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Web Appendix: Statistical Model Formulation and Inference 

 

To model titer decay, we postulated that the observed titer dilution K is an interval-censored 

version of a latent (unobservable) real-valued variable Z (response intensity) that is proportional 

to the underlying antibody level, W. The relationship between Z and K depends on the dilutions 

used. Here, K = k corresponds to dk < Z < dk+1 for k = 0, 1, …, 7 and dk = 0, 50, 100, 320, 1000, 

3200, 10,000, and 32,000, these being  the dilutions used in Lupidi et al. (1). 

 

Biological considerations suggest that, following an infection and absent re-infection, the mean 

of W should show an initial rapid increase followed by a slower decay. A simple model that 

meets these requirements is 

 

m(t) = atγexp(-βt), (1) 

 

where t denotes time since infection. To convert from a multiplicative to an additive scale, we 

define Y = log(Z) and fit a model to Y. Since Z is proportional to W, it follows that Y = logW + e, 

where e is an unknown constant. Writing μ(x,t) to denote the mean of Y at time t, and taking 

logarithms in (1) gives 

μ(x, t) = x'α - βt + γ log t. (2) 

 

In (2) we have assumed that the non-negative quantity a in (1) has a log-linear dependence on a 

vector of covariates x whose elements include terms for serovar (a factor on three levels) and 

individual (a factor on 18 levels), with corresponding regression parameters α. The value of the 

unknown constant e is absorbed into the intercept term of (2). Finally, we assume that Y is 

Normally distributed with mean μ(x,t) and variance σ2, and that repeated measurements of Y on 

the same individual are stochastically independent. 

 

Under the defined model, the probability of observing dilution K = k at time t from an individual 

with covariates xi is 

𝑝𝑘(𝑥𝑖 , 𝑡) = ∫ 𝑓(𝑢; 𝜇(𝑥𝑖 , 𝑡), 𝜎2
log 𝑑𝑘+1

log 𝑑𝑘

)𝑑𝑢 

(3) 

 

where 𝑓(𝑢;  𝜇, 𝜎2) is the probability density function of N(𝜇, 𝜎2) and, for dilution K = 0, the 

lower bound of the integral is -∞ . The log-likelihood contribution from each individual is the 

sum of log pk(tj) over the follow-up times tj = 1, 9, 18, 36, and 54 months. The overall log-

likelihood is therefore 

𝐿(𝜃) = ∑ ∑ log (𝑝𝑘(𝑥𝑖, 𝑡𝑗))

5

𝑗=1

18

𝑖=1

 

(4) 

where θ = (α, β, γ, σ2). 

 

We estimated the model parameters by maximizing the log-likelihood (4) and tested for effects 

of serovar and individual using generalized likelihood ratio (deviance) tests. Table 1 summarizes 

the results of the generalized likelihood ratio tests, which confirm the need to include both 

serovar and individual effects in the model. The coefficient of log t is not significant, suggesting 

that any initial rise in T following infection occurred sufficiently rapidly that it cannot be 
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detected with a first follow-up time of t=1 month. Table 2 therefore shows parameter estimates 

and standard errors for the fitted model with γ=0. The R value is calculated as exp(-β) = exp(-

0.077) = 0.926. 

 

To check the model fit, we constructed residuals as follows. According to the model, an observed 

titer dilution, ki has fitted value  𝑓𝑖 = ∑ 𝑘𝑝𝑘(𝑥𝑖, 𝑡𝑖)
7
𝑘=0  and variance 𝑣𝑖 = ∑ 𝑘2𝑝𝑘(𝑥𝑖, 𝑡𝑖)7

𝑘=0 − 𝑓𝑖
2. 

We therefore define standardized residuals, 𝑟𝑖 = (𝑘𝑖 − 𝑓𝑖)/√𝑣𝑖. 

 

Appendix Figure 1 shows two diagnostic residual plots. The first is a scatterplot of the 

standardized residuals ri against the fitted values fi. It shows no systematic structure other than 

the banding that is characteristic of residuals when the response variable is discrete-valued, 

indicating an acceptable fit. The second plot shows the scatter of the standardized residuals 

within each individual, distinguishing between serovars. This shows no systematic difference 

between individuals or between serovars within individuals. 

 

The data from Lupidi et al.(1) and code for these analyses can be found at 

https://github.com/kowers/titer-decay-modeling.  
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Web Table 1. Generalized likelihood ratio tests for inclusion of covariates. The deviance 

statistic to compare two nested models is D = 2(L1 - L0) where L0 and L1 are the maximized log-

likelihoods under the null and alternative hypotheses. The null distribution of D is chi-squared, 

with degrees of freedom (df) equal to the difference between the numbers of parameters in the 

two models. 

 

Regression model log L(θ) Deviance df p-value 

Time -390.1199    

Time + log(Time) -389.6177 1.00444 1   0.316 

Time + Serovar -373.3673 33.5053 2 < 0.001 

Time + Serovar + Individual  -303.7657 139.203 17 < 0.001 

 

 

Web Table 2. Parameter estimates and standard errors for the fitted model. Model 

parameters are the 18 individual effects (parameters 1-18), serovar effects as contrasts of 

serovars bratislava and lora against serovar australis, the rate of exponential decay (β), and the 

error variance (σ2). 

 

Parameter Estimate Standard error 

1 3.630 0.313 

2 5.020 0.314 

3 3.208 0.320 

4 3.109 0.322 

5 3.484 0.336 

6 3.827 0.336 

7 2.692 0.329 

8 1.340 0.362 

9 3.473 0.315 

10 2.639 0.340 

11 2.957 0.334 

12 2.132 0.335 

13 3.022 0.333 

14 4.079 0.335 

15 2.553 0.326 

16 2.266 0.326 

17 3.155 0.335 

18 0.487 0.393 

Serovar bratislava 0.767 0.177 

Serovar lora 1.351 0.176 

β 0.077 0.005 

σ2 1.027 0.056 
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Web Figure 1: Decayed MAT titer values and resulting infections defined for participants in 

a longitudinal cohort study in Pau da Lima, Brazil. These panels represent titer trajectories for 

four participants from the Pau da Lima cohort subset sampled with intervals of approximately 4 

then 2 months and are used to demonstrate our method of allowing for titer decay. Points in black 

are the measured titer values. Grey asterisks represent a decayed version of the previous titer (a 

single iteration is shown for clarity). No infections were defined among participants using the 

conventional definition, but two infections (marked with red circles) were identified using 

definitions allowing for titer decay. The arrows indicate the comparison: a decayed version of the 

previous titer is compared to the observed titer at the end of the inter-sample interval.  
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Web Figure 2. Diagnostic residual plots. The left-hand panel is a scatterplot of standardized 

residuals against fitted values. The right-hand plot shows the distributions of the sets of 15 

standardized residuals from each of the 18 individuals, color-coded according to serovar (black: 

australis; red: bratislava; blue: lora). 
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Web Figure 3. MAT titer values for Pau da Lima cohort participants. A subset of participants 

in the biannual cohort were sampled with intervals of approximately 4 then 2 months.  
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