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1. Supplementary tables 
 
Supplementary Table S1. Compounds, genes and proteins analyzed in this study. 

Compound 
Investigated producer  

Accession biosynthesis genes/  
gene clusters 

Accession 
enzymes  

microcystin-LR 
Microcystis aeruginosa PCC 7806 

mcy: AF183408(Pearson et al. 2004) 
BGC0001017 (MIBiG (Kautsar et al. 
2020)) 

McyB 
AAF00962 

microcystin-RR 
Microcystis aeruginosa NIES-843 

mcy: AP009552:3486436-3541027 
(Kaneko et al. 2007) 

McyB 
BAG03678 
McyC 
BAG03677 

[ADMAdda5] microcystin-LR  
(Sivonen et al. 1992) 
Nostoc sp. 152 

mcyA (partial): 
JQ771631 (Shishido et al. 2013) 

McyA 
AGD94570 

[D-Leu1] microcystin-LR  
(Matthiensen et al. 2000) 
Nostoc sp. UK89IIa 

mcyA (partial): 
JX644441 (Shishido et al. 2013) 

McyA 
AFW99796 

Microginin (Kramer 2006) 
Microcystis aeruginosa 

mic: DM195384 (Kramer 2006) Data from 
Patent 
(Kramer 2006) 

oscillaginin B (Sano and Kaya 1997) 
Planktothrix prolifica NIVA-CYA 98 

mic: AM990464 (Rounge et al. 2009) MicC 
CAQ48260 
MicD 
CAQ48261 

anabaenopeptin A  
(Harada et al. 1995) 
Planktothrix prolifica NIVA-CYA 98 

ana: AM990463 (Rounge et al. 2009) AnaC 
CAQ48250 
AnaD 
CAQ48249 

anabaenopeptin 915 
(Okumura et al. 2009) 
Planktothrix agardhii NIVA-CYA 126/8 

apn: KU665237 (Entfellner et al. 2017) ApnC 
AQY60513 
ApnD 
AQY60514   

spumigin A (Fujii et al. 1997) 
Nodularia spumigena CCY9414 

spu: BGC0000430 (Fewer et al. 2009) 
(MIBiG) 

SpuB 
AHJ31215 

speudospumigin A(Jokela et al. 2017) 
Nostoc sp. CENA543 

spu: MF668123 (Jokela et al. 2017) 
BGC0001748 (MIBiG) 

SpuB 
ATP76246 

anabaenolysin A (Jokela et al. 2012) 
Anabaena sp. XSPORK2A 

abl: KP761742 (Shishido et al. 2015) 
 

AblD 
ALT22120 

anabaenolysin C (Shishido et al. 2015) 
Anabaena sp. XPORK13A 

abl: KP761741 (Shishido et al. 2015) 
 

AblD 
ALT22102 

hassallidin A (Neuhof et al. 2005) 
Anabaena sp. Syke748A 

has: KJ502174 (Vestola et al. 2014) HasO  
AHZ20774 

nostopeptolide A1 (Golakoti et al. 200) 
Nostoc sp. GSV224 

nos: AF204805.2 (Hoffmann et al. 2003) 
BGC0001028 (MIBiG) 

NosA 
AAF15891.2 

cyanopeptolin-984 
(Tooming-Klunderud et al. 2007) 
Microcystis sp. NIVA-CYA 172/5 

mcn: DQ075244  
(Tooming-Klunderud et al. 2007) 
 

McnC 
AAZ03552 
McnE  
AAZ03554 

oscillapeptin E (Itou et al. 1999) 
Planktothrix agardhii NIES 205 

oci: EU109504 (Rounge et al. 2008) 
 

OciA 
ABW84363 



OciE 
ABW84364 

oscillapeptin G (Sano and Kaya 1996) 
Planktothrix rubescens NIVA-CYA 98 

oci: AM990463.2 (Rounge et al. 2009) 
 

OciB 
CAQ48255 
OciC 
CAQ48258 

cyanopeptolin 963A  
(Bister et al. 2004) 
Microcystis aeruginosa PCC 7806 

mcn: AM778942: 63976-93086 McnC 
CAO90637 
McnE 
Self-annotated 

micropeptin 88-A (Ishida et al. 1998) 
Microcystis aeruginosa NIES-88 

mcn: JXYX01000001: 396006- 431374 McnC 
KXS92360 
McnE 
KXS92361 

micropeptin K139 (Harada et al. 2004) 
Microcystis aeruginosa K-139 

mcn: AB481215 (Nishizawa et al. 2011) 
BGC0001018 (MIBiG) 

McnC 
BAH22764 
McnE 
BAH22765 

nostopeptin E (Sun et al. 1998) 
Nostoc linckia NIES-25 

oci: AP018222: c5817676- 5808142 OciAB 
BAY78314 

nostopeptin B (Okino et al. 1997) 
Nostoc minutum NIES-26 

oci: LXQD01000316: 1878-34182 OciAB 
RCJ25078 

cyanopeptolin 1138  
(Rounge et al. 2007) 
Planktothrix  agardhii NIVA-CYA 116 

oci: DQ837301 (Rounge et al. 2007) 
 

OciA 
ABI26077 

Nostophycin (Fujii et al. 1999) 
Nostoc sp. 152 

npn: JF430079 (Fewer et al. 2011) 
BGC0001029 (MIBiG) 

NpnB   
AEU11006 

Mycosubtilin (Peypoux et al. 1986) 
Bacillus subtilis ATCC 6633 

myc: AF184956 (Duitman et al. 1999)  
BGC0001103 (MIBiG) 

MycB 
AAF08796 
MycC 
AAF08797 

mojavensin A (Ma et al. 2012) 
Bacillus tequilensis NCTC 13306 

ituB: UAQB01000027:c198053-181959 
(Dunlap et al. 2019) 
ituC: AQB01000027:174053-181870 
(Dunlap et al. 2019) 

ItuB 
SPT99259 
ItuC 
SPT99257  

iturin A (Peypoux et al. 1978) 
Bacillus subtilis RB14 

itu: AB050629 (Tsuge et al. 2001)  
BGC0001098 (MIBiG) 

ItuB 
BAB69699 
ItuC 
BAB69700 

bacillomycin F (Peypoux et al. 1985) 
Bacillus subtilis KCTC 13429 

bmyB: CP029465:2095894-2111987 
(Dunlap et al. 2019) 
bmyC: CP029465:2087978-2095804 
(Dunlap et al. 2019)  

BmyB 
Self-annotated 
BmyC 
AWM17129 

bacillomycin D(Peypoux et al. 1984) 
Bacillus velezensis FZB42 

bmy: BGC0001090  
(Koumoutsi et al. 2004) (MIBiG) 

BmyB 
ABS74180 

bacillomycin L (Volpon et al. 2007) 
Bacillus velezensis KACC 18228 

bmyB: LLZA01000001.1:44524-60651 
(Dunlap et al. 2019) 

BmyB 
KSW05789    

D-Dab3-polymyxin B1  

(Shaheen et al. 2011) 
Paenibacillus polymyxia PKB1 

pxm: JN660148 (Shaheen et al. 2011) PxmA 
AEZ51516 

polymyxin P1  

(Kimura et al. 1969) 
Paenibacillus polymyxa M1 

pxm: FR727736 (Niu et al. 2013)  
 

PxmA 
CBY05531 



polymyxin E1  

(Wilkinson and Lowe 1964) 
Paenibacillus polymyxia ATCC21830 

Data from patent (Park S-H et al. 2012) Data from 
patent  
(Park S-H et al. 
2012) 

polymyxin A1  

(Wilkinson and Lowe 1966) 
Paenibacillus polymyxia E681 

pxm: EU371992 (Choi et al. 2009) 
BGC0000408 (MIBiG) 

PxmA 
ACA97576 

D-Dab3-polymyxin E1 * 

(Tambadou et al. 2015) 
Paenibacillus alvei 

pxm: KP262070 (Tambadou et al. 2015) 
BGC0001192 (MIBiG) 

PxmE 
AJM89738 

fusaricidin A(Kajimura and Kaneda 
1996) 
Paenibacillus polymyxa PKB1 

fus: EF451155.3 (Li et al. 2007) 
BGC0001152 (MIBiG) 

FusA  
ABQ96384.2 

Fengycin (Vanittanakom et al. 1986) 
Bacillus velezensis FZB42 

fen: AJ576102 (Koumoutsi et al. 2004) 
BGC0001095 (MIBiG) 

FenA 
CAE11274  
 

Vancomycin  
(Williams and Kalman 1977) 
Amycolatopsis orientalis HCCB10007 

vcm: HQ679900 (Xu et al. 2014) 
BGC0000455 (MIBiG) 

Vcm2 
AEI58865 

Pekiskomycin (Thaker et al. 2013) 
Streptomyces sp. WAC1420 

pek: JX026280 (Thaker et al. 2013) Pek18 
AGF91753 

aeruginoside 126A (Ishida et al. 2007) 
Planktothrix agardhii NIVA-CYA 126/8 

aer: AM071396 (Ishida et al. 2007) 
BGC0000297 (MIBiG) 

AerB 
CAJ21198.2 

aeruginosin A (Rounge et al. 2009) 
Planktothrix prolifica NIVA-CYA 98 

aer: AM990465 (Rounge et al. 2009) AerB 
CAQ48266 

aeruginosin 98A 
(Murakami et al. 1995) 
Microcystis aeruginosa NIES-98 

aer: FJ609416 (Ishida et al. 2009) 
BGC0000298 (MIBiG) 

AerB 
ACM68684 

aeruginosin 102A  
(Matsuda et al. 1996) 
Microcystis aeruginosa NIES-102 

aer: AP019314:c3064789-3083819 AerB 
BBH40328 

Hormaomycin  
(Zlatopolskiy et al. 2004) 
Streptomyces griseoflavus W-384 

hrm: HQ542230 (Höfer et al. 2011) 
BGC0000374 (MIBiG) 

HrmO 
AEH41793 

*The stereochemistry of Dab in position 3 of D-Dab3-polymyxin E1 has not been validated experimentally but is 
assumed based on the presence of an epimerase domain (Tambadou et al. 2015). 
 
 

 

 



	
Supplementary FIG. S1. Diversification of NRPs via recombination. Examples for the diversification of bacterial 
NRPs via recombination from the biosynthesis of a, microcystins, b, glycopeptide antibiotics, c, aeruginosins, d, 
polymyxins, e, iturinic lipopeptides, and f, hormaomycin, for which no plausible recombination partner sequences 
from characterized NRP biosynthesis genes could be identified. Structural differences of compound pairs (grey 
squares) correlate with nucleotide sequence polymorphisms of the genes encoding NRPS modules (M), thereby 
indicating recombination. Most closely related sequences have been aligned for pairwise comparison. π values 
(average number of nucleotide differences per site between two sequences) were computed in the sliding window 
mode in DnaSP (width, 300 nt; step, 150 nt). Amino acid residues in the structures are color-coded to trace back 
their biosynthetic origin to individual modules. Dab, diaminobutyric acid; (3-Ncp)Ala, 3-nitrocyclopropylalanine; R, 
alkyl moiety. 



	
 
Supplementary FIG. S2. Statistical support for recombination event #1 by using Recombination Detection 
Program version 4 (RDP4) (Martin et al. 2015). a, Probability scores for recombination calculated by the 
recombination detection methods RDP (Martin and Rybicki 2000), GENECONV (Padidam et al. 1999), Bootscan 
(Salminen et al. 1995), Maxchi (Smith 1992), Chimaera (Posada and Crandall 2001), SiSscan (Gibbs et al. 2000), 
3Seq (Boni et al. 2007) and LARD (Holmes et al. 1999) together with the prediction of the recombinant as well as 
the major and minor parent. RDP4 warns about a possible misidentification of the recombinant. However, the 
assignment seems logical.  b, ‘Recombination aware’ phylogenetic trees of the putative recombination event. c, 
Graphical output of recombination detection method RDP. d, Graphical output of recombination detection method 
Bootscan. 	



	
 
Supplementary FIG. S3. Statistical support for recombination event #2 by using Recombination Detection 
Program version 4 (RDP4) (Martin et al. 2015). a, Probability scores for recombination calculated by the 
recombination detection methods RDP (Martin and Rybicki 2000), GENECONV (Padidam et al. 1999), Bootscan 
(Salminen et al. 1995), Maxchi (Smith 1992), Chimaera (Posada and Crandall 2001), SiSscan (Gibbs et al. 2000), 
3Seq (Boni et al. 2007) and LARD (Holmes et al. 1999) together with the prediction of the recombinant as well as 
the major and minor parent. RDP4 warns about a possible misidentification of the recombinant. However, the 
assignment seems logical.  b, ‘Recombination aware’ phylogenetic trees of the putative recombination event. c, 
Graphical output of recombination detection method RDP. d, Graphical output of recombination detection method 
Bootscan. 	
	



	
 
Supplementary FIG. S4. Statistical support for recombination event #3 by using Recombination Detection 
Program version 4 (RDP4) (Martin et al. 2015). a, Probability scores for recombination calculated by the 
recombination detection methods RDP (Martin and Rybicki 2000), GENECONV (Padidam et al. 1999), Bootscan 
(Salminen et al. 1995), Maxchi (Smith 1992), Chimaera (Posada and Crandall 2001), SiSscan (Gibbs et al. 2000), 
3Seq (Boni et al. 2007) and LARD (Holmes et al. 1999) together with the prediction of the recombinant as well as 
the major and minor parent. RDP4 warns about a possible misidentification of the recombinant. However, the 
assignment seems logical.  b, ‘Recombination aware’ phylogenetic trees of the putative recombination event. c, 
Graphical output of recombination detection method RDP. d, Graphical output of recombination detection method 
Bootscan. 	
	



	
 
Supplementary FIG. S5. Statistical support for recombination event #5 by using Recombination Detection 
Program version 4 (RDP4) (Martin et al. 2015). a, Probability scores for recombination calculated by the 
recombination detection methods RDP (Martin and Rybicki 2000), GENECONV (Padidam et al. 1999), Bootscan 
(Salminen et al. 1995), Maxchi (Smith 1992), Chimaera (Posada and Crandall 2001), SiSscan (Gibbs et al. 2000), 
3Seq (Boni et al. 2007) and LARD (Holmes et al. 1999) together with the prediction of the recombinant as well as 
the major and minor parent. RDP4 warns about a possible misidentification of the recombinant. However, the 
assignment seems logical.  b, ‘Recombination aware’ phylogenetic trees of the putative recombination event. c, 
Graphical output of recombination detection method RDP. d, Graphical output of recombination detection method 
Bootscan. 	
	



	
 
Supplementary FIG. S6. Statistical support for recombination event #6 by using Recombination Detection 
Program version 4 (RDP4) (Martin et al. 2015). a, Probability scores for recombination calculated by the 
recombination detection methods RDP (Martin and Rybicki 2000), GENECONV (Padidam et al. 1999), Bootscan 
(Salminen et al. 1995), Maxchi (Smith 1992), Chimaera (Posada and Crandall 2001), SiSscan (Gibbs et al. 2000), 
3Seq (Boni et al. 2007) and LARD (Holmes et al. 1999) together with the prediction of the recombinant as well as 
the major and minor parent. RDP4 warns about a possible misidentification of the recombinant. However, the 
assignment seems logical.  b, ‘Recombination aware’ phylogenetic trees of the putative recombination event. c, 
Graphical output of recombination detection method RDP. d, Graphical output of recombination detection method 
Bootscan. 	
	



	
 
Supplementary FIG. S7. Statistical support for recombination event #7 by using Recombination Detection 
Program version 4 (RDP4) (Martin et al. 2015). a, Probability scores for recombination calculated by the 
recombination detection methods RDP (Martin and Rybicki 2000), GENECONV (Padidam et al. 1999), Bootscan 
(Salminen et al. 1995), Maxchi (Smith 1992), Chimaera (Posada and Crandall 2001), SiSscan (Gibbs et al. 2000), 
3Seq (Boni et al. 2007) and LARD (Holmes et al. 1999) together with the prediction of the recombinant as well as 
the major and minor parent. RDP4 warns about a possible misidentification of the recombinant and states that 
M5_ociB(Ile) or M7_mcnE(Ile) may be the actual recombinant. Since the assignment of M5_mcnC(Phe) as the 
recombinant does not make sense from a biosynthetic perspective we suggest M5_ociB(Ile) to be the 
recombinant.  b, ‘Recombination aware’ phylogenetic trees of the putative recombination event. c, Graphical 
output of recombination detection method RDP. d, Graphical output of recombination detection method Bootscan. 	
	



	
 
Supplementary FIG. S8. Statistical support for recombination event #8 by using Recombination Detection 
Program version 4 (RDP4) (Martin et al. 2015). a, Probability scores for recombination calculated by the 
recombination detection methods RDP (Martin and Rybicki 2000), GENECONV (Padidam et al. 1999), Bootscan 
(Salminen et al. 1995), Maxchi (Smith 1992), Chimaera (Posada and Crandall 2001), SiSscan (Gibbs et al. 2000), 
3Seq (Boni et al. 2007) and LARD (Holmes et al. 1999) together with the prediction of the recombinant as well as 
the major and minor parent. RDP4 warns about a possible misidentification of the recombinant. However, the 
assignment seems logical.  b, ‘Recombination aware’ phylogenetic trees of the putative recombination event. c, 
Graphical output of recombination detection method RDP. d, Graphical output of recombination detection method 
Bootscan. 	
	



	
 
Supplementary FIG. S9. Statistical support for recombination event #9 by using Recombination Detection 
Program version 4 (RDP4) (Martin et al. 2015). a, Probability scores for recombination calculated by the 
recombination detection methods RDP (Martin and Rybicki 2000), GENECONV (Padidam et al. 1999), Bootscan 
(Salminen et al. 1995), Maxchi (Smith 1992), Chimaera (Posada and Crandall 2001), SiSscan (Gibbs et al. 2000), 
3Seq (Boni et al. 2007) and LARD (Holmes et al. 1999) together with the prediction of the recombinant as well as 
the major and minor parent. RDP4 warns about a possible misidentification of the recombinant. However, the 
assignment seems logical.  b, ‘Recombination aware’ phylogenetic trees of the putative recombination event. c, 
Graphical output of recombination detection method RDP. d, Graphical output of recombination detection method 
Bootscan. 	
	



	
	
Supplementary FIG. S10. Statistical support for recombination event #10 by using Recombination Detection 
Program version 4 (RDP4) (Martin et al. 2015). a, Probability scores for recombination calculated by the 
recombination detection methods RDP (Martin and Rybicki 2000), GENECONV (Padidam et al. 1999), Bootscan 
(Salminen et al. 1995), Maxchi (Smith 1992), Chimaera (Posada and Crandall 2001), SiSscan (Gibbs et al. 2000), 
3Seq (Boni et al. 2007) and LARD (Holmes et al. 1999) together with the prediction of the recombinant as well as 
the major and minor parent. RDP4 warns about a possible misidentification of the recombinant. However, the 
assignment seems logical.  b, ‘Recombination aware’ phylogenetic trees of the putative recombination event. c, 
Graphical output of recombination detection method RDP. d, Graphical output of recombination detection method 
Bootscan. 	
	



	
Supplementary FIG. S11. Statistical support for recombination event #11 by using Recombination Detection 
Program version 4 (RDP4) (Martin et al. 2015). a, Probability scores for recombination calculated by the 
recombination detection methods RDP (Martin and Rybicki 2000), GENECONV (Padidam et al. 1999), Bootscan 
(Salminen et al. 1995), Maxchi (Smith 1992), Chimaera (Posada and Crandall 2001), SiSscan (Gibbs et al. 2000), 
3Seq (Boni et al. 2007) and LARD (Holmes et al. 1999) together with the prediction of the recombinant as well as 
the major and minor parent. RDP4 warns about a possible misidentification of the recombinant and states that 
M5_mcnC(Ile) or M7_mcnE(Ile) may be the actual recombinant. Since the assignment of M6_mcnC(Val) as the 
recombinant does not make sense from a biosynthetic perspective we suggest M5_mcnC(Ile) to be the 
recombinant.  b, ‘Recombination aware’ phylogenetic trees of the putative recombination event. c, Graphical 
output of recombination detection method RDP. d, Graphical output of recombination detection method Bootscan. 	
	
	



	
 
Supplementary FIG. S12. Statistical support for recombination event #12 by using Recombination Detection 
Program version 4 (RDP4) (Martin et al. 2015). a, Probability scores for recombination calculated by the 
recombination detection methods RDP (Martin and Rybicki 2000), GENECONV (Padidam et al. 1999), Bootscan 
(Salminen et al. 1995), Maxchi (Smith 1992), Chimaera (Posada and Crandall 2001), SiSscan (Gibbs et al. 2000), 
3Seq (Boni et al. 2007) and LARD (Holmes et al. 1999) together with the prediction of the recombinant as well as 
the major and minor parent. RDP4 warns about a possible misidentification of the recombinant. However, the 
assignment seems logical.  b, ‘Recombination aware’ phylogenetic trees of the putative recombination event. c, 
Graphical output of recombination detection method RDP. d, Graphical output of recombination detection method 
Bootscan. 	
	



	
 
Supplementary FIG. S13. Statistical support for recombination event #13 by using Recombination Detection 
Program version 4 (RDP4) (Martin et al. 2015). a, Probability scores for recombination calculated by the 
recombination detection methods RDP (Martin and Rybicki 2000), GENECONV (Padidam et al. 1999), Bootscan 
(Salminen et al. 1995), Maxchi (Smith 1992), Chimaera (Posada and Crandall 2001), SiSscan (Gibbs et al. 2000), 
3Seq (Boni et al. 2007) and LARD (Holmes et al. 1999) together with the prediction of the recombinant as well as 
the major and minor parent. RDP4 warns about a possible misidentification of the recombinant, which in this case 
(M5_ociAB(Ile)) seems logic. However, the assignment of M5_ociAB(Leu) as the minor parent does not make 
sense from a biosynthetic perspective. Therefore, we suggest M7_ociC(Ile) to be minor parent and 
M5_ociAB(Leu) to be the major parent.  b, ‘Recombination aware’ phylogenetic trees of the putative 
recombination event. c, Graphical output of recombination detection method RDP. d, Graphical output of 
recombination detection method Bootscan. 	
	
	



	
 
Supplementary FIG. S14. Statistical support for recombination event #14 by using Recombination Detection 
Program version 4 (RDP4) (Martin et al. 2015). a, Probability scores for recombination calculated by the 
recombination detection methods RDP (Martin and Rybicki 2000), GENECONV (Padidam et al. 1999), Bootscan 
(Salminen et al. 1995), Maxchi (Smith 1992), Chimaera (Posada and Crandall 2001), SiSscan (Gibbs et al. 2000), 
3Seq (Boni et al. 2007) and LARD (Holmes et al. 1999) together with the prediction of the recombinant as well as 
the major and minor parent. RDP4 warns about a possible misidentification of the recombinant, which in this case 
(M6_ituC(Asn)) seems logic. However, the assignment of M6_mycC(Ser) as the minor parent does not make 
sense from a biosynthetic perspective. Therefore, we suggest M7_ituC(Asn) to be minor parent and 
M6_mycC(Ser) to be the major parent.  b, ‘Recombination aware’ phylogenetic trees of the putative 
recombination event. c, Graphical output of recombination detection method RDP. d, Graphical output of 
recombination detection method Bootscan. 	
	



	
 
Supplementary FIG. S15. Statistical support for recombination event #15 by using Recombination Detection 
Program version 4 (RDP4) (Martin et al. 2015). a, Probability scores for recombination calculated by the 
recombination detection methods RDP (Martin and Rybicki 2000), GENECONV (Padidam et al. 1999), Bootscan 
(Salminen et al. 1995), Maxchi (Smith 1992), Chimaera (Posada and Crandall 2001), SiSscan (Gibbs et al. 2000), 
3Seq (Boni et al. 2007) and LARD (Holmes et al. 1999) together with the prediction of the recombinant as well as 
the major and minor parent. RDP4 warns about a possible misidentification of the recombinant, which in this case 
(M7_ituC(Ser)) seems logic. However, the assignment of M7_ituC(Asn) as the minor parent does not make sense 
from a biosynthetic perspective. Therefore, we suggest M6_mycC(Ser) to be minor parent and M7_ituC(Asn) to 
be the major parent.  b, ‘Recombination aware’ phylogenetic trees of the putative recombination event. c, 
Graphical output of recombination detection method RDP. d, Graphical output of recombination detection method 
Bootscan. 	
	



	
 
Supplementary FIG. S16. Statistical support for recombination event #16 by using Recombination Detection 
Program version 4 (RDP4) (Martin et al. 2015). a, Probability scores for recombination calculated by the 
recombination detection methods RDP (Martin and Rybicki 2000), GENECONV (Padidam et al. 1999), Bootscan 
(Salminen et al. 1995), Maxchi (Smith 1992), Chimaera (Posada and Crandall 2001), SiSscan (Gibbs et al. 2000), 
3Seq (Boni et al. 2007) and LARD (Holmes et al. 1999) together with the prediction of the recombinant as well as 
the major and minor parent. RDP4 warns about a possible misidentification of the recombinant. However, the 
assignment seems logical.  b, ‘Recombination aware’ phylogenetic trees of the putative recombination event. c, 
Graphical output of recombination detection method RDP. d, Graphical output of recombination detection method 
Bootscan. 	
	



	
 
Supplementary FIG. S17. Statistical support for recombination event #18 by using Recombination Detection 
Program version 4 (RDP4) (Martin et al. 2015). a, Probability scores for recombination calculated by the 
recombination detection methods RDP (Martin and Rybicki 2000), GENECONV (Padidam et al. 1999), Bootscan 
(Salminen et al. 1995), Maxchi (Smith 1992), Chimaera (Posada and Crandall 2001), SiSscan (Gibbs et al. 2000), 
3Seq (Boni et al. 2007) and LARD (Holmes et al. 1999) together with the prediction of the recombinant as well as 
the major and minor parent. RDP4 warns about a possible misidentification of the recombinant. However, the 
assignment seems logical.  b, ‘Recombination aware’ phylogenetic trees of the putative recombination event. c, 
Graphical output of recombination detection method RDP. d, Graphical output of recombination detection method 
Bootscan. 	
	



	
 
Supplementary FIG. S18. Subdomain exchange in cyanobacterial NRPS. Modules are divided in adenylation 
(A), condensation (C), thiolation (T), and if present methylation (MT) domains. Adenylation domain-specific core 
motifs are indicated by bands and numbers (1-10). Linkers are indicated as filled squares. Highlighted parts of the 
graphs represent regions that are more closely related to sequences encoding other modules than to sequence of 
the respective ortholog. 
 
 



 
 
Supplementary FIG. S19. Subdomain exchange in non-cyanobacterial NRPS. Modules are divided in 
adenylation (A), condensation (C), thiolation (T) domains. Adenylation domain-specific core motifs are indicated 
by bands and numbers (1-10). Linkers are indicated as filled squares. Highlighted parts of the graphs represent 
regions that are more closely related to sequences encoding other modules than to sequence of the respective 
ortholog. 
	
	
	
	
	 	



	
Supplementary FIG. S20. Integration of E domains in NRP assembly lines for the biosynthesis of a, 
cyanopeptolin 1138 and b, D-Dab3-polymyxin E1. The integration of of E domains is accompanied by the 
exchange of conventional T and LCL domains with specialized TE and DCL domains associated with E domains. 
These results underpin the role of C domains as stereochemical gatekeepers and show that C domains are 
indeed exchanged if needed, thereby further undermining the attributed role of C domains as stringent selectivity 
filters during NRP biosynthesis. Gene segments encoding modules are divided in adenylation (A), condensation 
(C), thiolation (T), methyltransferases (MT), sulfotransferase (ST), and glyceric acid loading (SA) domains. In 
case of cyanopeptolin 1138 biosynthesis exchanged (sub)domains were illustrated in the NRPS (partial) 
structures of OciA and OciE, which have been modeled with Phyre2 (Kelley et al. 2015). Dab, diaminobutyric 
acid. *The stereochemistry of Dab in position 3 of D-Dab3-polymyxin E1 has not been validated experimentally. 
Instead a D-Dab residue in position 3 was assumed based on the presence of the epimerase domain (Tambadou 
et al. 2015). Therefore, the structural assignment is tentative. However, a similar pair with L- and D-Dab residues 
in position 3 has been reported for polymyxin B (Shaheen et al. 2011). 

	
	
	
	
	
	
	
  



 

Supplementary FIG. S21. Evidence of recombination with horizontally acquired genes in the biosynthesis gene 
cluster of oscillapeptin E. There, parts of module 5 have a much more pronounced sequence similarity to module 
7 of a distant relative than to the intra-cluster counterpart. 

	 	



	

	
Supplementary FIG. S22. Natural exchange units vs. artificial subdomain swaps. a, Schematic comparison of 
natural exchange unit boundaries (as depicted in detail in Fig. 5) with artificial subdomain swaps in the 
engineering of HrmO3A (purple) and GrsA (green). b, Illustration of exchanged subdomains in the structure of 
HrmO3A, which has been modeled with Phyre2 (Kelley et al. 2015) as well as in the crystal structure of GrsA 
(PDB ID: 1AMU) (Conti et al. 1997). 
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