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S1. Expressions for the bias in gene-environment models due to 10 

interdependency of polygenic scores and environments 11 

The main text provided a general description of endogenous selection bias when 12 

polygenic scores and environments are not independent. Here we further illustrate 13 

this issue by deriving exact expressions for the bias under the assumption of linear 14 

relationships that can be modelled using regression analysis.  15 

We assume that the data have been generated by the DAG shown in Figure 16 

1A.  Here U is an unobserved variable or set of variables that confounds the E – Y 17 

relationship (this is equivalent to, but, in our view more transparent than, a 18 

depiction that would include correlated error terms for E and Y).  We further 19 

assume that all the variables have unit standard deviation and that G is 20 

exogenous.  21 

S1.1 Additive model 22 

When the effects of G and E on Y are additive the true linear models given the 23 

data-generating process are: 24 

𝐸(𝐸|𝐺,𝑈) = 𝛼* + 𝛼,𝐺 + 𝛼-𝑈   (Equation S1) 25 

𝐸(𝑌|𝐺, 𝐸,𝑈) = 𝛽* + 𝛽,𝐺 + 𝛽-𝐸 + 𝛽0𝑈 (Equation S2) 26 

We assume that the parameters 𝛼,, 𝛽,, and 𝛽- are all positive.  27 

If estimate the models: 28 

𝐸(𝐸|𝐺) = 𝑎* + 𝑎,𝐺   (Equation S3) 29 
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𝐸(𝑌|𝐺, 𝐸) = 𝑏* + 𝑏,𝐺 + 𝑏-𝐸 (Equation S4) 30 

the relationships between the true and estimated parameters are: 31 

𝑏, = 𝛽, −
454678
,9456

   (Equation S5) 32 

𝑏- = 𝛽- +
4678
,9456

   (Equation S6) 33 

The proof is as follows.  Let 𝛽:; denote the coefficient of the unconditional 34 

regression of Y on G and likewise for 𝛽:<.  Then, tracing the paths linking G and 35 

Y in the Figure A1a we have: 36 

𝛽:; = 𝛽, + 𝛽-𝛼, 37 

and  38 

𝛽:< = 𝛽- + 𝛽,𝛼, + 𝛽0𝛼- 39 

Given that 𝛽<; = 𝛼, we then apply the standard formula to derive conditional 40 

regression coefficients from unconditional: 41 

𝑏, =
𝛽:; − 𝛽:<𝛼,
1 − 𝛼,-

= 	
𝛽, + 𝛽-𝛼, − (𝛽- + 𝛽,𝛼, + 𝛽0𝛼-)𝛼,

1 − 𝛼,-
 42 

Straightforward algebra yields (S5).  𝑏- is derived similarly.  Notice, however, 43 

that 𝑎, = 𝛼, because G and U are unconditionally independent. 44 

The bias in both estimates depends on the sign of 𝛼- × 𝛽0: if this is positive 45 

the estimate of the partial effect of G on Y, given E, will be downwardly biased and 46 

the estimate of the effect of E on Y, given G, will be upwardly biased.  If there is 47 

no correlation between G and E (𝛼, = 0) then 𝑏,will be unbiased.  If there is no 48 
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effect of an unmeasured confounder (either 𝛼- = 0 and/or 𝛽0 = 0) both 𝑏, and 𝑏- 49 

will be unbiased.  The bias in the effect of G on Y has a different sign than the bias 50 

in the effect of E on Y: if the bias in the latter is positive, the size of the genetic 51 

effect will be underestimated relative to the environmental effect.   52 

The example of coefficient deflation from Papageorge and Thom1 can be 53 

demonstrated following Equation S5. For instance, considering the case on 54 

nonroutine interactive job tasks as the dependent variable, we see that the 55 

baseline coefficient of the educational attainment polygenic score is 0.185, which 56 

reflects a model without any environmental and phenotypic covariates (Table 6 in 57 

Papageorge and Thom1). In the model with educational controls (respondent’s 58 

years of schooling and parental education), the polygenic score coefficient drops to 59 

0.055 reflecting a 70% negative change. Since the dependent variable is 60 

standardised, we can assess the relative importance of collider bias which is 454678
,9456

 61 

from Equation S5 under additional assumptions. If we allow the coefficient of the 62 

correlation between educational attainment polygenic score and respondents 63 

years of schooling 𝛼,=0.300, and the presence of unobserved confounder U, 64 

positively correlated with both years of schooling and job task (for example, living 65 

in advantaged neighbourhood as a child), we have 𝛼- = 0.250 and 𝛽0 = 0.250. 66 

These are all plausible and rather modest suggestions following correlation matrix 67 

from Table 6 in Papageorge and Thom1, leading the inflation bias to be: 68 

𝛼,𝛼-𝛽0
1 − 𝛼,-

=
0.300 × 0.250 × 0.250

1 − 0.300- = 0.021 69 

which explains 16% downward change of polygenic score coefficient. 70 

S1.2 G×E interaction model 71 
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The DAG in Figure 2A shows the case in which the effect of G on Y varies with E.  72 

In this case, the true linear models given the data-generating process are: 73 

𝐸(𝐸|𝐺,𝑈) = 𝛼* + 𝛼,𝐺 + 𝛼-𝑈       (Equation S7) 74 

𝐸(𝑌|𝐺, 𝐸,𝑈) = 𝛽* + 𝛽,𝐺 + 𝛽-𝐸 + 𝛽0𝑈 +	𝛽E(𝐺𝐸)   (Equation S8) 75 

We estimate: 76 

𝐸(𝐸|𝐺) = 𝑎* + 𝑎,𝐺         (Equation S9) 77 

𝐸(𝑌|𝐺, 𝐸) = 𝑏* + 𝑏,𝐺 + 𝑏-𝐸 +	𝑏E𝐺𝐸     (Equation S10) 78 

In this case, 𝑏E is an unbiased estimate of 𝛽E	because the backdoor path from 79 

G-E to Y is blocked by E.  The bias in 𝑏, and 𝑏- will be the same as above.  In the 80 

case in which E is a binary variable, coded 0 and 1, 𝑏E will be an unbiased estimate 81 

of the difference in the effect of G at 𝐸 = 1 and 𝐸 = 0, but the estimate of the 82 

baseline effect of G on Y when 𝐸 = 0 will be biased. 83 

S1.3 Bias in 𝑅- 84 

The 𝑅- for models S4 and S10 will be biased.  In the additive case, for example, 85 

the true 𝑅- attributable to G and E is: 86 

756GHI(;)J766GHI(<)J-7576KLG(;,<)
GHI(:)

= 𝛽,- + 𝛽-- + 2𝛽,𝛽-𝛼,    (Equation S11) 87 

(using the assumption that all the variables have unit standard deviation).  But 88 

the reported 𝑅- from model S4 is: 89 
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𝑏,- + 𝑏-- + 2𝑏,𝑏-𝛼,        (Equation S12) 90 

Substituting S5 and S6 into S12 we calculate the inflation of 𝑅- due to 91 

confounding and collider bias.  This is: 92 

𝑅-𝑏𝑖𝑎𝑠 = 𝛼-𝛽0 O
4678
,9456

+ 2𝛽-P     (Equation S13) 93 

Confounder bias arises from 𝛼-𝛽0.  The derivative of S13 with respect to this 94 

is positive provided that 1 − 𝛼,- > 0.  The derivative of S13 with respect to 𝛼, 95 

(which captures the association between G and E) is: 96 

2𝛼,𝛼--𝛽0-

(1 − 𝛼,-)-
 97 

The sign of this depends on the sign of the numerator.  When it is positive 98 

both confounding and collider bias will inflate the reported 𝑅-.  As an example, 99 

consider a case in which 𝛽, = 0.465,𝛽- = 0.505, 𝛽0 = 0.231,𝛼, = 0.209,𝛼- = 0.693.  100 

Then the observed 𝑅- = 0.758, whereas the true share of the variance in Y 101 

explained by G and E is 0.569.  The inflation bias here is: 102 

0.693 × 0.231 U
0.693 × 0.231
1 − 0.209- + 2 × 0.505V = 0.188 103 

If the correlation between G and E had been larger and/or if the confounding of E 104 

had been greater, the reported 𝑅- would have been larger because of the greater 105 

bias.   106 

S2. Simulation analyses 107 



 7 

The code for the simulations and figures is available on Zenodo (DOI: 108 

10.5281/zenodo.4184673) and GitHub (https://github.com/eva-akimova/collider-109 

simulations.git). For the figures presented in the main text, we simulated 110 

scenarios of OLS regressions where G – E association varies between 0 and .5; G 111 

– Y and E – Y coefficients are both positive and .6; uncontrolled confounder, U, is 112 

positively and modestly, moderately or strongly correlated with covariate, E, and 113 

outcome, Y, (𝑟 = .12, 𝑟 = .25, and 𝑟 = .38 respectively for the three scenarios). For 114 

the gene-environment interaction models we simulated the same settings and 115 

added GxE coefficient at a fixed value of 0.1 for all scenarios.  116 

 Here, we expand our simulation analyses and further illustrate the bias in 117 

gene-environment interaction models where unobserved confounder, U, interacts 118 

with covariate, E, at a fixed value of 0.2 for all scenarios. Simulation results 119 

presented below in Figure S1 along with a DAG to illustrate the bias. 120 

121 
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Figure S1. Collider bias in polygenic gene-environment interaction 
models  

ExU

G

Y U
O U TC O M E

P O LYG E N I C  
S C O R E

E N V I R O N M E N T

GxE
E

U N O B S E RV E D
C O N F O U N D E R

A

B (1) Modest confounder, U (2) Moderate confounder, U (3) Strong confounder, U

C
oefficients inflation

R
−square change

0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5 0.0 0.1 0.2 0.3 0.4 0.5

−25

0

25

50

75

−25

0

25

50

75

Gene−environment correlation (rGE)

%
 in

fla
tio

n

Coefficients Environment PGScore GxE interaction



 9 

Figure S1. Collider bias in polygenic gene-environment interaction models. Panel 124 

A. Schematic diagram of the collider bias which occurs between polygenic score, 125 

environment, and outcome in cases of gene-environment interdependence. Dark 126 

purple circles represent variables, unobserved confounders and it interaction term 127 

with E are shown in grey circles, collider variables are indicated in squares. By 128 

adding E into the model with the polygenic score G, we make E a collider. A collider 129 

that is not conditioned on, blocks the path between its sources (G and U); once a 130 

collider is controlled for, the path is opened as indicated by green nodes. ExU 131 

interaction term is also on the bias path once E is conditioned on. Panel B (top). 132 

Spurious regression estimates for the polygenic score and environment along with 133 

inflated interaction terms from the series of OLS simulations reflecting a range of 134 

gene-environment interdependence and the presence of modest, moderate, or 135 

strong confounder, U. Collider bias due to positive values of gene-environment 136 

correlation and the presence of an uncontrolled confounder, which is positively 137 

correlated with covariate and outcome, results in deflation of polygenic score 138 

estimates. Deflation is greater the higher the gene-environment correlation; 139 

greater confounding also results in greater bias. The interaction term is affected 140 

proportionally to the strength of rGE and unobserved confounder, U. Panel B 141 

(bottom). R-squared inflation plot from the series of OLS simulations; collider bias 142 

results in inflated values of explained variance statistics. R-squared statistics for 143 

the model with endogenous covariate and polygenic score includes not only the true 144 

share of the variance in Y explained by G and E (baseline estimate indicated by 0), 145 

but also the elements of variance that are due to gene-environment correlation and 146 

confounder(s), U. 147 
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