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Decision Letter 
 
Dear Jean-Paul and Dora, 
 
Thank you for submitting your manuscript to Progress in Neurobiology. We have received comments 
from reviewers on your manuscript. Your paper should become acceptable for publication pending 
suitable minor revision and modification of the article in light of the appended reviewer comments. 
 
When resubmitting your manuscript, please carefully consider all issues mentioned in the reviewers' 
comments, outline every change made point by point, and provide suitable rebuttals for any comments 
not addressed. 
 
To submit your revised manuscript go to https://www.editorialmanager.com/proneu/ and log in as an 
Author where you will see a menu item called 'Submission Needing Revision'. 
 
Please resubmit your manuscript by Jan 12, 2021. 
 
We look forward to receiving your revised manuscript. 
 
Kind regards,   
Sabine 
 
   
Sabine Kastner, MD, PhD    
Editor-in-Chief   
Progress in Neurobiology    
 
 
Comments from the Editors and Reviewers: 
 
Reviewer #1: Noel et al. lays out an argument for the development of behavioral tasks that more closely 
mirror the complex behaviors which the neuroscience community is ultimately trying to understand, the 
behaviors of the natural environment. Toward that end, they propose a class of tasks that engage closed 
action-perception loops, simultaneously investigating active sensing, dynamical planning, and how 
organisms leverage existing knowledge and structural regularities in their environments. Importantly, 
they provide a concrete example of their proposal in the form of a virtual navigation task that preserves 
many of the physical laws of the natural environment. They show that non-human primates are able to 
learn this task relatively easily (compared to traditional behavioral tasks) and furthermore they 
generalize, even demonstrating zero or one-shot learning in novel sensorimotor environments. 
Importantly, they also demonstrate that the analysis and interpretation of such tasks is both tractable 
and informative about learning and sensorimotor processing.   
 
This is a well written article giving an important and timely perspective regarding the need for complex 
behavioral tasks in systems neuroscience, that provides concrete examples of the advantages, flexibility, 
and remaining challenges of such tasks. 
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—————————————— 
 
The only overarching response I have to the perspective article (beyond an enthusiastic agreement with 
the authors regarding the need for more complex behavioral paradigms) is related to the statements 
early in the article that promise to use reinforcement learning as a theoretical framework. The authors 
have presented a series of complex behavioral tasks that are certainly reinforcement learning tasks 
(tasks where it is clear that learning is driven by the goal of maximizing cumulative reward, otherwise 
the monkeys wouldn't adjust their gain or choose the closer target), I guess my trouble is that the early 
framing of the paper left me expecting that the authors would arrive at a more specific (and perhaps 
more continuous time) analysis framework for the behavior that had implications for relating their 
results to physiology. But I suppose I may have read a bit too much into the framing. The authors do 
briefly address the challenge of relating complex behavior over time to neurophysiology in the 
discussion. And I have to admit that while I might want this aspect of the paper to be more developed, I 
also recognize that the issues of analyzing complex behavior over time and relating it to neural data is 
an issue that systems neuroscience is only just beginning to address. In fact, that reality is precisely the 
reason a perspective article like this is important and timely.   
 
—————————————— 
 
Figure 3B. Could you add an inset that shows that shows a scatter plot of the predicted radial error vs. 
the actual radial error for monkey J? If I understand the text correctly there is no relationship between 
the gain fluctuations (3B lower) and the radial error (3B upper, black curve, p=.65) but by eye it sort of 
looks like there's a negative correlation between the predicted radial error vs. the actual radial error for 
monkey J. If I'm following everything correctly and this negative correlation exists, it doesn't weaken the 
argument, it just means that the monkeys are actually doing a better job of correcting for the gain when 
the predicted error is larger. I would guess that the size of that predicted error is directly related to the 
size of the gain fluctuation, which is why I'm asking questions. 
 
Related to the observations/questions above, might it also be important to look at the cross correlation 
over trials of actual radial error vs. gain as well as actual radial error vs. predicted radial error. 
 
Minor comments:  
 
The title uses the phrase expressive behavior and while it is mentioned in the abstract and at the end of 
the paper "expressive behavior" is never explicitly defined. If you choose to keep the same title, I would 
want you to provide a more explicit definition. I would also recommend reconsidering the title. It seems 
to no longer fully reflect the scope of the paper, but perhaps it's just that I don't have a clear definition 
of expressive in my head. 
 
Figure 3B: consider a separate panel label for 3B, lower and upper since they are separate plots like C 
and D. 
 
There were also some places in the paper that word choice made it somewhat difficult to follow the 
otherwise clear logic: 
 
Page 5 — "…our peripheral sensors are seldom static…". It's really unclear to me what is meant by this 
phrase, even after skimming through Ahissar & Arieli, 2001. I think part of the problem is that I really 
don't know what is meant by peripheral in this situation (except that I'm pretty positive you don't mean 
the visual periphery). 
 
Page 7 —  
 
* … integration task [including] many of the elements detailed… 
* protracted => longer, " fulfill these desiderata" => include these elements 
 
Page 13 — 
* "…but we consider that a focus on natural behaviors…" => "…but we believe that a focus on natural 
behaviors…" 
* remove "…the cadre of…" 
* "This shows our astonishing intelligence…" - just be careful that you actually mean our (as in humans) 
here. The earlier part of the paragraph is setting up the superior performance of your NHPs compared to 
humans in other experiments. 
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Reviewer #2: Review of Progress in Neurobiology Perspective by Noel et al. entitled: Supporting 
Expressive Behavior in Non-Human Primates by Tapping into Structural Knowledge 
 
In this exciting and fascinating perspective piece, Noel et al. provide a very intriguing and thought 
provoking take on the need to complement well-established workhorse tasks of neuroscience such as 
delayed match to sample, go no-go, and 2AFC that provide excellent behavioral "control" to tasks that 
take advantage of reinforcement learning and structural aspects in the environment. I found the premise 
interesting and definitely excellent as a perspective. I had a few questions and comments that might 
make the paper even more appealing to a broad variety of readers.  
 
I think there is a bit of a false equivalency between visual perturbations and sensorimotor adaptation 
studies that use for instance velocity dependent curl force fields that take the monkeys 10-30 trials to 
adapt to. Adaptation needed for motor tasks involve much more complicated degrees of freedom in the 
arm and the elbow and the shoulder compared to a simple 2D visual task with changing gains. I am sure 
the authors will agree that simple lateral jumps of a cursor or speed up or slowdown of a cursor are far 
simpler tasks that may be easy for animals to adapt to. If the authors perturbed the joystick in a curl 
force field manner and the monkey learned to adapt after a single trial, one could construct such an 
equivalency and that their naturalistic setting led to faster learning. I perhaps worry this is a bit apples 
and oranges and perhaps a bit too strong and would be perceived by readers as such. I still think the 
zero shot to one shot adaptation is very impressive and is still worth highlighting but I am unsure that 
one can make direct comparisons to motor adaptation experiments and this 2D joystick control. 
 
Similarly, I find the discussion on natural decision-making a bit too strong. The classical decision-making 
tasks including the ones that my lab and the Angelaki lab itself has used to great effect involve 
deliberation on noisy stimuli that often are hard for the monkeys to learn. There are often timeouts for 
the monkeys for wrong choices in addition to a lack of reward. The task here is choosing between two 
targets one near and one far. As the authors themselves somewhat indicate, this is a simple reward 
optimization problem and there are no penalties for choosing the wrong target given that both targets 
are equally rewarded. I am confident, if I provided a monkey two targets with equal rewards to reach to 
the monkey would choose the nearer target. I think one can certainly say that there is a benefit to these 
tasks in terms of ease of training, but they do not get at many of the questions that perceptual decision-
making tasks focus on. Nevertheless, I agree on the point and this can be used for inducing rich choice 
behavior. Of particular interest would be if there were 3 or 4 targets then it has benefits over and above 
the 2AFC and allows study of multi-option decision-making. 
 
Perhaps it would be relevant to allude to studies that use naturalistic sensory stimuli to understand the 
brain in combination with the tight action-perception loop the authors discuss. In the real world, we 
don't see arrows, we see reality. For the study of speech and auditory function, there really is no other 
substitute than natural stimuli. And if we want artificial general intelligence it needs to operate in the 
real world. Would it make sense to incorporate a rich virtual reality like world in 3D for the monkeys to 
explore (sort of like a video game) or audiovisual avatars like I used in my 2013 paper (Chandrasekaran 
et al. PNAS 2013) to get monkeys to respond to audiovisual stimuli, or faces as used by the Tsao lab 
and famously by Charlie gross to understand the function of brain areas.  
 
I also think perhaps the authors should discuss studies of motor control and brain computer interfaces 
where monkeys often perform pinball tasks or curved reaches. These types of studies involve free 
movement of the arm in 2 or 3 dimensions and provide access to rich trajectories for the experimenter 
like the task here. In those the monkey knows how to use its arm in 3d and might even need less 
training. For instance, monkeys will reach to a visual target on day 1 on a screen. It is just very natural 
for them to do so. 
 
I think the authors need to also perhaps consider citing other efforts now to develop freely moving 
monkey experiments that have been developed by Berger et al. 2018, and OpenMonkeyStudio from 
Zimmerman and Hayden, and treadmill walking experiments from Foster et al 2014 (freely moving 
monkey treadmill model). Perhaps alluding to such efforts will also broaden the perspective of the paper. 
 
The reason behind simple tasks is that people worry about influences on neural data from covariates. In 
fact, this is often a common critique of rodent experiments where the body position of the mouse/rat is 
highly variable from trial to trial and often contributes considerable variance to neural activity in a given 
region. Multiple papers have been written on this topic, but it is unclear what the solution is. I am sure if 
the authors were to read a paper where eye movements were unconstrained then they would doubt the 
neural results. Also, my suspicion is that many of these controlled behavioral tasks in monkeys (where 
for instance monkeys are forced to reach to a target without moving their eyes) emerged after 
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experimenters found that lots of covariates impact neural activity. Then disentangling different neural 
effects is complex. Fortunately, perhaps my next point might be of help. 
 
I think the authors have cited dPCA and TCA as candidate methods for analyzing neural correlates of 
naturalistic behavior. However, I feel the authors should also consider citing methods such as LFADS 
(pandarinath et al. 2018), GPFA (Yu et al. 2009), and PSID (Shanechi lab, Nature Neuroscience 2020). 
These methods are far more suited to the formidable challenge of extracting sensible neural insights 
from these behaviors. dPCA demands averaging based on parameters modulated by the experimenter! 
Single trial analysis with rigorous measurement of covariates might allow us to extract neural insights 
from complex behavior especially when the behavior involves free eye and arm movements. 
 
Chandramouli Chandrasekaran 
 
Author Response Letter 
 
Reviewer #1:  
Noel et al. lays out an argument for the development of behavioral tasks that more closely 
mirror the complex behaviors which the neuroscience community is ultimately trying to 
understand, the behaviors of the natural environment. Toward that end, they propose a class 
of tasks that engage closed action-perception loops, simultaneously investigating active 
sensing, dynamical planning, and how organisms leverage existing knowledge and structural 
regularities in their environments.  Importantly, they provide a concrete example of their 
proposal in the form of a virtual navigation task that preserves many of the physical laws of 
the natural environment.  They show that non-human primates are able to learn this task 
relatively easily (compared to traditional behavioral tasks) and furthermore they generalize, 
even demonstrating zero or one-shot learning in novel sensorimotor 
environments.  Importantly, they also demonstrate that the analysis and interpretation of such 
tasks is both tractable and informative about learning and sensorimotor processing.   
 
This is a well written article giving an important and timely perspective regarding the need for 
complex behavioral tasks in systems neuroscience, that provides concrete examples of the 
advantages, flexibility, and remaining challenges of such tasks.  
 
We thank the reviewer for his/her overall positive and constructive feedback.  
 
The only overarching response I have to the perspective article (beyond an enthusiastic 
agreement with the authors regarding the need for more complex behavioral paradigms) is 
related to the statements early in the article that promise to use reinforcement learning as a 
theoretical framework.  The authors have presented a series of complex behavioral tasks that 
are certainly reinforcement learning tasks (tasks where it is clear that learning is driven by the 
goal of maximizing cumulative reward, otherwise the monkeys wouldn't adjust their gain or 
choose the closer target),  I guess my trouble is that the early framing of the paper left me 
expecting that the authors would arrive at a more specific (and perhaps more continuous time) 
analysis framework for the behavior that had implications for relating their results to 
physiology.  But I suppose I may have read a bit too much into the framing. The authors do 
briefly address the challenge of relating complex behavior over time to neurophysiology in the 
discussion.  And I have to admit that while I might want this aspect of the paper to be more 
developed, I also recognize that the issues of analyzing complex behavior over time and 
relating it to neural data is an issue that systems neuroscience is only just beginning to 
address.  In fact, that reality is precisely the reason a perspective article like this is important 
and timely.    
 
We thank the reviewer for pointing out that the framing of the piece in the first few sections – 
heavily relying on reinforcement learning – may mislead readers and cause false expectations. 
In fact, our intention was always to distill conceptual teaching from that field, and leverage 
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those in experimental design, and not to further reinforcement learning itself (a field we are 
not experts in). To address this important comment we have taken the following 3 measures. 
 
First, we have added a paragraph at the end of section 1. Introduction: The Neurosciences of 
Tomorrow, in order to explicitly state the goal and roadmap of the current piece. The section 
reads as follows: 
 
Similarly, authors (Botvinick et al., 2020) have eloquently written about a new wave of artificial 
intelligence (e.g., deep reinforcement learning) that is poised to inform next-generation 
neuroscience. Here, it is not our intention to discuss reinforcement learning and control 
broadly, nor to illustrate how these frameworks may guide data analyses (see Inverse 
Reinforcement Learning, Ng & Russell, 2000, Choi & Kim, 2011; Inverse Rational Control; 
Daptardar et al., 2019; Wu et al., 2020; Kwon et al., 2020). Instead, we very specifically distill 
a number of the conceptual contributions from this framework, and attempt to translate these 
to experimental choices that may accelerate the study of brain function by allowing animals to 
express intelligent behavior akin to that of human everyday life. Most importantly, we provide 
a concrete example of an experimental ecosystem that allows for such generalization, 
demonstrating generalization to three distinct and fundamental computations. 
 
And amended the Abstract accordingly:  
 
The framework of reinforcement learning naturally wades across action and perception, and 
thus is poised to inform the neurosciences of tomorrow, not only from a data analyses and 
modeling framework, but also in guiding experimental design. 
  
Second, we have considerably reduced sections 1. 1. How Should Agents Interact with Their 
Surrounding? Active Sensing and Planning and 1.2. What Type of Task? Cognitive Maps, 
Structural Knowledge, and Learning Sets in order to further emphasize the example 
experimental ecosystem and the three generalization examples, as opposed to reinforcement 
learning. The two sections abovementioned have been reduced from ~1500 words to ~1100 
words. This section has also been broaden to include reference to the field of control theory, 
another likely important theoretical contributor to the neurosciences of tomorrow. 
 
Lastly, we add to the discussion mention to the fact that continuing the development of 
continuous time-analyses (both model-free and model-based) is critical in scaffolding the 
study of natural behavior, and vice-versa. This paragraph reads as follows: 
 
Now, it is true that the study of natural behaviors comes at the expense of needing more 
sophisticated behavioral tracking (Bala et al., 2020; Pereira et al., 2020; Wu et al, 2020) and 
data analysis tools (see Huk et al., 2018, for an insightful perspective on this topic). For 
example, one of the pillars of data analyses in neurophysiology, i.e., averaging across trials, 
breaks down in naturalistic tasks with continuous action-perception loops. On the bright side, 
it is unlikely that the brain computes averages. Further, powerful techniques for the efficient 
estimation of single-units tuning functions are already underway (Balzani et al., 2020; Dowling 
et al., 2020), and a number of techniques for inferring the latent dynamics of populations of 
neurons exists, even at the single trial level (e.g., GPFA; Yu et al., 2009; LFADS: Sussilo et 
al., 2016; Pandarinath et al., 2018; PSID: Sani et al., 2020) and when requiring time-warping 
(Williams et al., 2020). Further, while in the current piece we have not discussed nor leveraged 
a reinforcement learning perspective for model-based data analyses (see Choi & Kim, 2011; 
Daptardar  et al., 2019; Kwon et al., 2020; Wu et al., 2020), it is our hope that already starting 
to study natural and generalizable behaviors in systems neuroscience will precisely demand 
for developments in this area. 
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Figure 3B. Could you add an inset that shows that shows a scatter plot of the predicted radial 
error vs. the actual radial error for monkey J?  If I understand the text correctly there is no 
relationship between the gain fluctuations (3B lower) and the radial error (3B upper, black 
curve, p=.65) but by eye it sort of looks like there's a negative correlation between the 
predicted radial error vs. the actual radial error for monkey J.  If I'm following everything 
correctly and this negative correlation exists, it doesn't weaken the argument, it just means 
that the monkeys are actually doing a better job of correcting for the gain when the predicted 
error is larger.  I would guess that the size of that predicted error is directly related to the size 
of the gain fluctuation, which is why I'm asking questions. 
 
The reviewer is correct, as indicated in the manuscript, we saw no relation between the 
relatively rapid (~50 trials) changes in gain, and the slower fluctuations in performance. 
Further, we performed the analyses requested by the reviewer here. The apparent negative 
correlation between predicted and actual error the reviewer observed in Figure 3 is due to the 
fact that at small gains (close to 1), there won’t be much of a difference between predicted 
and actual end locations, and thus error. Conversely, at larger gains, the difference will be 
exacerbated. This becomes clear when plotting a scatter plot of predicted vs. actual endpoints, 
as it can be observer in the left-most panel below, this simply reflects the varying gains.  
 
When we plot error as a function of gain (right panel), we see no correlation between the gain 
applied and error. We decided not to include these figures in the main text, as their explanation 
is straightforward and the key lack of a correlation between error and gain changes is already 
included in the main text. 

 

 
 

Related to the observations/questions above, might it also be important to look at the cross 
correlation over trials of actual radial error vs. gain as well as actual radial error vs. predicted 
radial error.  
 
We performed a cross-correlation between gain and response (green), gain and predicted 
responses (trained gain, red), and between the actual and predicted response (blue). These 
are all normalized such that the auto-correlation at lag = 0 is 1. The notable feature of these 
cross-correlations is that it jumps and takes a value close to 1 (=0.96) at zero lag for the 
correlation between actual and predicted response. The cross correlation is not perfect (=1) 
as on a few occasions the monkey overshoots the target, such that real and predicted end-
locations are on opposite sides of the target (one is overshot and the other is undershot). 
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Minor comments:   
 
The title uses the phrase expressive behavior and while it is mentioned in the abstract and at 
the end of the paper "expressive behavior" is never explicitly defined.  If you choose to keep 
the same title, I would want you to provide a more explicit definition.  I would also recommend 
reconsidering the title.  It seems to no longer fully reflect the scope of the paper, but perhaps 
it's just that I don't have a clear definition of expressive in my head. 
 
We thank the author for this suggestion. We have indeed changed the title and eliminated all 
reference to “expressive” behavior. The title now reads:  
 
Supporting Generalization in Non-Human Primate Behavior by Tapping into Structural 
Knowledge: Examples from Sensorimotor Mappings, Inference, and Decision-Making 
  
Figure 3B: consider a separate panel label for 3B, lower and upper since they are separate 
plots like C and D.  
 
Figure 3 has been updated to separate Figure 3B into Figure 3B and C:  
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There were also some places in the paper that word choice made it somewhat difficult to follow 
the otherwise clear logic:  
 
Page 5 — "…our peripheral sensors are seldom static…". It's really unclear to me what is 
meant by this phrase, even after skimming through Ahissar & Arieli, 2001. I think part of the 
problem is that I really don't know what is meant by peripheral in this situation (except that I'm 
pretty positive you don't mean the visual periphery).  
 
This section has been amended to read:   
 
This compartmentalization may seem a sensible first order approach to describe the distinct 
components forming behavior, and this intent likely drove the development of what are today 
classic paradigms in the study of brain function. However, in natural conditions, and thus 
throughout evolution, perception and action do not occur serially. In fact, eye movements not 
only dictate the content and relative resolution of visual input, but perhaps most importantly, 
they also dictate the relative timing of sensory input. Critically, this natural “rhythm” (Leopold 
& Park, 2020) of the visual system seemingly guides its functioning.  
 
Page 7  —  
 
* … integration task [including] many of the elements detailed…  
* protracted => longer, " fulfill these desiderata" => include these elements  
 

-150 -100 -50 0
-50

0

50

100

150

200

250

300

0

0.2

0.4

0.6

0.8

0 500 1000 1500

100

120

140

160

180

200

0 500 1000 1500
0

50

100

150

0 500 1000 1500
-50

0

50

100

150

0 500 1000 1500
-5

0

5

10

R
ad

ia
l E

rr
or

 (c
m

)

r-r

r-rtg

~

~
Monkey J

A

C

Start

J
0 2 4

-50

0

50

100

150

J M S V

G
ai

n

D

R
ad

ia
l E

rr
or

 (c
m

)

E
Trial 1 After Gain Change
Trial 2 After Gain Change
Trial 3-20 After Gain Change

M
ea

n 
A

bs
ol

ut
e 

Er
ro

r
N

or
m

al
iz

ed
 b

y 
D

is
ta

nc
e

(c
m

 e
rr

or
 p

er
 c

m
 ta

rg
et

 d
is

ta
nc

e)

J M S V

r-rtg~
r-r~

U
nd

er
sh

oo
t

O
ve

rs
ho

ot

1x

2x

Trained-Gain 
1x

Experienced Gain 
1-2x

No Adaptation Hypothesis

Monkey

Target
r, θ

Response

r, θ~ ~

Trained-Gain 
Response

rtg, θtg
~ ~

B

Trial Number

Trial Number



   
 
 

9 
 
 

These have been corrected.  
 
Page 13 —  
 
* "…but we consider that a focus on natural behaviors…" =>  "…but we believe that a focus 
on natural behaviors…"  
 
Corrected. 
 
* remove "…the cadre of…"  
 
Corrected. 
 
* "This shows our astonishing intelligence…"  - just be careful that you actually mean our (as 
in humans) here.  The earlier part of the paragraph is setting up the superior performance of 
your NHPs compared to humans in other experiments.  
 
We thank the reviewer for noting this typo. The sentence has been modified as follows: 
 
Remarkably, the animals were able to continuously estimate the likely position of the unseen 
firefly and appropriately navigate to its reward boundary already within the very first session 
they encountered moving fireflies. This shows both the astonishing intelligence of these 
experimental animals, being able to traverse a large space of potential actions and states 
while concurrently estimating how other agents are moving through their own space of 
potential actions and states, but also emphasizes our duty as experimentalist to allow them to 
show this behavior. 
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Reviewer #2:  
Review of Progress in Neurobiology Perspective by Noel et al. entitled: Supporting Expressive 
Behavior in Non-Human Primates by Tapping into Structural Knowledge  
 
In this exciting and fascinating perspective piece, Noel et al. provide a very intriguing and 
thought provoking take on the need to complement well-established workhorse tasks of 
neuroscience such as delayed match to sample, go no-go, and 2AFC that provide excellent 
behavioral "control" to tasks that take advantage of reinforcement learning and structural 
aspects in the environment. I found the premise interesting and definitely excellent as a 
perspective. I had a few questions and comments that might make the paper even more 
appealing to a broad variety of readers. 
 
We thank Dr. Chandrasekaran for his constructive comments and aiding us in broadening the 
perspective.  
 
I think there is a bit of a false equivalency between visual perturbations and sensorimotor 
adaptation studies that use for instance velocity dependent curl force fields that take the 
monkeys 10-30 trials to adapt to. Adaptation needed for motor tasks involve much more 
complicated degrees of freedom in the arm and the elbow and the shoulder compared to a 
simple 2D visual task with changing gains. I am sure the authors will agree that simple lateral 
jumps of a cursor or speed up or slowdown of a cursor are far simpler tasks that may be easy 
for animals to adapt to. If the authors perturbed the joystick in a curl force field manner and 
the monkey learned to adapt after a single trial, one could construct such an equivalency and 
that their naturalistic setting led to faster learning. I perhaps worry this is a bit apples and 
oranges and perhaps a bit too strong and would be perceived by readers as such. I still think 
the zero shot to one shot adaptation is very impressive and is still worth highlighting but I am 
unsure that one can make direct comparisons to motor adaptation experiments and this 2D 
joystick control. 
 
The reviewer is correct in that comparing changes in sensorimotor gains and visual 
perturbations is perhaps a false equivalence. As such, we have eliminated the section of the 
discussion that compared the speed of adaptation during the gain manipulation from that of 
force-field tasks in humans.  
 
As an aside, we consider this comment very interesting and perhaps something to scrutinize 
in more detail in the future provided we record the pertinent variables (e.g., joint angles). As 
Dr. Chandrasekaran notes, the manipulation here was a 1-dimensional change (gain) applied 
in 2-dimensions (forward and lateral velocity). Yet, to navigate in this space, the animals are 
using a joystick controlled by their hands, arms, etc. Thus, while the visual perturbation is 2-
dimensional, correction for this perturbation may be higher-dimensional. This is not in the 
purview of the current perspective, but we appreciate the food-for-thought. 
 
Similarly, I find the discussion on natural decision-making a bit too strong. The classical 
decision-making tasks including the ones that my lab and the Angelaki lab itself has used to 
great effect involve deliberation on noisy stimuli that often are hard for the monkeys to learn. 
There are often timeouts for the monkeys for wrong choices in addition to a lack of reward. 
The task here is choosing between two targets one near and one far. As the authors 
themselves somewhat indicate, this is a simple reward optimization problem and there are no 
penalties for choosing the wrong target given that both targets are equally rewarded. I am 
confident, if I provided a monkey two targets with equal rewards to reach to the monkey would 
choose the nearer target. I think one can certainly say that there is a benefit to these tasks in 
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terms of ease of training, but they do not get at many of the questions that perceptual decision-
making tasks focus on. Nevertheless, I agree on the point and this can be used for inducing 
rich choice behavior. Of particular interest would be if there were 3 or 4 targets then it has 
benefits over and above the 2AFC and allows study of multi-option decision-making. 
 
We agree with the reviewer that the decision-making task we employed here was very simple. 
The main purpose was to show that researchers can still employ 2AFC in a naturalistic setting 
(though admittedly we did not examine the full gamut of what is typical in most current day 
studies of decision making; uncertainty, cost-functions, etc.). We have modified the text in the 
following manners. 
 
Section 3. 3. Natural Decisions – Choice of Target 
 
This sort of decision-making is typically studied in laboratories by training animals to perform 
a predefined motor response (e.g. a saccade) to report an arbitrary stimulus category (e.g. a 
grating tilted clockwise relative to vertical; e.g., Glimcher, 2001; Romo & Salinas, 2003; 
Shadlen & Kiani, 2013). These standard tasks are purposely kept as simple as possible in 
order to isolate decision-making signals uncorrupted by signals such as memory, attention, 
and other. Further, these protocols typically involve additional manipulations, such as noise-
levels and the magnitude of rewards and punishments, in order to isolate different components 
of the decision process, i.e., uncertainty, sensitivity, cost and reward functions, decision 
criteria, and confidence (see e.g., Chandrasekaran et al., 2017). 
 
Outlook 
 
Lastly, we were able to show that within a binary decision-making task monkeys instinctively 
maximize their expected reward per unit time, by choosing to navigate to targets associated 
with a higher reward rate. Further, decision-making naturally generalized to the case of 
hundreds of fireflies in a world with no trial structure. The presented examples of decision 
making did not include all aspects of state-of-the-art decision making studies, where observers 
are typically asked to deliberate on noisy and often ambiguous sensory stimuli. However, 
within the framework of the firefly task we could easily manipulate the contrast of fireflies, as 
well as the reliability and congruency of optic flow vis-à-vis self-motion. The general strategy 
of training animals on a “reporting mechanism” – stopping at the firefly location – can be used 
to study a large set of naturalistic behaviors given that animals naturally attempt to maximize 
their reward rate. 
 
Further, we agree with the reviewer that expanding the decision-making example to a multi-
option task would very nicely show generalization. Thus, we had 3 monkeys navigate a virtual 
environment inhabited by 200 fireflies that would flash at random times. We have modified the 
text to show that animals (i) deliberately stop at the location of fireflies even within this very 
complex world, and (ii) show interesting idiosyncrasies (e.g., when they decided to engage or 
not in the task) that could be exploited in the future. The added text and figure are the following:  
 
After demonstrating the ability to study the relatively simple case of 2 alternative choices under 
the firefly task, we questioned whether macaques would generalize – still within the very first 
session – to a much more complex scenario, one with multiple options and where the number 
of targets is constantly changing (ranging form 0 to 7 concurrently visible fireflies, with many 
more that could be in the vicinity but invisible, Fig. 6A inset, shows 10 in total with 3 visible). 
We embedded these animals within a large virtual environment (10 meters in diameter) that 
would repeat to infinite (see Supplementary Videos S1 & S2). This space was inhabited by 
200 fireflies flashing at random times (Fig. 6A, red = firefly on, black = firefly off, blue = horizon, 
what is currently visible from an egocentric perspective). When we visualize the stopping 
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locations of an example subject, we can observer that 43% of the times an animal stopped 
(linear velocity < 5cm/s), it did so within the boundaries of a reward zone (Fig. 6B). To 
quantitatively assess whether animals were deliberately stopping at the location of fireflies, 
we computed their total number of rewards (Fig. 6C, Observed), as well as the total number 
of rewards they would have received under different (rotated, 1000 permutations) 
configurations of firefly locations (Fig. 6C, Shuffled). All monkeys received significantly more 
rewards (all p<10-3) than they would have if simply stopping randomly. Further, we examined 
their reward rate per minute (Fig. 6D), and while we observed interesting idiosyncratic 
fluctuations (note Monkey S decided not to forage for ~30min), animals did not consistently 
improve with time, suggesting they were perfectly capable of navigating this large space of 
potential targets from the get go. Altering between voluntarily exploiting our environment vs. 
resting (Fig. 6D, bottom panel) is commonplace in our daily lives, yet seldomly falls within the 
purview of our traditional experiments (but see Milton et al., 2020 for a recent exception). 

 
Figure 6: Naturalistic Foraging within a Multi-Firefly Scenario. (A) Two-hundred fireflies were present 
within a large virtual environment, and flashed at random times (red = firefly on, black = firefly off, blue 
and inset show the horizon of what was visible during the example frame, yellow trajectory shows 
movement over the last second). (B) Monkey stopping location referenced to the nearest firefly. (C) 
Observed (red) and null distribution (black, shuffled) of total rewards within the session. (D) Rewards 
per minute for the three different monkeys (B, Q, S) within the first session they were exposed to the 
environment with hundreds of fireflies. 
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Perhaps it would be relevant to allude to studies that use naturalistic sensory stimuli to 
understand the brain in combination with the tight action-perception loop the authors discuss. 
In the real world, we don't see arrows, we see reality. For the study of speech and auditory 
function, there really is no other substitute than natural stimuli. And if we want artificial general 
intelligence it needs to operate in the real world. Would it make sense to incorporate a rich 
virtual reality like world in 3D for the monkeys to explore (sort of like a video game) or 
audiovisual avatars like I used in my 2013 paper (Chandrasekaran et al. PNAS 2013) to get 
monkeys to respond to audiovisual stimuli, or faces as used by the Tsao lab and famously by 
Charlie gross to understand the function of brain areas.   
 
Indeed, as others have eloquently written about previously, the use of naturalistic stimuli will 
likely also define our field moving forward. In our particular case, the task is naturalistic, but 
the stimuli are not. This was a conscious decision given that we still wanted to be rooted in 
classic neurophysiology (e.g., random dot kinematograms and the study of MSTd). Further, 
as alluded to by the reviewer, the use of naturalistic stimuli is most common currently in the 
fields of language comprehension and audio-visual binding, fields somewhat disparate from 
navigation via path integration (employed here).  As such, we briefly mention the utility of 
naturalistic stimuli, but refer interested readers to appropriate venues. The text has been 
modified as follows:  
 
In addition to the strong advantages afforded by this approach in the study of behavior – note 
that all data presented here, 4 animals in 3 different tasks, was collected within 1 week – we 
also believe naturalistic tasks (and stimuli; e.g., Chandrasekaran et al., 2013; see Sonkusare 
et al., 2019, Matusz et al., 2018) may ultimately facilitate the interpretation of neural 
responses. 
 
I also think perhaps the authors should discuss studies of motor control and brain computer 
interfaces where monkeys often perform pinball tasks or curved reaches. These types of 
studies involve free movement of the arm in 2 or 3 dimensions and provide access to rich 
trajectories for the experimenter like the task here. In those the monkey knows how to use its 
arm in 3d and might even need less training. For instance, monkeys will reach to a visual 
target on day 1 on a screen. It is just very natural for them to do so.  
 
Indeed, motor control, reaching behavior, and brain computer interfaces share a strong 
similarity with the task employed here. We agree that referring to this literature can broaden 
the scope of the current perspective. We have modified the text as follows: 
 
In the Firefly Task, individual trials last on the order of 2 to 4 seconds, and the output of each 
trial is a two-dimensional data-rich trajectory allowing for robust model fitting 
(Lakshminarasimhan et al., 2018; Noel et al., 2020) and the prolonged tracking of eye-
movements. In this regard, the resulting data from the Firefly Task is akin to that obtained 
during other naturalistic tasks, such as two (e.g., Ames et al., 2019) or three (e.g., Young et 
al., 2019) dimensional reaches. It provides time-varying behavioral output on a time-scale that 
in principle should allow for hundreds or thousands of spikes, and hence accurate decoding 
from neural signals (as exemplified by the ever more robust decoders built in and for brain-
machine interfaces; e.g., Chaudhary et al., 2016).    
 
I think the authors need to also perhaps consider citing other efforts now to develop freely 
moving monkey experiments that have been developed by Berger et al. 2018, and 
OpenMonkeyStudio from Zimmerman and Hayden, and treadmill walking experiments from 
Foster et al 2014 (freely moving monkey treadmill model). Perhaps alluding to such efforts will 
also broaden the perspective of the paper. 
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We modified the text to reference these important developments. The very first paragraph of 
the perspective now reads: 
 
It is undoubtedly an exciting time in systems neuroscience. Techniques for neural recording 
and perturbation are improving at a remarkable pace (Sejnowski et al, 2014; Jun et al., 2017), 
and the development of rigorous behavioral training procedures is permitting for 
psychophysics in smaller animals akin to those classically undertaken in primates (Burgess et 
al., 2017; IBL et al., 2020). Further, novel approaches for tracking freely moving animals 
(Foster et al., 2014; Berger et al., 2018, 2020; Michaiel et al., 2020; Bala et al., 2020; Pereira 
et al., 2020; Wu et al, 2020; Mao et al., 2020) is encouraging researchers to measure and 
leverage in their analyses additional degrees of freedom (e.g., eye, arm, and full-body 
movements), as opposed to artificially restricting these potential sources of explainable 
variance (Musall et al., 2019). Continued steps in this direction promise to further (re)shape 
our field, one that is and will be largely defined by novel technologies allowing for the dissection 
of circuit-based correlates of complex behavior. 
 
Further, we have modified the Outlook as follows: 
 
Now, it is true that the study of natural behaviors comes at the expense of needing more 
sophisticated behavioral tracking (Bala et al., 2020; Pereira et al., 2020; Wu et al, 2020) and 
data analysis tools (see Huk et al., 2018, for an insightful perspective on this topic). For 
example, one of the pillars of data analyses in neurophysiology, i.e., averaging across trials, 
breaks down in naturalistic tasks with continuous action-perception loops. 
 
The reason behind simple tasks is that people worry about influences on neural data from 
covariates. In fact, this is often a common critique of rodent experiments where the body 
position of the mouse/rat is highly variable from trial to trial and often contributes considerable 
variance to neural activity in a given region. Multiple papers have been written on this topic, 
but it is unclear what the solution is.  I am sure if the authors were to read a paper where eye 
movements were unconstrained then they would doubt the neural results. Also, my suspicion 
is that many of these controlled behavioral tasks in monkeys (where for instance monkeys are 
forced to reach to a target without moving their eyes) emerged after experimenters found that 
lots of covariates impact neural activity. Then disentangling different neural effects is complex. 
Fortunately, perhaps my next point might be of help. 
 
We agree with the reviewer, the standard protocols (e.g., 2AFC tasks) were likely the best first 
attempt, and will likely continuously have their role to play in the study of brain function. We 
consider that there are indeed two choices regarding eye-movement, for example, and the 
interpretability of neural responses. Either we fix them (as Dr. Chandrasekaran mentions), or 
we measure them and leverage them in our analyses (as in the examples below). We have 
modified the text in the following manners. 
 
Introduction:  
 
This rigid experimental control arguably allows for carefully disentangling potential 
confounding variables (or at least the subset anticipated by experimentalists), yet tends to 
dissociate perception from action, guides the state-space of potential actions (i.e., actions as 
“reports” and not as information-sampling; Gottlieb & Oudeyer, 2018), and fixes the utility of 
samples we draw from the environment. 
 
Section 2. An Example Ecosystem for Natural Yet Controlled Behavior: Catching Fireflies 
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These findings suggest that during naturalistic navigation, eye movements are an integral 
component of the closed-loop strategy of prediction and action, and is not to be regarded as 
a nuisance variable, but instead measured and leveraged. 
 
I think the authors have cited dPCA and TCA as candidate methods for analyzing neural 
correlates of naturalistic behavior. However, I feel the authors should also consider citing 
methods such as LFADS (pandarinath et al. 2018), GPFA (Yu et al. 2009), and PSID 
(Shanechi lab, Nature Neuroscience 2020). These methods are far more suited to the 
formidable challenge of extracting sensible neural insights from these behaviors.  dPCA 
demands averaging based on parameters modulated by the experimenter! Single trial analysis 
with rigorous measurement of covariates might allow us to extract neural insights from 
complex behavior especially when the behavior involves free eye and arm movements.  
 
We thank the reviewer for highlighting these other methods. Indeed, this part of the manuscript 
was under-developed in the previous iteration. We have amended the text in the following 
manner: 
 
Now, it is true that the study of natural behaviors comes at the expense of needing more 
sophisticated behavioral tracking (Bala et al., 2020; Pereira et al., 2020; Wu et al, 2020) and 
data analysis tools (see Huk et al., 2018, for an insightful perspective on this topic). For 
example, one of the pillars of data analyses in neurophysiology, i.e., averaging across trials, 
breaks down in naturalistic tasks with continuous action-perception loops. On the bright side, 
it is unlikely that the brain computes averages. Further, powerful techniques for the efficient 
estimation of single-units tuning functions are already underway (Balzani et al., 2020; Dowling 
et al., 2020), and a number of techniques for inferring the latent dynamics of populations of 
neurons exists, even at the single trial level (e.g., GPFA; Yu et al., 2009; LFADS: Sussilo et 
al., 2016; Pandarinath et al., 2018; PSID: Sani et al., 2020) and when requiring time-warping 
(Williams et al., 2020). Further, while in the current piece we have not discussed nor leveraged 
a reinforcement learning perspective for model-based data analyses (see Choi & Kim, 2011; 
Daptardar  et al., 2019; Kwon et al., 2020; Wu et al., 2020), it is our hope that already starting 
to study natural and generalizable behaviors in systems neuroscience will precisely demand 
for developments in this area. 
 
Chandramouli Chandrasekaran 
 
Thank you for your time, constructive comments, and help in improving this manuscript. It is 
much appreciated. 
 
 
 


