# Supplementary Material for "Improving Metagenomic Binning Results with Overlapped Bins Using Assembly Graphs"

# 1 Datasets

Supplementary Table 1 summarises the information on the datasets used for the experiments including read length, number of reads, number of contigs, mean contig length and the number of species identified for the ground truth. Paired-end reads were simulated for the **Sim-5G**, **Sim-10G**, **Sim-20G** and **50G-SR** datasets using the tool InSilicoSeq [2] modelling a MiSeq instrument with 300bp mean read length. The **Sharon** [7] datasets consisted of Illumina HiSeq 2000 reads with 100bp mean read length. The **Lake Water** [5] dataset consisted of Illumina MiSeq reads with 300bp mean read length. The **Lake Water** [10] dataset consisted of simulated PacBio reads with 8,000bp mean read length.

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                  | Dataset        | Assembler  | Read<br>length<br>(bp) | Number<br>of paired<br>end reads | Total number<br>of non-isolated<br>contigs | Mean contig<br>length (bp) | Number of<br>species in<br>ground<br>truth |
|---------------------------------------------------------------------------------------------------------|----------------|------------|------------------------|----------------------------------|--------------------------------------------|----------------------------|--------------------------------------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                  | Sim 5C         | metaSPAdes | 300                    | 2,000,000                        | 516                                        | 51,723                     | 5                                          |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                    | 5111-503       | SGA        | 300                    | 2,000,000                        | 18,192                                     | 1,675                      | 5                                          |
| SIM-10G SGA 300 6 999 998 32 389 1 300 10                                                               | Sim 10C        | metaSPAdes | 300                    | 6,999,998                        | 900                                        | 47,279                     | 10                                         |
| 1,000 100,000 1,000 10                                                                                  | 5111-106       | SGA        | 300                    | 6,999,998                        | 32,389                                     | 1,300                      | 10                                         |
| Sim 20C metaSPAdes 300 15,000,001 1,404 48,021 20                                                       | Sim 20C        | metaSPAdes | 300                    | 15,000,001                       | 1,404                                      | 48,021                     | 20                                         |
| SGA 300 15,000,001 72,791 873 20                                                                        | 5111-2003      | SGA        | 300                    | 15,000,001                       | 72,791                                     | 873                        | 20                                         |
| Sharen 1 [7] metaSPAdes 100 14,869,863 371 17,144 12                                                    | Sharon-1 [7]   | metaSPAdes | 100                    | 14,869,863                       | 371                                        | 17,144                     | 12                                         |
| Sharon-1 [7] SGA 100 14,869,863 766 3,034 12                                                            |                | SGA        | 100                    | $14,\!869,\!863$                 | 766                                        | 3,034                      | 12                                         |
| Sharon All [7] metaSPAdes 100 135,493,567 2,730 7,689 12                                                | Sharon-All [7] | metaSPAdes | 100                    | 135,493,567                      | 2,730                                      | 7,689                      | 12                                         |
| SGA 100 135,493,567 20,942 1,547 12                                                                     |                | SGA        | 100                    | $135,\!493,\!567$                | 20,942                                     | 1,547                      | 12                                         |
| 50G-SR metaSPAdes 300 20,730,313 4,159 37,027 50                                                        | 50G-SR         | metaSPAdes | 300                    | 20,730,313                       | 4,159                                      | 37,027                     | 50                                         |
| Lake Water [5]         metaSPAdes         300         4,627,091         96,880         1,020         57 | Lake Water [5] | metaSPAdes | 300                    | 4,627,091                        | 96,880                                     | 1,020                      | 57                                         |
| 100G-LR [10]         metaFlye $8,000$ $3,754,639$ $958$ $2,538$ $100$                                   | 00G-LR [10]    | metaFlye   | 8,000                  | 3,754,639                        | 958                                        | 2,538                      | 100                                        |

Supplementary Table 1: Information on the datasets used for the experiments.

Supplementary Table 2 denotes the details about the simulated short-read datasets including the species present, their genome sizes, sequencing coverage values and abundance values.

| Dataset | Species present                                   | Genome size      | Coverage     | Abundance  |
|---------|---------------------------------------------------|------------------|--------------|------------|
| Duraber | Acetobacter pasteurianus                          | 2.9 Mb           | 115×         | 28%        |
| Sim-5G  | Aeromonas veronii                                 | 4.6 Mb           | 72×          | 28%        |
|         | Amycolatopsis mediterranei                        | 10.4 Mb          | 26×          | 22%        |
|         | Arthrobacter arilaitensis                         | 3.9 Mb           | 41×          | 13%        |
|         | Azorhizobium caulinodans                          | 5.4 Mb           | $20 \times$  | 9%         |
|         | Acetobacter pasteurianus                          | 2.9 Mb           | $357 \times$ | 25%        |
|         | Aeromonas veronii                                 | 4.6 Mb           | $225 \times$ | 25%        |
|         | Amycolatopsis mediterranei                        | 10.4 Mb          | $80 \times$  | 20%        |
|         | Arthrobacter arilaitensis                         | 3.9 Mb           | $128 \times$ | 12%        |
| Sim 10C | Azorhizobium caulinodans                          | 5.4 Mb           | $62 \times$  | 8%         |
| Sim-10G | Bacillus cereus                                   | 5.3 Mb           | $58 \times$  | 7%         |
|         | Bdellovibrio bacteriovorus                        | 3.8 Mb           | $11 \times$  | 1%         |
|         | Bifidobacterium adolescentis                      | 2.1 Mb           | $20 \times$  | 1%         |
|         | Brachyspira intermedia                            | 3.4 Mb           | $11 \times$  | 1%         |
|         | Campylobacter jejuni                              | 1.7 Mb           | $21 \times$  | 1%         |
|         | Acetobacter pasteurianus                          | 2.9 Mb           | $705 \times$ | 23%        |
|         | Aeromonas veronii                                 | 4.6  Mb          | $445 \times$ | 23%        |
|         | Amycolatopsis mediterranei                        | 10.4 Mb          | $157 \times$ | 18%        |
|         | Arthrobacter arilaitensis                         | 3.9 Mb           | $253 \times$ | 11%        |
|         | Azorhizobium caulinodans                          | 5.4 Mb           | $123 \times$ | 7%         |
|         | Bacillus cereus                                   | 5.3 Mb           | 114×         | 7%         |
|         | Bdellovibrio bacteriovorus                        | 3.8 Mb           | 22×          | 1%         |
|         | Bilidobacterium adolescentis                      | 2.1 Mb           | 40×          | 1%         |
|         | Brachyspira intermedia                            | 3.4 Mb           | 21×          | 1%         |
| Sim-20G | Campylobacter jejuni                              | 1.7 Mb           | 41×          | 1%         |
|         | Candidatus Pelagibacter ubique                    | 1.3 Mb           | 54×          | 1%         |
|         | Chlamydia trachomatis                             | 1.1 Mb           | 64×          | 1%         |
|         | Clostridium acetobutylicum                        | 4.0 Mb           | 18×          | 1%         |
|         | Corynebacterium dipitneriae                       | 2.5 MD           | 28×          | 1%         |
|         | Cyanobacterium UCYN                               | 1.5 Mb           | 47×          | 1%         |
|         | Desultovibrio vulgaris                            | 3.6 Mb           | 20×          | 1%         |
|         | Enrichia ruminantium                              | 1.5 MD<br>2.0 ML | 47×          | 1%         |
|         | Enterococcus mecium                               | 3.0 MD           | 24×          | 1%         |
|         | Erysipeiotnrix rnusiopatniae<br>Easternishin anli | 1.8 MD           | 39×          | 1%         |
|         | Escherichia con                                   | 5.0 Mb           | 14×          | 170        |
|         | A cetobacter pasteurianus                         | 2.9 Mb           | 113×         | 4%         |
|         | Amusolatopsis mediterranei                        | 4.0 MD           | 495×         | 070<br>00% |
|         | Antycolatopsis metherianer                        | 2.0 Mb           | 281          | 270        |
|         | Azorhizohium caulinodans                          | 5.4 Mb           | 136×         | 270        |
|         | Bacillus corous                                   | 5.3 Mb           | 130×         | 270        |
|         | Bacillus thuringionsis                            | 5.4 Mb           | 35×          | 2%         |
|         | Bdellovibrio bacteriovorus                        | 3.8 Mb           | 25×          | 270        |
|         | Bifidobacterium adolescentis                      | 2.1 Mb           | 20 ×         | 270        |
|         | Bifidobacterium animalis                          | 2.1 Mb           | 48×          | 270        |
|         | Brachyspira intermedia                            | 2.0 Mb           | -10×<br>     | 270        |
|         | Campylobacter jejuni                              | 1.7 Mb           | 47×          | 270        |
|         | Candidatus Pelagibacter ubique                    | 1.3 Mb           | 59×          | 2%         |
|         | Candidatus Phytoplasma mali                       | 0.6 Mb           | 129×         | 2%         |
|         | Candidatus Sulcia muelleri                        | 0.3 Mb           | 279×         | 2%         |
|         | Chlamydia psittaci                                | 1.2 Mb           | 66×          | 2%         |
|         | Chlamydia trachomatis                             | 1.1 Mb           | $74 \times$  | 2%         |
|         | Clostridium acetobutylicum                        | 4.0 Mb           | 20×          | 2%         |
|         | Clostridium botulinum                             | 2.8 Mb           | $28 \times$  | 2%         |
|         | Clostridium tetani                                | 2.8 Mb           | $28 \times$  | 2%         |
|         | Clostridium thermocellum                          | 3.9 Mb           | $20 \times$  | 2%         |
|         | Corvnebacterium diphtheriae                       | 2.5 Mb           | $31 \times$  | 2%         |
|         | Corynebacterium pseudotuberculosis                | 2.4 Mb           | $33 \times$  | 2%         |
|         | Corynebacterium ulcerans                          | 2.5 Mb           | $31 \times$  | 2%         |
| FOG OD  | Cyanobacterium UCYN                               | 1.5 Mb           | $54 \times$  | 2%         |
| 50G-SR  | Cyanothece sp                                     | 6.2 Mb           | $13 \times$  | 2%         |
|         | Desulfovibrio vulgaris                            | 3.6 Mb           | $22 \times$  | 2%         |
|         | Ehrlichia ruminantium                             | 1.5 Mb           | $52 \times$  | 2%         |
|         | Enterococcus faecium                              | 3.0 Mb           | $26 \times$  | 2%         |
|         | Erysipelothrix rhusiopathiae                      | 1.8 Mb           | $43 \times$  | 2%         |
|         | Escherichia coli                                  | 5.0 Mb           | $16 \times$  | 2%         |
|         | Fervidicoccus fontis                              | 1.3 Mb           | $59 \times$  | 2%         |
|         | Fibrobacter succinogenes                          | 3.9 Mb           | $20 \times$  | 2%         |
|         | Flavobacterium branchiophilum                     | 3.6 Mb           | $22 \times$  | 2%         |
|         | Francisella novicida                              | 1.9 Mb           | $41 \times$  | 2%         |
|         | Francisella tularensis                            | 1.9 Mb           | $41 \times$  | 2%         |
|         | Fusobacterium nucleatum                           | 2.2 Mb           | $36 \times$  | 2%         |
|         | Gardnerella vaginalis                             | 1.8 Mb           | $45 \times$  | 2%         |
|         | Granulicella tundricola                           | 4.4 Mb           | $18 \times$  | 2%         |
|         | Haemophilus influenzae                            | 1.9 Mb           | $41 \times$  | 2%         |
|         | Haemophilus parainfluenzae                        | 2.1 Mb           | $37 \times$  | 2%         |
|         | Haemophilus somnus                                | 2.3 Mb           | $34 \times$  | 2%         |
|         | Halobacterium sp. NRC-1                           | 2.0 Mb           | $38 \times$  | 2%         |
|         | Halothiobacillus neapolitanus                     | 2.6 Mb           | $30 \times$  | 2%         |
|         | Helicobacter pylori                               | 1.6 Mb           | $49 \times$  | 2%         |
|         | Hyphomicrobium sp. MC1                            | 4.9 Mb           | $16 \times$  | 2%         |
|         | Ignavibacterium album                             | 3.7 Mb           | $21 \times$  | 2%         |
|         | Klebsiella oxytoc                                 | 6.1 Mb           | $13 \times$  | 2%         |
|         | Krokinobacter sp                                  | 3.4 Mb           | $23 \times$  | 2%         |
|         | Lactobacillus brevis                              | 2.3 Mb           | $34 \times$  | 2%         |

Supplementary Table 2: Details about the simulated short-read datasets.

# 2 Commands Used

#### 2.1 Assembly Tools

#### metaSPAdes

spades --meta -1 Reads\_1.fastq -2 Reads\_2.fastq -o /path/output\_path -t 20

#### SGA

sga preprocess -o reads.fastq --pe-mode 1 Reads\_1.fastq Reads\_2.fastq sga index -a ropebwt -t 16 --no-reverse reads.fastq sga correct -k 41 --learn -t 16 -o reads.k41.fastq reads.fastq sga index -a ropebwt -t 16 reads.k41.fastq sga filter -x 2 -t 16 reads.k41.fastq sga fm-merge -m 45 -t 16 reads.k41.filter.pass.fa sga index -t 16 reads.k41.filter.pass.merged.fa sga overlap -m 55 -t 16 reads.k41.filter.pass.merged.fa sga assemble -m 95 reads.k41.filter.pass.merged.asqg.gz

#### metaFlye

flye --meta --pacbio-raw reads.fasta --genome-size estimated\_metagenome\_size --out-dir /output\_path --threads 16

#### 2.2 Binning and Refinement Tools

#### CONCOCT

cut\_up\_fasta.py contigs.fasta -<br/>c10000-o0--merge\_last -b contigs\_10K.bed<br/> > contigs\_10K.fa

concoct\_coverage\_table.py contigs\_10K.bed aln-pe.sorted.bam > coverage\_table.tsv concoct --composition\_file contigs\_10K.fa --coverage\_file coverage\_table.tsv -b

/output\_path -t 8

 $merge\_cutup\_clustering\_py / output\_path/clustering\_gt1000.csv > / output\_path/clustering\_merged.csv = extract\_fasta\_bins.py contigs.fasta / output\_path/clustering\_merged.csv = -output\_path / clustering\_merged.csv = -output\_path / clustering\_merged.cs$ 

 $/output\_path/fasta\_bins$ 

#### MaxBin2

perl MaxBin-2.2.5/run\_MaxBin.pl -contig contigs.fasta -abund abundance.abund -out /output\_path

#### SolidBin

python scripts/gen\_kmer.py contig.fasta 1000 4 sh gen\_cov.sh

si gen\_cov.si

python SolidBin.py --contig\_file contigs.fasta --composition\_profiles kmer\_4.csv --coverage\_profiles cov\_inputtableR.tsv

--output /output\_path/result.tsv --log /output\_path/log.txt --use\_sfs

#### GraphBin

./graphbin --graph assembly\_graph\_with\_scaffolds.gfa --paths contigs.paths --binned initial\_contig\_bins.csv --output /output\_path --assembler spades

# 3 Results of SGA Assemblies

### 3.1 Binning Results

Supplementary Figures 1, 2 and 3 demonstrate the results of CONCOCT [1], MaxBin2 [11] and SolidBin [9], respectively with GraphBin [4] and GraphBin2 on top of the initial binning results for the SGA [8] assemblies.



Supplementary Figure 1: Comparison of binning results of CONCOCT [1], GraphBin [4] and GraphBin2 (on top of CONCOCT results) using assembly graphs built by SGA [8].



Supplementary Figure 2: Comparison of binning results of MaxBin2 [11], Graph-Bin [4] and GraphBin2 (on top of MaxBin2 results) using assembly graphs built by SGA [8].



Supplementary Figure 3: Comparison of binning results of SolidBin [9], Graph-Bin [4] and GraphBin2 (on top of SolidBin results) using assembly graphs built by SGA [8].



#### 3.2 Multi-Labelled Inference Results

Supplementary Figure 4: Violin plots for the ratio  $Ratio_{(2^{nd}/1^{st})}$  of the single and multi-labelled inference results using GraphBin2 on top of (a) CON-COCT [1], (b) MaxBin2 [11] and (c) SolidBin [9] results for the SGA assemblies.

| Detect    | With           | With           | With            |
|-----------|----------------|----------------|-----------------|
| Dataset   | CONCOCT result | MaxBin2 result | SolidBin result |
| Sim-5G    | 31             | 6              | 8               |
| Sim-10G   | 81             | 9              | 2               |
| Sim-20G   | 156            | 15             | 11              |
| Sharon1   | 6              | 2              | 2               |
| SharonAll | 40             | 37             | 17              |

Supplementary Table 3: The number of multi-labelled contigs identified by GraphBin2 for the SGA [8] assemblies using the initial binning result of each binning tool.

# 4 Running Time and Memory Usage

The running times and the peak memory used by the metaSPAdes [6] and metaFlye [3] for assembly, the initial binning tools and GraphBin2 to bin all the datasets can be found in Supplementary Tables 4, 5 and 6.

| Detect         | Accombly   | Running time                             | Peak                 |
|----------------|------------|------------------------------------------|----------------------|
| Dataset        | Assembly   | (CPU time)                               | memory usage         |
| Sim-5G         | metaSPAdes | 2h~42m~5s                                | $7.78~\mathrm{GB}$   |
| Sim-10G        | metaSPAdes | $16h\ 07m\ 58s$                          | $24.60~\mathrm{GB}$  |
| Sim-20G        | metaSPAdes | 44h~54m~17s                              | $54.33~\mathrm{GB}$  |
| Sharon1 [7]    | metaSPAdes | $4h\ 27m\ 29s$                           | $1.66~\mathrm{GB}$   |
| SharonAll [7]  | metaSPAdes | $78\mathrm{h}~57\mathrm{m}~24\mathrm{s}$ | $199.93~\mathrm{GB}$ |
| 50G-SR         | metaSPAdes | $77h \ 30m \ 6s$                         | $70.67~\mathrm{GB}$  |
| Lake Water [5] | metaSPAdes | $17h\ 21m\ 52s$                          | $51.79~\mathrm{GB}$  |
| 100G-LR [10]   | metaFlye   | $129h\ 21m\ 58s$                         | 299.11 GB            |

Supplementary Table 4: Running times (CPU time) and peak memory usage to assemble each dataset. s denotes seconds, m denotes minutes, h denotes hours and GB denotes gigabytes.

CONCOCT, MaxBin2 and GraphBin2 were executed with 8 threads and SolidBin was executed with a single thread. The running times for CONCOCT and SolidBin only include the times taken to run the main software, excluding the times taken to build the composition and coverage profile files.

GraphBin2 took less than 12 minutes and less than 165 MB of memory to complete executing the **Sharon-All** dataset with 8 threads. Moreover, the highest running time and memory usage has been recorded for the metaSPAdes assembly of the **LakeWater** [5] dataset as it consisted of the most complex assembly graph with the most number of contigs.

| Dataset             | Assombly     | Tool                    | Running                     | Peak              |
|---------------------|--------------|-------------------------|-----------------------------|-------------------|
|                     | Assembly     | 1001                    | time                        | memory usage      |
| Sim-5G -            | metaSPAdes   | CONCOCT                 | 29s                         | 172 MB            |
|                     |              | GraphBin2 with CONCOCT  | 1s                          | $35 \mathrm{MB}$  |
|                     |              | MaxBin2                 | 12s                         | 2,389  MB         |
|                     |              | GraphBin2 with MaxBin2  | 1s                          | 36  MB            |
|                     |              | SolidBin                | 3s                          | 155  MB           |
|                     |              | GraphBin2 with SolidBin | 1s                          | 36  MB            |
|                     |              | CONCOCT                 | 20s                         | $169 \mathrm{MB}$ |
|                     |              | GraphBin2 with CONCOCT  | 3m $58s$                    | 127  MB           |
|                     | SCA          | MaxBin2                 | 15s                         | $394 \mathrm{MB}$ |
|                     | SGA          | GraphBin2 with MaxBin2  | 3m 12s                      | 124  MB           |
|                     |              | SolidBin                | $3m \ 1s$                   | 794  MB           |
|                     |              | GraphBin2 with SolidBin | 3m~54s                      | 124  MB           |
|                     |              | CONCOCT                 | 25s                         | $175 \mathrm{MB}$ |
|                     |              | GraphBin2 with CONCOCT  | 2s                          | 40  MB            |
|                     | moto SDA dog | MaxBin2                 | 20s                         | 2,859  MB         |
|                     | metasrAdes   | GraphBin2 with MaxBin2  | 2s                          | 41 MB             |
|                     |              | SolidBin                | 3s                          | $164 \mathrm{MB}$ |
| Sim 10C             |              | GraphBin2 with SolidBin | 2s                          | $41 \mathrm{MB}$  |
| 5111-10G            |              | CONCOCT                 | 14s                         | 204  MB           |
|                     |              | GraphBin2 with CONCOCT  | 4m $33s$                    | 101  MB           |
|                     | SGA          | MaxBin2                 | 28s                         | 285  MB           |
|                     |              | GraphBin2 with MaxBin2  | $5\mathrm{m}$               | 101  MB           |
|                     |              | SolidBin                | 8m 25s                      | 1,423  MB         |
|                     |              | GraphBin2 with SolidBin | 5m 2s                       | 101  MB           |
|                     | metaSPAdes   | CONCOCT                 | 41s                         | 193 MB            |
|                     |              | GraphBin2 with CONCOCT  | 3s                          | 44  MB            |
|                     |              | MaxBin2                 | 32s                         | 2,854  MB         |
|                     |              | GraphBin2 with MaxBin2  | 3s                          | 44  MB            |
|                     |              | SolidBin                | 4s                          | $193 \mathrm{MB}$ |
| Sim-20G -<br>50G-SR |              | GraphBin2 with SolidBin | 5s                          | $45 \mathrm{MB}$  |
|                     |              | CONCOCT                 | 25s                         | 211 MB            |
|                     |              | GraphBin2 with CONCOCT  | $28\mathrm{m}~45\mathrm{s}$ | $194 \mathrm{MB}$ |
|                     | SGA          | MaxBin2                 | 49s                         | 364  MB           |
|                     |              | GraphBin2 with MaxBin2  | $29m \ 40s$                 | 192  MB           |
|                     |              | SolidBin                | $18\mathrm{m}~47\mathrm{s}$ | 2,064  MB         |
|                     |              | GraphBin2 with SolidBin | 29m~54s                     | $193 \mathrm{MB}$ |
|                     | metaSPAdes   | CONCOCT                 | 1m 35s                      | 237  MB           |
|                     |              | GraphBin2 with CONCOCT  | 19s                         | $75 \mathrm{MB}$  |
|                     |              | MaxBin2                 | $1\mathrm{m}~33~\mathrm{s}$ | 3,978  MB         |
|                     |              | GraphBin2 with MaxBin2  | 33s                         | $77 \mathrm{MB}$  |
|                     |              | SolidBin                | 13s                         | 500  MB           |
|                     |              | GraphBin2 with SolidBin | 21s                         | $75 \mathrm{MB}$  |

Supplementary Table 5: Running times (wall time) and peak memory usage for binning using each tool for the simulated short-read datasets. s denotes seconds, m denotes minutes and MB denotes megabytes.

| Deterret   | Assembly     | The sta                              | Running                     | Peak                  |
|------------|--------------|--------------------------------------|-----------------------------|-----------------------|
| Dataset    |              | 1001                                 | time                        | memory usage          |
| Sharon1    | metaSPAdes   | CONCOCT                              | 12s                         | 166 MB                |
|            |              | GraphBin2 with CONCOCT               | 4s                          | $45 \mathrm{MB}$      |
|            |              | MaxBin2                              | 9s                          | 1,389  MB             |
|            |              | GraphBin2 with MaxBin2               | 5s                          | $45 \mathrm{MB}$      |
|            |              | SolidBin                             | 6s                          | 290  MB               |
|            |              | GraphBin2 with SolidBin              | 5s                          | $45 \mathrm{MB}$      |
|            |              | CONCOCT                              | 20s                         | 172  MB               |
|            |              | GraphBin2 with CONCOCT               | 3s                          | 33  MB                |
|            | SCA          | MaxBin2                              | 12s                         | 203  MB               |
|            | SGA          | GraphBin2 with MaxBin2               | 3s                          | 33  MB                |
|            |              | SolidBin                             | 15s                         | $654 \mathrm{MB}$     |
|            |              | GraphBin2 with SolidBin              | 3s                          | 33  MB                |
|            |              | CONCOCT                              | 1m 8s                       | 189 MB                |
|            |              | GraphBin2 with CONCOCT               | 9m~54s                      | $137 \mathrm{MB}$     |
|            | mate CDA dee | MaxBin2                              | 30s                         | $1,378 \mathrm{MB}$   |
|            | metaSPAdes   | GraphBin2 with MaxBin2               | 10m 50s                     | $163 \mathrm{MB}$     |
|            |              | SolidBin                             | 2m $7s$                     | $1,416 \ \mathrm{MB}$ |
| Shanon All |              | GraphBin2 with SolidBin              | $11m \ 12s$                 | $163 \mathrm{MB}$     |
| SharonAn   | SGA          | CONCOCT                              | 1m 46s                      | 201 MB                |
|            |              | GraphBin2 with CONCOCT               | $1m \ 13s$                  | $50 \mathrm{MB}$      |
|            |              | MaxBin2                              | 28s                         | $241 \mathrm{MB}$     |
|            |              | GraphBin2 with MaxBin2               | $1m\ 21s$                   | 50  MB                |
|            |              | SolidBin                             | 2m~51s                      | $2,612 \ \mathrm{MB}$ |
|            |              | GraphBin2 with SolidBin              | $1m \ 15s$                  | 50  MB                |
|            | metaSPAdes   | CONCOCT                              | 22m 2s                      | 807 MB                |
|            |              | GraphBin2 with CONCOCT               | 58m $42s$                   | $855 \mathrm{MB}$     |
| Lake Water |              | MaxBin2                              | $23\mathrm{m}~27\mathrm{s}$ | 1,004  MB             |
|            |              | GraphBin2 with MaxBin2               | $55m \ 17s$                 | 862  MB               |
|            |              | $SolidBin^*$                         | $N/A^*$                     | $N/A^*$               |
|            |              | GraphBin2 with SolidBin <sup>*</sup> | $N/A^*$                     | $N/A^*$               |
| 100G-LR    |              | CONCOCT                              | 3m $7s$                     | 399 MB                |
|            | metaFlye     | GraphBin2 with CONCOCT               | 9s                          | $54 \mathrm{MB}$      |
|            |              | MaxBin2                              | 4m 8s                       | 3,976  MB             |
|            |              | GraphBin2 with MaxBin2               | 4s                          | $57 \mathrm{MB}$      |
|            |              | SolidBin                             | $14\mathrm{m}~59\mathrm{s}$ | $4,840 \ \mathrm{MB}$ |
|            |              | GraphBin2 with SolidBin              | 4s                          | $57 \mathrm{MB}$      |

Supplementary Table 6: Running times (wall time) and peak memory usage for binning using each tool for the remaining real and long-read datasets. s denotes seconds, m denotes minutes and MB denotes megabytes.

 $\ast$  SolidBin [9] could not be run on the Lake Water dataset due to insufficient memory.

# References

- [1] Johannes Alneberg, Brynjar Smári Bjarnason, Ino de Bruijn, Melanie Schirmer, Joshua Quick, Umer Z. Ijaz, Leo Lahti, Nicholas J. Loman, Anders F. Andersson, and Christopher Quince. Binning metagenomic contigs by coverage and composition. *Nature Methods*, 11:1144–1146, Sep 2014.
- [2] Hadrien Gourlé, Oskar Karlsson-Lindsjö, Juliette Hayer, and Erik Bongcam-Rudloff. Simulating Illumina metagenomic data with InSilicoSeq. *Bioinformatics*, 35(3):521–522, 07 2018.
- [3] Mikhail Kolmogorov, Derek M. Bickhart, Bahar Behsaz, Alexey Gurevich, Mikhail Rayko, Sung Bong Shin, Kristen Kuhn, Jeffrey Yuan, Evgeny Polevikov, Timothy P. L. Smith, and Pavel A. Pevzner. metaflye: scalable long-read metagenome assembly using repeat graphs. *Nature Methods*, 17(11):1103–1110, Nov 2020.
- [4] Vijini Mallawaarachchi, Anuradha Wickramarachchi, and Yu Lin. Graph-Bin: Refined binning of metagenomic contigs using assembly graphs. *Bioinformatics*, 03 2020. btaa180.
- [5] Maliheh Mehrshad, Michaela M. Salcher, Yusuke Okazaki, Shin-ichi Nakano, Karel Šimek, Adrian-Stefan Andrei, and Rohit Ghai. Hidden in plain sight—highly abundant and diverse planktonic freshwater chloroflexi. *Microbiome*, 6(1):176, Oct 2018.
- [6] Sergey Nurk, Dmitry Meleshko, Anton Korobeynikov, and Pavel A. Pevzner. metaSPAdes: a new versatile metagenomic assembler. *Genome Research*, 27(5):824–834, 2017.
- [7] Itai Sharon, Michael J. Morowitz, Brian C. Thomas, Elizabeth K. Costello, David A. Relman, and Jillian F. Banfield. Time series community genomics analysis reveals rapid shifts in bacterial species, strains, and phage during infant gut colonization. *Genome Research*, 23(1):111–120, 2013.
- [8] Jared T. Simpson and Richard Durbin. Efficient de novo assembly of large genomes using compressed data structures. *Genome Research*, 22(3):549– 556, 2012.
- [9] Ziye Wang, Zhengyang Wang, Yang Young Lu, Fengzhu Sun, and Shanfeng Zhu. SolidBin: improving metagenome binning with semi-supervised normalized cut. *Bioinformatics*, 35(21):4229–4238, 04 2019.
- [10] Anuradha Wickramarachchi, Vijini Mallawaarachchi, Vaibhav Rajan, and Yu Lin. MetaBCC-LR: metagenomics binning by coverage and composition for long reads. *Bioinformatics*, 36(Supplement\_1):i3–i11, 07 2020.
- [11] Yu-Wei Wu, Blake A. Simmons, and Steven W. Singer. MaxBin 2.0: an automated binning algorithm to recover genomes from multiple metagenomic datasets. *Bioinformatics*, 32(4):605–607, Oct 2015.