include Li and Wu’s feature selection method, TOols
for the Analysis of heterogeneouS Tissues (TOAST)2, which iteratively searches for cell type-specific genes and
performs reference-free estimation at each step. TOAST uses a novel hypothesis testing framework to conduct
cross-cell type differential analysis and identify gene signatures2.

1.1.2 Compressed sensing framework

After a suitable set of K ′ CTS genes are determined, we take the K ′ corresponding columns of R to form R′N×K′

and the k genes corresponding to columns in T to form R
(k)
N×k. Consider the following matrix equation, where Φ

is a k ×K ′ compression matrix that projects R(k) to R′:
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R′N×K′ = R
(k)
N×kΦk×K′ (1)

We can break down Equation 1 into a system of equations. For the ith column of R′, denoted r′i, we wish to find
a k-length sparse vector φi, 1 ≤ i ≤ K ′ such that

r′i = R
(k)
N×kφi. (2)

We estimate φ̂i with the following optimization methods: least angle regression (using R package lars)3, elastic
net with elastic net mixture penalty α ∈ {0, 0.5, 1} (using the R package glmnet)4, and l1,l2, and total variation
l1 (TV-L1) non-linear optimization (using R package R1magic)5–8. Functions in DeCompress allow the user to
select any to all of these optimization methods and picks the best method through 5-fold cross-validation.

Especially when N is sufficiently large, non-linear optimization is computationally expensive (see comparison
of run times in Supplemental Figure S11). We implement parallelization across columns of R′ using the future
package in R9 and recommend linear optimization methods as they are faster and give generally similar prediction
(Supplemental Figure S2).

1.1.3 Optimization methods for compressed sensing

Compressed sensing in DeCompress aims to estimate the k ×K ′ compression matrix Φ in the equation:

R′N×K′ = R
(k)
N×kΦk×K′ . (3)

We convert this into a system of equations. For the ith column of R′, denoted r′i, we wish to find a k-length sparse
vector φi, 1 ≤ i ≤ K ′ such that

r′i = R
(k)
N×kφi. (4)

DeCompress implements several regularized regression or optimization methods to estimate φ̂i:

• Elastic net 4 finds

φ̂i = argmin
φi

{
‖r′i −R(k)φi‖22 + λ

[
(1− α)

2
‖φi‖22 + α‖β‖1

]}
. (5)

We have implemented α ∈ {0, 0.5, 1}, where α = 0 represents ridge regression with no sparsification of φi
and α = 1 represents traditional Lasso10. This optimization is carried out in DeCompress with the glmnet
package4.

• Least angle regression (LARS) minimizes the Lasso objective function in Expression 5 that speeds ups
stage-wise forward selection. The algorithm starts with all elements of φi equal to zero and finds the predict
most correlated with the response. The largest step possible is take in the direction of these predictor
until some other predictor has as much correlation with the residual. LARS then proceeds in a direction
equiangular between these two predictors until a third variable shares an equal correlation with the residual.
The full mathematical justification and details are provided by Efron et al.3
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• l1 non-linear optimization solves the following optimization using the nlm function in R, as implemented in
the R1magic package5:

φ̂i = argmin
φi

{
N∑
i=1

|R(k)Tφi − r′i|2 + λ|φi|

}
, (6)

where T is a K ′ ×K ′ matrix of sparsity bases and λ is a tuned penalty parameter.

• l2 non-linear optimization solves the following optimization using the nlm function in R, as implemented in
the R1magic package5:

φ̂i = argmin
φi

{
N∑
i=1

|R(k)Tφi − r′i|2 + λ
√
|φi|

}
, (7)

where T is a K ′ ×K ′ matrix of sparsity bases and λ is a tuned penalty parameter.

• total-variation l1 non-linear optimization solves the following optimization using the nlm function in R, as
implemented in the R1magic package5:

φ̂i = argmin
φi

{
N∑
i=1

‖R(k)Tφi − r′i‖2F + λTV (φi)

}
, (8)

where T is a K ′ × K ′ matrix of sparsity bases, λ is a penalty parameter, and TV (·) is the total-variation
function, such that for a generic n-length vector ν with jth element νj

TV (ν) =
n−1∑
i=1

|νi − νi+1|.

1.1.4 Ensemble deconvolution on expanded dataset

After the estimated compression matrix Φ̂ is obtained, we then expand the expression matrix from the targetted
panel Tn×k into a larger features space by multiplying T with Φ̂:

T̃n×K′ = Tn×kΦ̂k×K′ .

This expanded expression matrix T̃, called the decompressed expression matrix, is then used for ensemble de-
convolution. DeCompress includes multiple options for deconvolution, summarized in Supplemental Table S1:
(1) reference-free methods, such as deconf11, CellDistinguisher12, TOAST with non-negative matrix factoriza-
tion2, Linseed1, and DeconICA13, and (2) reference-based methods using cell-type specific expression profiles
from factorization of R′N×K′ , unmix from the DESeq2 package14. The optimal estimated cell-type proportion
matrix P̂ and cell-type specific expression profiles matrix Ŝ are selected from the method that best recreates T̃
(i.e. minimizes ‖T̃− ŜT P̂‖).

1.2 In-silico mixing experiments

We downloaded single-cell data from suspensions of samples of mouse mammary gland15 and median tissue-
specific expression profiles from the Genotype-Tissue Expression (GTEx) Project16,17 for mammary tissue, lym-
phocytes, fibroblasts, and adipose tissue. For the single-cell RNA-seq data, we clustered individual cells using
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the SingleR18 and the MouseRNASeq() reference dataset19 and aggregated RNA counts from fibroblasts, ep-
ithelial cells, adipocytes, and immune cells (T-cells, B-cells, macrophages, and monocytes) to form compartment-
specific expression profiles. For GTEx, we considered bulk median expression profiles for subareolar mammary
cells, EBV-transformed lymphocytes, transformed fibroblasts, and subcutaneous adipose, as well as, pancreas,
pituitary, and whole blood. Call the matrix of median expression profiles Eprofile. We randomly generated a matrix
of mixing proportions P for n samples and c ∈ {2, 3, 4} of the tissue types (c ∈ {2, 3} for GTeX analysis). The
matrix P is generated by simulated a matrix from a half Normal distribution with scale parameter 1 and then
dividing each row by the row sum. We then generated mixed expression profiles with the following model:

Emixed = EprofilePT .

We then multiplied each element of Emixed with a randomly generated error term drawn from a half-Normal
distribution with a scale parameter of either 4 or 8 (low and high noise). This simulates natural perturbation to
mixed expression profiles to form an RNA-seq panel as a reference. We then simulated 25 similarly generate
RNA-seq expression datasets to generate pseudo-targeted panels each of K ∈ {200, 500, 800} genes that have
means and variances above the median mean and variance of all genes in the simulated genes. We add more
multiplicate noise to these pseudo-targeted panels drawn from a half-Normal distribution with scale parameter 1.

1.3 Benchmarking in published datasets

We downloaded four datasets, as mentioned in Methods and summarized in Supplemental Table S2. Here, we
detail the process of generating pseudo-targeted panels from these RNA-seq or microarray datasets. Assume
the downloaded datasets are coded in the matrix E with K rows corresponding to genes and n columns cor-
responding to samples. We take the K ′ genes such that the means and variances of each of these K ′ genes
are in the top 50% of means and variances of all K genes. This restriction is placed on the K ′ genes so as to
not include lowly expressed genes with no variation across cell-types or other conditions. We then generated 25
pseudo-targeted panels with randomly selected 200, 500, and 800 of the K ′ genes.

2 Supplemental Results

2.1 Advantages of compressed sensing and references in DeCompress

We generated here a toy example (shown in Supplemental Figure S1) to illustrate a key advantage of DeCom-
press. In this example, we have a set of genes that have low variability in the reference samples but have high
variability among samples in the target (labelled Group A); these genes may be important for rare compartments
or subtypes not present in the reference panel. Gene groups B, C, and D show similar variances across samples
in both the target and reference. Gene groups E and F are only assayed in the reference and are expressed
in disjoint sets of samples in the reference. When we train the compressed sensing model in the reference, we
can leverage co-expression of genes in Groups B-D with genes in Groups E and F to recover their expression in
the samples in the target. If we only consider compartments defined by the reference, and project compartment
proportions from here, we miss the rare groups that are reflected in the variation of Group A genes. Projecting the
co-expression in the reference back to the target will aid in recovering both the groups distinguished by Groups E
and F, as well as Group A (as variation in Group A is only present in the target). Code to recreate this toy example
is provided in Supplemental Data (https://github.com/bhattacharya-a-bt/DeCompress_supplement).
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2.2 Incorporating estimated compartment improves outcome prediction

Next, we considered the impact of including the tumor (C3, C4, and combining C3/C4) and immune (C2) com-
partments in survival models. We constructed Cox models for breast-cancer specific mortality20 with the following
covariates: race, age, PAM50 molecular subtype, compartment proportion, and an interaction between subtype
and compartment proportion. Supplemental Table S3 shows hazard ratio estimates and 90% FDR-adjusted
confidence intervals21 from Cox models with the C3, C4, tumor, and immune compartments, along with com-
parisons to a reduced baseline model that excludes the compartment estimates and interaction terms. General
relationships stay similar across the baseline and interaction models (e.g. protective hazard ratios of Luminal A
subtypes in comparison to the reference Basal subtypes). We also estimated, in the C4-compartment interac-
tion model, that increased C4 proportion was associated with shorter survival (hazard ratio 1.69, FDR-adjusted
P = 0.026). We also compared these compartment-specific interaction models with the nested baseline model
that did not contain the compartment proportions using a partial likelihood ratio test. We found that only the in-
teraction model with the C4 proportions gave a significantly better model fit (χ2 = 11.52 on 4 degrees of freedom,
P = 0.02). Estimated survival Kaplan-Meier curves stratified by molecular subtype and median-stratified C3 and
C4 proportions showed significant differences between low and high proportion groups within molecular subtypes
(Supplemental Table S3). Namely, we observed that the C3 high and low proportion groups only split the HER2-
enriched molecular subtype based on survival outcomes, reinforcing the ERBB signaling annotations assigned
to C3 in ORA analysis. However, the HER2-enriched subtype was enriched for C3-high samples (127 out of 147
samples in the C3-high group). We also found that the C4 groups split the Basal and Luminal B subtype groups,
though the Basal subtype was disproportionately enriched for C4-high subjects (315 out of 339 subjects). In sum,
these results illustrate that incorporating computationally-derived estimates of compartments may aid in outcome
prediction.
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3 Supplemental Tables

Method Summary Implementation

deconf11
Non-negative least squares on normalized expression
matrix in log2-space, seeded by initial non-negative
matrix factorization.

R package CellMix22

TOAST2

Feature selection used in combination with iterative
reference-free deconvolution. Feature selection is done
using a method for cross-cell type differential analysis
for data from a mixed sample23.

R package TOAST2

CellDistinguisher12

Topic modeling based on a set of input cell-type
distinguishing genes. CellDistinguisher includes
a method to infer distinguishing genes using the
gene-gene conditional expression vectors in a space
where the number of vectors and number of dimensions
are both equal to the number of genes. This step relies
on a large input number of genes to properly function.

R package CellDistinguisher12

Linseed1

Solving a convex hull problem by projecting the gene
expression data and find corners using an assumption
that cell-type specific genes are mutually linear. The
cell-type specific expression genes are then inputted
into the Digital Sorting Algorithm, a gene-signature
based deconvolution method24.

R package linseed

DeconICA13

Deconvolution using Independent Component Analysis
(ICA), a matrix factorization method for dimension
reduction by projecting the expression into a space
such that distributions of the data point projections
on the new axes are as mutually independent as possible.

R package DeconICA13

CDSeq25

Deconvolution using latent Dirichlet allocation
with Bayesian implementation. Especially
strong in RNA-seq where read length
and gene length can be accounted.

R package CDSeq25

unmix26,14

Non-negative least squares on the non-log2 scale
with loss calculated in a variance stabilized space.
This is a reference-based method, and is seeded in
DeCompress using the estimated cell-type specific
expression profiles estimated from the reference.

R package DESeq214

Table S1: Summary of deconvolution methods benchmarked against or employed in DeCompress.
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Dataset Accession Number Description

In-silico single cell mixing15 GEO: GSE136148
Aggregated cell-type expression profiles
were mixed at randomly generated mixing
proportions to simulate targeted panels.

In-silico GTEx mixing16,17 dbGAP: phs000424.v7.p2
Median tissue-specific expression profiles
were mixed at randomly generated mixing
proportions to simulate targeted panels.

Rat tissue cell-line mixture27 GEO: GSE19830

Rat brain, liver, and lung biospecimens from
one animal were mixed at the cRNA
homogenate level in different proportions.
Expression was measured using microarray.

Human breast cancer
cell-line mixture25 GEO: GSE123604

Total mRNA was prepared from Namalwa
(Burkitt’s lymphoma), Hs343T (fibroblasts
from mammary gland adenocarcinoma),
hTERT-HME1 (normal mammary
epithelial cells), and MCF7 (estrogen
receptor positive breast cancer cells).
Cell lines were mixed in different
proportions and expression was
measured using RNA-seq.

Human prostate tumor
laser capture
microdissection28

GEO: GSE97284

Gene expression profiling of laser capture
microdissected epithelial and stromal
specimens from prostate tumors using
microarray.

Human lung cancer
cell-line mixture29 GEO: GSE64098

Two lung adenocarcinoma cell lines
(NCI-H1975 and HCC827) were mixed at
different proportions and
expression was measure using RNA-Seq.

Bulk breast tumors from
the Carolina Breast Cancer
Study30,31

GEO: GSE148426

Expression from bulk breast tumors were
measured using NanoString nCounter. A
pathologist estimated cell-type proportions
for 148 samples from tumor microarrays.

Table S2: Summary of datasets used in benchmarking
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Baseline

Covariate Hazard Ratio (90% adjusted CI) FDR-adjusted P
PAM50: HER2 1.37 (0.97,1.95) 0.310
PAM50: LumA 0.55 (0.39, 0.79) 0.041
PAM50: LumB 1.22 (0.86, 1.72) 0.220
Race: White 0.76 (0.59, 1.00) 0.110

Age (in 10 yrs) 0.84 (0.75, 0.95) 0.072
Compartment (in 10%)
HER2/Compartment
LumA/Compartment
LumB/Compartment

C3

PAM50: HER2 1.65 (0.87, 3.11) 0.260
PAM50: LumA 0.52 (0.30, 0.89) 0.064
PAM50: LumB 1.15 (0.64, 2.05) 0.782
Race: White 0.76 (0.57, 1.03) 0.214

Age (in 10 yrs) 0.84 (0.74, 0.96) 0.064
Compartment (in 10%) 1.07 (0.68, 1.68) 0.782
HER2/Compartment 0.86 (0.50, 2.41) 0.782
LumA/Compartment 1.12 (0.59, 2.11) 0.782
LumB/Compartment 1.11 (0.51, 2.41) 0.782

C4

PAM50: HER2 2.57 (1.42, 4.67) 0.026
PAM50: LumA 0.90 (0.51, 1.60) 0.761
PAM50: LumB 2.30 (1.34, 3.94) 0.026
Race: White 0.76 (0.59, 0.98) 0.125

Age (in 10 yrs) 0.86 (0.77, 0.96) 0.045
Compartment (in 10%) 1.69 (1.21, 2.37) 0.026
HER2/Compartment 0.47 (0.19, 1.16) 0.200
LumA/Compartment 0.66 (0.27, 1.59) 0.475
LumB/Compartment 0.40 (0.15, 1.02) 0.146

Tumor

PAM50: HER2 2.51 (1.17, 5.41) 0.070
PAM50: LumA 0.75 (0.37, 1.50) 0.450
PAM50: LumB 1.88 (0.90, 3.92) 0.124
Race: White 0.77 (0.57, 1.04) 0.124

Age (in 10 yrs) 0.84 (0.74, 0.96) 0.070
Compartment (in 10%) 1.32 (1.01, 1.74) 0.101
HER2/Compartment 0.69 (0.48, 1.00) 0.101
LumA/Compartment 0.87 (0.55, 1.39) 0.562
LumB/Compartment 0.75 (0.41, 1.38) 0.446

Immune

PAM50: HER2 1.64 (1.08, 2.50) 0.096
PAM50: LumA 0.51 (0.33, 0.79) 0.042
PAM50: LumB 1.30 (0.86, 1.98) 0.369
Race: White 0.77 (0.59, 1.01) 0.183

Age (in 10 yrs) 0.84 (0.75, 0.95) 0.042
Compartment (in 10%) 1.03 (0.70, 1.53) 0.878
HER2/Compartment 0.48 (0.19, 1.19) 0.250
LumA/Compartment 1.47 (0.65, 3.33) 0.494
LumB/Compartment 0.74 (0.29, 1.84) 0.606

Table S3: Hazard ratio estimates, 90% FDR-adjusted confidence intervals, and FDR-adjusted P-values for base-
line and compartment-specific interaction Cox models for breast cancer-specific survival.
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4 Supplemental Figures

Figure S1: Toy example to illustrate advantages of using DeCompress. Heatmaps of toy expression (rows are
genes, columns are samples) for (A) both the target and reference panels, (B) only the target panel, and (C) the
DeCompressed dataset after expanding the target using a compressing sensing model trained in the reference.
We have a set of genes that have low variability in the reference samples but have high variability among samples
in the target (labelled Group A); these genes may be important for rare compartments or subtypes not present
in the reference panel. Gene groups B, C, and D show similar variances across samples in both the target and
reference. Gene groups E and F are only assayed in the reference and are expressed in disjoint sets of samples
in the reference. When we train the compressed sensing model in the reference, we can leverage co-expression
of genes in Groups B-D with genes in Groups E and F to recover their expression in the samples in the target.
If we only consider compartments defined by the reference, and project compartment proportions from here, we
miss the rare groups that are reflected in the variation of Group A genes. Projecting the co-expression in the
reference back to the target will aid in recovering both the groups distinguished by Groups E and F, as well as
Group A (as variation in Group A is only present in the target).
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Figure S2: Comparison of predictive performance of optimization methods used in DeCompress’s compressing
sensing step. Violin plots for distributions of cross-validation R2 (Y -axis) of the various optimization methods
(X-axis) employed by DeCompress for compression sensing for 100 randomly selected genes from CBCS. From
left to right, least angle regression, LASSO, elastic with α = 0.5, ridge regression, and non-linear optimization
with l1 norm. Non-linear optimization with either the total variation-adjusted l1 norm or the l2 norm gives similar
results as with the l1 norm, and hence is omitted.
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Figure S3: Results with null distributions for in-silico experiments using scRNA-seq data. Boxplots of MSE
and Spearman correlations between estimated and true compartment proportions across various methods and
numbers of genes on the target. Boxplots highlighted in red provide a permutation null distribution (shuffling
samples 10,000 times) for the metric to the right of it. The final group on the X-axis presents another null
distribution generated by randomly generating 10,000 proportion matrices.
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Figure S4: Comparison of true and estimated proportions in scRNA-seq mixing experiments. Scatter plots of true
and estimated compartment proportions across methods, with the 45-degree line shown.
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Figure S5: Contribution plots for canonical variates as number of estimated components c increases. Barplots
of standardized canonical coefficients (X-axis) for estimated compartments (Y-axis) comparing estimated
compartment-specific gene expression profiles for (A) c = 3 and c = 4 and (B) c = 4 and c = 5 for a given
instance of in-silico scRNA-seq mixed expression with 4 true components, 500 genes on the target, and 100
samples each in the reference and target. Here, from (A), we see that Component 4 in the c = 4 estimate splits
from Component 1 in the c = 3 estimate. From (B), we see that Component 5 in the c = 5 estimate splits generally
from Component 3 and marginally from Component 1 in the c = 4 estimate.
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Figure S6: Impact of varied cell-types on GTEx mixing experiments. (A) Correlation matrices between tissues
used in GTEx in-silico matrices. On the left, we show the correlation between tissues used in mixtures in Figure
2. On the right, we show the correlation between tissues used in mixtures in Supplemental Figure S6B. (B)
Boxplots of mean square error (Y -axis) between true and estimated cell-type proportions in in-silico GTEx mixing
experiments across various methods (X-axis), with 25 simulated datasets per number of genes. GTEx mixing
was done at two levels of multiplicative noise, such that errors were drawn from a Normal distribution with zero
mean and standard deviation 4 (left) and 8 (right). Boxplots are colored by the number of genes in each simulated
dataset. These simulations were done with 4 cell-types, shown in the right panel of Supplemental Figure S6A.
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Figure S7: Benchmarking of deconvolution performance using DeCompress and 6 other reference-free deconvo-
lution in published data examples. Boxplots of MSE (Y -axis) over 25 pseudo-targeted panels using four published
datasets over 200, 500, and 800 genes (X-axis). This plot shows the same results as Figure 2C with fixed scales
across datasets.
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Figure S8: Comparison of deconvolution performance using decompressed matrix in DeCompress across various
methods. Boxplots of MSE (Y -axis) between true and estimated cell-type proportions across pseudo-targeted
panels of differing numbers of genes. We compare four reference-free methods (deconf11, Linseed1, iterative
non-negative matrix factorization with feature selection using TOAST2, CellDistinguisher12) and a reference-
based method (unmix14) that uses cell-type specific expressions estimated from the reference. Here, we present
results from the breast cancer cell line mixtures25, prostate tumor28, and lung adenocarcinoma cell line mix-
tures29. We do not include DeconICA13 in this benchmarking due to large errors across all three datasets.
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Figure S9: Deconvolution of breast cancer cell mixture using TCGA-LUAD reference. MSE (Y -axis) across 25
psuedo-targeted panels with different numbers of genes (X-axis) of using various reference-free deconvolution
methods on decompresed breast cancer cell line data using TCGA-LUAD reference data. The yellow box-plot
gives a distribution of the MSE for 1,000 randomly generated cell-type proportions.
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Figure S10: Prediction of CBCS gene expression with TCGA-LUAD reference using compressed sensing models.
Distribution of prediction R2 across 393 genes in CBCS data using TCGA-LUAD as a reference. The median and
mean of the distribution is marked with the dotted red and blue lines, respectively
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Figure S11: Scatter-plot of known and estimated cell-type proportions in CBCS using DeCompress and TOAST
+ NMF. Plots of true (X-axis) and estimated (Y -axis) cell-type proportions in CBCS using DeCompress and
TOAST + NMF (most accurate benchmarked reference-free method). True cell-type proportions are taken as
measurement by a study pathologist for 148 samples. A reference smoothed linear trend line is provided for
reference.
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Figure S12: Comparison of run-times for various methods implemented for compressed sensing in DeCompress.
Over sample sizes of N = 40, N = 200, and N = 1000 and feature sizes of 200, 500, 800, and 100, we
plot the mean time of estimation compression model over the 7 methods implemented in DeCompress: least
angle regression (LAR), LASSO, elastic net with α = 0.5, ridge regression, non-linear optimization with l1 norm,
non-linear optimization with total variation-adjusted l1 norm, and non-linear optimization with l2 norm.
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Figure S13: Comparison of run-times for DeCompress and benchmarked reference-free deconvolution methods.
Mean runtimes in seconds (X-axis on logarithmic scale) for methods benchmarked (Y -axis): DeCompress (in
serial), DeCompress (in parallel with 20 cores), deconf, iterative non-negative matrix factorization with feature
selection using TOAST, CellDistinguisher, Linseed, DeconICA, and CDSeq (in parallel with 20 cores). These
runtimes were generated by running all methods on CBCS data (1,199 samples with 407 genes). DeCompress
was run using TCGA-BRCA (1,212 samples) as a reference. The error bar gives an interval of one standard
deviation around the mean runtime. All methods were run with default inputs. The blue, black, and red dotted
lines provide references for 1 second, 1 minute, and 5 minutes.
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Figure S14: Gene set enrichment plot for combined C3 and C4 gene signature. The green, blue, and red lines
in the top panel of the plot represents the running enrichment score (ES) for the corresponding gene ontology as
the analysis goes down the ranked list. The peak gives the final ES. The green, blue, and red lines in the middle
of the plot shows where the members of ontological groups in the dataset first appear in the ranked list. The
bottom panel shows the value of the ranking metric as it moves down the list of the ranked genes.
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Figure S15: Comparison of CBCS DeCompress-based compartment and GTEx tissue gene signatures. Heatmap
of Pearson correlations between compartment-specific gene signatures (X-axis) and GTEx median expression
profiles and MCF7 single-cell profiles (Y -axis). Significant correlations at nominal P < 0.01 are indicated with an
asterisk. This plot shows the same expression comparison as in Figure 4B but represents all GTEx tissues or
cells with at least 1 significant correlation.
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Figure S16: Comparison of compartment proportion estimates with molecular subtype. Boxplot of C1 and C5
estimated proportions (Y -axis) from DeCompress across 5 PAM50 intrinsic molecular subtypes (X-axis) in CBCS.
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Figure S17: Comparison of compartment proportion estimates with race and different clinical subtype metrics.
(A) Boxplot of C3, C4, and C3 + C4 proportions across race with P -value of Wilcoxon rank-sum test provided.
(B) Scatterplot of compartment proportions (X-axis) and ER or HER2 score from PAM50 classification algorithm.
A regression line is provided with a Spearman correlation ρ for reference. (C) Boxplot of C3, C4, immune, and
tumor compartment estimates acros clinical ER status.
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Figure S18: Manhattan plot of cis-eQTLs across the genome in AA CBCS samples. −log10P -values of eQTL
association (Y -axis) across chromosomal position of cis-eQTLs across bulk (top), immune (middle), and tumor
(bottom) models. Top cis-eGenes are labelled.
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Figure S19: Manhattan plot of cis-eQTLs across the genome in EA CBCS samples. −log10P -values of eQTL
association (Y -axis) across chromosomal position of cis-eQTLs across bulk (top), immune (middle), and tumor
(bottom) models. Top cis-eGenes are labelled.
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Figure S20: Manhattan plot of cis-eQTLs across the genome in AA CBCS samples. −log10P -values of eQTL
association (Y -axis) across chromosomal position of cis-eQTLs across bulk (top), immune (middle), and tumor
(bottom) models. Top cis-eGenes are labelled.
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Figure S21: Cross-referencing of bulk and tumor-specific CBCS EA cis-eGenes with GTEx. Comparison of
absolute effect sizes of eGenes with significant cis-eQTLs in EA CBCS (Y -axis) and GTEx (X-axis) over tissue
type, stratified by bulk and tumor-specific eQTLs. eGenes are colored by the GTEx tissue that shows the eQTL
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Figure S22: Associations of CCR3 expression across clinical variables, subtypes, and mortality. Violin plots of
CCR3 expression across breast tumor stage (A), estrogen status (B), and PAM50 molecular subtype (C).
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