

BMJ Open is committed to open peer review. As part of this commitment we make the peer review history of every article we publish publicly available.

When an article is published we post the peer reviewers' comments and the authors' responses online. We also post the versions of the paper that were used during peer review. These are the versions that the peer review comments apply to.

The versions of the paper that follow are the versions that were submitted during the peer review process. They are not the versions of record or the final published versions. They should not be cited or distributed as the published version of this manuscript.

BMJ Open is an open access journal and the full, final, typeset and author-corrected version of record of the manuscript is available on our site with no access controls, subscription charges or pay-per-view fees (<u>http://bmjopen.bmj.com</u>).

If you have any questions on BMJ Open's open peer review process please email <u>info.bmjopen@bmj.com</u>

BMJ Open

Characteristics, outcomes and risk factors for mortality of 522,167 patients hospitalized with COVID-19 in Brazil: a retrospective cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-049089
Article Type:	Original research
Date Submitted by the Author:	14-Jan-2021
Complete List of Authors:	Castro, Marcia; Harvard University T H Chan School of Public Health, Global Health and Population Gurzenda, Susie; Harvard University T H Chan School of Public Health, Global Health and Population Macário, Eduardo; Brazilian Ministry of Health, Secretariat of Health Surveillance Araújo de França, Giovanny ; Brazilian Ministry of Health, Secretariat of Health Surveillance Brasilia
Keywords:	Public health < INFECTIOUS DISEASES, COVID-19, PUBLIC HEALTH

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reziez onz

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4	1	Characteristics, outcomes and risk factors for mortality of 522,167 patients
5 6 7	2	hospitalized with COVID-19 in Brazil: a retrospective cohort study
8 9 10	3	
11 12	4	Marcia C. Castro, PhD1*, Susie Gurzenda, SM1, Eduardo Marques Macário, PhD2, Giovanny V.
13 14 15	5	A. França, PhD ²
16 17	6	
18 19 20	7	¹ Harvard T.H. Chan School of Public Health, Department of Global Health and Population, 665
21 22	8	Huntington Avenue, Building 1, 11th floor, Boston, MA 02115, United States of America
23 24 25	9	² Secretariat of Health Surveillance, Brazilian Ministry of Health, Setor de Rádio e Televisão
25 26 27	10	Norte (SRTV) 701, Via W5 Norte, Edifício PO700. Brasília, Distrito Federal, 70719-040, Brazil
28 29 30	11	
31 32	12	* Corresponding author: Harvard T.H. Chan School of Public Health, Department of Global
33 34 35	13	Health and Population, 665 Huntington Avenue, Building 1, 11th floor, room 1102A, Boston,
36 37 38	14	MA 02115, United States of America. Tel: +1-617-432-6731. Email: mcastro@hsph.harvard.edu
39 40	15	
41 42	16	Word count: 2,750
43 44	17	
45 46 47 48	18	
49 50		
51 52		
53 54		
55		
56 57		
58 59		

ABSTRACT

Objective

- To provide a comprehensive description of demographic, clinical, and radiographic
- characteristics; treatment and case outcomes; and risk factors associated with in-hospital death of
- patients hospitalized with COVID-19 in Brazil.

Design

Retrospective cohort study of hospitalized patients diagnosed with COVID-19.

Setting

Data from all hospitals across Brazil.

Participants

522,167 hospitalized patients in Brazil by December 14, 2020 with severe acute respiratory ilness, and a confirmed diagnosis for COVID-19.

Primary and Secondary Outcome Measures

- Prevalence of symptoms and comorbidities were compared by clinical outcomes and intensive care unit (ICU) admission status. Survival was assessed using Kaplan Meier survival estimates.
 - Risk factors associated with in-hospital death were evaluated with multivariable Cox
 - proportional hazards regression.

Results

Of the 522,167 patients included in this study, 56.7% were discharged, 0.002% died of other causes, 30.7% died of causes associated with COVID-19, and 10.2% remained hospitalized. The median age of patients was 61 years (interquartile range [IQR], 47-73), and of non-survivors 71 years (IQR, 60-80); 292,570 patients (56.0%) were men. At least one comorbidity was present in 64.5% of patients and in 76.8% of non-survivors. From illness onset, the median times to hospital and ICU admission were 6 days (IQR, 3-9) and 7 days (IQR, 3-10), respectively; 15 days (IQR, 9-24) to death, and 15 days (IQR, 11-20) to hospital discharge. Risk factors for in-hospital death included old age, Black/Brown ethnoracial self-classification, ICU admission, being male, living in the North and Northeast regions, and various co-morbidities. Age had the highest hazard ratios of 5.51 (95% CI: 4.91-6.18) for patients \geq 80, compared to those \leq 20.

Conclusions

Characteristics of patients and risk factors for in-hospital mortality highlight inequities of COVID-19 outcomes in Brazil. As the pandemic continues to unfold, targeted policies that

- address those inequities are needed to mitigate the unequal burden of COVID-19.

BMJ Open

1	
2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
40 47	
48	
49 50	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	

73 INTRODUCTION

74 On March 11 the World Health Organization declared COVID-19 as a pandemic. Caused by the 75 novel coronavirus SARS-CoV-2, it emerged in China and quickly spread across the country and 76 beyond. As of January 4, 2021, it was present in 222 countries and territories, with 83,910,386 confirmed cases and 1,839,660 confirmed deaths.¹ Brazil recorded the first confirmed COVID-77 78 19 case on February 26 and the first death on March 12, both in São Paulo State. In 24 days, the 79 disease had spread to all Federal Units. As of January 4, 2021, 7,716,405 cases (9% of 80 worldwide cases) and 195,725 deaths (over 10% of worldwide deaths) had been reported in 81 Brazil, the second-highest in the world, behind only the US. These numbers are underestimated 82 since most mild cases are not being tested and thus are not likely to be reported, and some deaths 83 may be reported with ill-defined causes, or not reported at all. Brazil has a comprehensive health information system,² with the systematic collection of births, 84 85 deaths, hospitalizations, and diseases of mandatory notification, among others. However, a 86 complete and linked registry of records combining data from ambulatory and inpatient care, 87 laboratory and radiologic results, and outcome of the disease is not available. Therefore, there is 88 limited information on the course of the disease for every case reported in Brazil. 89 Currently, the most detailed data available in Brazil refer to hospitalizations due to severe acute 90 respiratory illness (SARI). Here, we use these data to provide a comprehensive description of 91 demographic, clinical, and radiographic characteristics, treatment, case outcome, and risk factors 92 associated with in-hospital death of patients hospitalized with SARI with a confirmed diagnosis 93 for COVID-19, as of December 14, 2020. We analyze the largest retrospective number of cases 94 (N=522,167) and we assess whether the Brazilian case is comparable to patterns previously 95 described for other countries.

2 3 4	96	
5 6 7 8	97	METHODS
9 10	98	Data Sources
11 12 13	99	We used de-identified records from the Influenza Epidemiological Surveillance Information
14 15	100	System (Sistema de Informação de Vigilância Epidemiológica da Gripe, SIVEP-Gripe, in
16 17 18	101	Portuguese), an information system of the Ministry of Health that captures all notifications of
19 20	102	SARI hospitalizations in both public and private hospitals. The system is updated daily, and
21 22	103	every two weeks a new dataset is made publicly available
23 24 25	104	(<u>https://opendatasus.saude.gov.br/nl/dataset</u>). Here we analyzed records as of December 14, 2020
25 26 27	105	(N=1,029,684 notifications), after 15,419 duplicate records were removed by the Ministry of
28 29	106	Health. Each record has data on patient's age, sex, place of residence and of hospitalization,
30 31	107	ethnoracial self-classification, ³ pregnancy status, comorbidities, and symptoms; drug treatment;
32 33 34	108	radiologic test results; and dates of illness onset, hospitalization, ICU admission, and outcome
35 36	109	(death, release, still hospitalized). We considered only records of patients hospitalized with a
37 38	110	confirmed diagnosis for COVID-19 ($N = 522,167$). Diagnosis followed the Ministry of Health
39 40 41	111	guidelines. ⁴
42 43	112	
44 45	113	Statistical Analysis
46 47 48	114	Characteristics of inpatients were summarized in three groups: demographic, clinical and
48 49 50	115	radiographic, and treatment and outcomes. Medians and interquartile ranges (IQR) were used to
51 52	116	describe continuous variables, and counts and percentages to describe categorical variables.
53 54	117	Differences between inpatients that needed and did not need ICU admission and those that
55 56 57 58	118	survived and did not survive were assessed by Whitney U, χ^2 , or Fisher's exact test, as
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 7 of 32

BMJ Open

appropriate. No data imputation was performed for missing data (see online supplementary table1 for information on data completeness).

Survival curves of inpatients at 60 days of hospitalization by age, sex, ethnoracial self-classification, region, and ICU admission were estimated using the Kaplan-Meier estimator and compared with the log-rank test. Factors associated with inpatient death were identified by univariable and multivariable logistic regression (excluding from the analysis those that remained hospitalized). Considering time to death as the outcome, hazard ratios were estimated using Cox proportional-hazards models. Based on previous studies⁵⁻⁷ and on our available information, covariates included in both logistic and Cox models were age (0-19, 20-39, 40-59, 60-69, 70-79, and 80 or more years), sex, ethnoracial self-classification (White, Black/Brown, other, not reported), region (North – where Amazonia is located, Northeast, South, Southeast – where the cities of São Paulo and Rio de Janeiro are located, and Center-West), comorbidities (diabetes, asthma, chronic liver disease, chronic neurological disease, chronic lung disease, immunodeficiency, and chronic kidney disease), obesity, and ICU admission. The variable ethnoracial self-classification was missing in 23.1% of the records, and we added those as a separate category (not reported). Distances between municipalities of residence and hospitalization were calculated in ArcMap, version 10.6 (ESRI, Redlands, CA, USA). All analyses were performed in Stata, version 15.1 (Stata Corp., College Station, TX, USA), and R version 4.0.0 (RStudio Team, Boston, MA, USA).

7 138

139 Patient and public involvement

Our analysis used administrative records, and thus study participants were not involved in the
design of the study. Public involvement was achieved through collaboration with the Ministry of

Health, with whom we defined the research questions to fill in knowledge gaps and inform decision making. Results were discussed and shared with the Ministry, and their wide dissemination with public health officials, researchers, and through the media will reach the broader public.

RESULTS

As of December 14, 2020, 522,167 patients had been hospitalized with confirmed COVID-19 since the beginning of the epidemic in Brazil. Of those, 296,002 (56.7%) were discharged, 1,004 (0.002%) died of other causes, 160,495 (30.7%) died of causes associated with COVID-19, 53,503 (10.2%) remained hospitalized. Clinical outcome was unknown for 11,126 (2.1%) patients (table 1). The cumulative curve of hospital admissions (online supplementary figure 1) shows the fast increase in severe cases that required hospitalization, following the steep increase in COVID-19 transmission in Brazil since the end of March. The median age of patients was 61 years (IQR, 47-73), and much higher for non-survivors, 71 years (IQR, 60-80), as shown by the age distribution in figures 1a-b. Patients aged 60 years or more represented 50.1% of hospitalizations, 59.0% of ICU admissions, and 74.0% of deaths associated with COVID-19. Patients were mostly males (56.0%) and from the Southeast region (49.3%). Among females, 2.5% were pregnant or puerperal at the time of hospitalization, and 7.5% of those died in the hospital. A total of 172,473 (33.0%) patients with median age of 65 years (IQR, 52-76) needed ICU admission. Of all hospitalizations, 37.7% of the patients were White, and 37.9% were Black/Brown. Among survivors, 38.8% were White, while among non-survivors 41.7% were Black/Brown. About 25% of the patients traveled a median of 32.0 km (IQR, 18.6-64.1) to be hospitalized in a municipality different from where they reside (table 1).

12166Table 1. Demographic characteristics of patients

Age Median (IQR) - years Distribution, number (%) 0-19 20-39		65 (52-76)	59 (45-72)	<i></i>					
Distribution, number (%) 0-19)	65 (52-76)	59 (45-72)		0.001	56 (10 60)			.0.001
0-19				61 (47-74)	<0.001 <0.001	56 (42-68)	71 (60-80)	60 (46-72)	<0.001 <0.001
	13,136 (2.5)	3,211 (1.9)	8,517 (2.9)	1,408 (2.5)		9,994 (3.4)	985 (0.6)	1,628 (3.0)	
20-39	71,728 (13.7)	16,978 (9.8)	46,823 (16.0)	7,927 (14.1)		54,889 (18.5)	7,299 (4.6)	7,814 (14.6)	
40-59	170,266 (32.6)	50,445 (29.3)	101,922 (34.7)	17,899 (31.8)		114,769 (38.6)	33,405 (20.8)	18,196 (34.0)	
60-69	108,416 (20.8)	39,362 (22.8)	57,404 (19.6)	11,650 (20.7)		56,788 (19.1)	38,044 (23.7)	11,352 (21.2)	
70-79	90,800 (17.4)	35,944 (20.8)	44,943 (15.3)	9,913 (17.6)		38,304 (12.9)	41,883 (26.1)	8,942 (16.7)	
≥ 80	67,808 (13.0)	26,530 (15.4)	33,769 (11.5)	7,509 (13.3)		22,303 (7.5)	38,872 (24.2)	5,570 (10.4)	
Sex, number (%)	07,000 (12.0)	20,000 (1011)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	< 0.001	,000 (1.0)	20,072 (22)	0,0,0 (10.1)	< 0.001
Male	292,570 (56.0)	100,399 (58.2)	161,377 (55.0)	30,794 (54.7)	0.001	163,967 (55.2)	92,376 (58.6)	30,146 (56.3)	0.001
Female	229,513 (44.9)	72,060 (41.8)	131,964 (45.0)	25,489 (45.3)		133,028 (44.8)	68,101 (42.4)	23,345 (43.6)	
Pregnant, number (%)	4,441 (1.9)	802 (1.1)	3,249 (2.5)	390 (1.5)	< 0.001	3,603 (2.7)	230 (0.3)	469 (2.0)	< 0.001
Puerperal, number (%)	1,350 (0.6)	426 (0.6)	850 (0.6)	74 (0.3)	< 0.001	965 (0.7)	204 (0.4)	148 (0.6)	< 0.001
Ethnoracial, number (%)	1,550 (0.0)	120 (0.0)	000 (0.0)	, 1 (0.5)	< 0.001	900 (0.7)	201 (0.1)	110 (0.0)	< 0.001
White	196,035 (37.5)	67,619 (39.2)	114,339 (39.0)	14,077 (25.0)	0.001	115,358 (38.8)	58,487 (36.4)	19,257 (36.0)	0.001
Black/Brown	198,096 (37.9)	61,450 (35.6)	114,378 (39.0)	22,268 (39.6)		106,312 (35.8)	66,889 (41.7)	19,891 (37.2)	
Other	7,237 (1.4)	2,135 (1.2)	4,191(1.4)	911 (1.6)		4,028 (1.4)	2,332 (1.5)	710 (1.3)	
Not reported	120,799 (23.1)	41,269 (23.9)	60,476 (20.6)	19,054 (33.8)		71,345 (24.0)	32,787 (20.4)	13,645 (25.5)	
Region of residence, numl		, , ,	, , ,		< 0.001	, , ,	, , , ,	, , , ,	< 0.001
North	41,961 (8.0)	10,024 (5.8)	27,065 (9.2)	4,872 (8.7)		23,149 (7.8)	14,537 (9.1)	3,559 (6.7)	
Northeast	104,213 (20.0)	33,220 (19.3)	50,377 (17.2)	20,616 (36.6)		49,733 (16.7)	37,919 (23.6)	12,695 (23.7)	
Center-West	48,864 (9.4)	16,581 (9.6)	28,872 (9.8)	3,411 (6.1)		29,169 (9.8)	13,532 (8.4)	4,759 (8.9)	
Southeast	257,503 (49.3)	88,817 (51.5)	144,010 (49.1)	24,676 (43.8)		151,595 (51.0)	76,494 (47.7)	25,050 (46.8)	
South	69,590 (13.3)	23,814 (13.8)	43,042 (14.7)	2,734 (4.9)		43,380 (14.6)	17,997 (11.2)	7,439 (13.9)	
Foreigner	36 (0.0)	17 (0.0)	18 (0.0)	1 (0.0)		17 (0.0)	16 (0.0)	1 (0.0)	
Hospital in the same muni	cipality of				< 0.001				< 0.001
residence, number (%)					<0.001				<0.001
Yes	388,304 (74.4)	118,002 (68.4)	227,423 (77.5)	42,879 (76.2)		224,134 (75.5)	116,664 (72.7)	39,772 (74.3)	
No	133,827 (25.6)	54,454 (31.6)	65,943 (22.5)	13,430 (23.9)		72,892 (24.5)	43,815 (27.3)	13,730 (25.7)	
Distance (km) from residence to hospital ^b	32.0 (18.4-64.1)	35.6 (19.8-77.8)	29.4 (18.0-56.6)	25.8 (14.5-54.7)	< 0.001	29.8 (18.1-57.8)	34.1 (19.1-71.9) 3	34.5 (18.8-75.9)	< 0.001

Comorbidities were observed in 64.5% of the patients, 74.6% of those who needed ICU admission, 76.8% of non-survivors, and 58.5% of the survivors and those whose death was not associated with COVID-19. With the exception of asthma, all comorbidities had a higher prevalence among non-survivors (compared to all patients). The most common comorbidities were chronic cardiovascular disease (34.5% of patients and 43.5% of non-survivors) and diabetes (25.7% of patients and 33.0% of non-survivors). Obesity was reported in 7.4% of the patients and 10.5% of those who needed ICU admission. The most common symptoms were fever, cough, shortness of breath, low oxygen saturation, and respiratory distress symptoms (table 2).

Table 2. Clinical and radiographic characteristics of patients

	Characteristic	All patients (N = 522,167) ^a	ICU admission (N = 172,473)	Non-ICU admission (N = 293,384)	Not reported (N = 56,310)	p- value	Survivor & non-COVID- 19 death (N = 297,043)	Non-survivor (N = 160,495) ^b	Still in the hospital (N = 53,503)	p- value
	Any comorbidity, number (%)	336,909 (64.5)	128,590 (74.6)	179,847 (61.3)	28,472 (50.6)	< 0.001	173,828 (58.5)	123,265 (76.8)	33,318 (62.3)	< 0.001
C	Chronic cardiovascular disease	180,370 (34.5)	72,196 (41.9)	93,574 (31.9)	14,600 (25.9)	< 0.001	89,402 (30.1)	69,768 (43.5)	17,980 (33.6)	< 0.001
	Chronic hematologic diseases	4,134 (0.8)	1,687 (1.0)	2,204 (0.8)	243 (0.4)	< 0.001	1,957 (0.7)	1,739 (1.1)	365 (0.7)	< 0.001
	Chronic hepatic disease	4,732 (0.9)	2,101 (1.2)	2,309 (0.8)	322 (0.6)	< 0.001	1,924 (0.7)	2,368 (1.5)	361 (0.7)	< 0.001
	Asthma	14,567 (2.8)	4,947 (2.9)	8,639 (2.9)	981 (1.7)	< 0.001	9,130 (3.1)	3,634 (2.3)	1,514 (2.8)	< 0.001
	Diabetes	134,391 (25.7)	53,717 (31.2)	69,078 (23.6)	11,596 (20.6)	< 0.001	65,941 (22.2)	52,958 (33.0)	12,844 (24.0)	< 0.001
	Chronic neurological disease	21,016 (4.0)	8,821 (5.1)	10,832 (3.7)	1,363 (2.4)	< 0.001	8,113 (2.7)	10,943 (6.8)	1,622 (3.0)	< 0.001
	Chronic lung disease	20,140 (3.9)	9,249 (5.4)	9,483 (3.2)	1,408 (2.5)	< 0.001	8,222 (2.8)	10,021 (6.2)	1,621 (3.0)	< 0.001
	Immunodeficiency	13,967 (2.7)	5,689 (3.3)	7,376 (2.5)	902 (1.6)	< 0.001	6,351 (2.1)	6,283 (3.9)	1,132 (2.1)	< 0.001
	Chronic renal disease	21,725 (4.2)	10,684 (6.2)	9,429 (3.2)	1,512 (2.9)	< 0.001	8,149 (2.7)	11,491 (7.2)	1,743 (3.3)	< 0.001
	Obesity	38,415 (7.4)	18,057 (10.5)	17,998 (6.1)	2,360 (4.2)	< 0.001	20,993 (7.1)	12,765 (8.0)	4,005 (7.5)	< 0.001
	Others ^c	144,081 (27.6)	58,139 (33.7)	74,994 (25.6)	10,948 (19.4)	< 0.001	72,598 (24.4)	55,866 (34.8)	13,042 (24.4)	< 0.001
S	Symptoms, number (%)									
	Fever	188,572 (64.3)	104,650 (60.7)	188,572 (64.3)	34,789 (61.8)	< 0.001	194,578 (65.5)	93,933 (58.5)	32,586 (60.9)	< 0.001
	Cough	369,192 (70.7)	115,147 (66.7)	215,084 (73.3)	38,961 (69.2)	< 0.001	219,433 (73.9)	105,252 (65.6)	36,717 (68.6)	< 0.001
	Sore throat	90,487 (17.3)	23,531 (13.6)	56,653 (19.3)	10,303 (18.3)	< 0.001	56,741 (19.1)	22,982 (14.3)	8,872 (16.6)	< 0.001
	Shortness of breath	367,917 (70.5)	131,799 (76.4)	199,805 (68.1)	36,313 (64.5)	< 0.001	200,051 (67.4)	124,724 (77.7)	35,709 (66.7)	< 0.001
	Respiratory distress syndrome	296,238 (56.7)	107,762 (62.5)	163,370 (55.7)	25,106 (44.7)	< 0.001	157,412 (53.0)	104,555 (65.2)	28,046 (52.4)	< 0.001
	Oxygen saturation <95%	303,282 (58.1)	116,355 (67.5)	160,837 (54.8)	26,090 (46.3)	< 0.001	156,349 (52.6)	111,097 (69.2)	29,704 (55.5)	< 0.001
	Diarrhea	71,069 (13.6)	20,340 (11.8)	44,411 (15.1)	6,318 (11.2)	< 0.001	44,961 (15.1)	17,419 (10.9)	7,264 (13.6)	< 0.001
	Vomiting	41,974 (8.0)	11,950 (6.9)	26,177 (8.9)	3,847 (6.8)	< 0.001	25,799 (8.7)	11,076 (6.9)	4,156 (7.8)	< 0.001
	Others ^d	179,222 (34.3)	58,268 (33.8)	105,646 (36.0)	15,308 (27.2)	< 0.001	112,278 (37.8)	45,263 (28.2)	18,294 (34.2)	< 0.001
(Chest radiograph, number (%)					< 0.001				< 0.001
	Normal	11,816 (2.3)	3,403 (2.0)	7,782 (2.7)	631 (1.1)		7,895 (2.7)	2,558 (1.6)	1,091 (2.0)	
	Interstitial abnormalities	81,412 (15.6)	28,091 (16.3)	48,864 (16.7)	4,457 (7.9)		45,320 (15.3)	27,071 (16.9)	7,500 (14.0)	
	Other ^e	85,870 (16.4)	35,844 (20.8)	47,185 (16.1)	2,841 (5.1)		246,250 (82.9)	132,429 (82.5)	47,639 (89.0)	
32 - 33 34 35 36 37	^a Includes 11,126 patients wit ^b Non-survivors are classified due to an unrelated cause are ^c Other comorbidities that we anemia, bronchitis, dyslipider	as those whose de classified under " re not specifically	eath was associate Survivor & non-C asked about in th	OVID-19 death".	Survivor N=296,	002, non-0	COVID-19 death=1	1,041.		

188 ^d Other symptoms that were not specifically asked about in the surveillance form, but self-reported as "other" include, but are not limited to: loss of taste, loss of

- 189 smell, myalgia, weakness, body ache, fatigue, exhaustion, tachypnea, and syncope.
- ^e Includes consolidation, mixed, and other.

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

For beer review only

Page 13 of 32

BMJ Open

The median time from illness onset to hospital admission was 6 days (IQR, 3-9), slightly shorter among non-survivors, 5 days (IQR, 2-8). Mechanical ventilation was needed by 62.2% of all patients, and by 75.6% of those who died. Invasive ventilation was more common in the ICU (44.0%). Oseltamivir, an antiviral medication, was the most common drug used during treatment (15.8% overall, and 17.6% among those in ICU), and the median time from illness onset to treatment was 5 days (IQR, 3-8). Of the patients that needed ICU, 51.8% died from causes associated with COVID-19, and 19.0% remained hospitalized after ICU discharge for 5 days (IQR, 2-10). The median time from illness onset to ICU admission was 7 days (IQR, 3-10), and the medium length of ICU stay was 8 days (IQR, 3-15) for all patients, 9 days (IQR, 4-16) for the deceased. Among the 160,495 patients who died of causes associated with COVID-19 by December 14, the median time from illness onset to death was 15 days (IQR, 9-24) (table 3). Medium length of hospital stay was 8 days (IQR, 4-17), but longer for those who needed ICU admission, 12 days (IQR, 6-22). The density of time from hospital admission to death is positively skewed, more so for those who did not get admitted to the ICU (figure 1c). Kaplan Meier curves (figure 1d and online supplementary figure 2) for a period of up to 60 days after hospital admission showed that survival curves were significantly different by age, region, sex, ethnoracial self-classification, and ICU admission.

Table 3. Treatment and outcomes of patients

Variable	All patients (N = 522,167) ^a	ICU admission (N = 172,473)	Non-ICU admission (N = 293,384)	Not reported (N = 56,310)	p-value	Survivor & non-COVID- 19 death (N = 297,043)	Non-survivor (N = 160,495)	Still in the hospital (N = 53,503)	p-value
Treatment with drugs, number (%)					< 0.001				< 0.001
Oseltamivir	82,659 (15.8)	30,341 (17.6)	47,317 (16.1)	5,001 (8.9)		50,091 (16.9)	27,192 (16.9)	4,242 (7.9)	
Zanamivir	492 (0.1)	152 (0.1)	303 (0.1)	37 (0.1)		298 (0.1)	128 (0.1)	56 (0.1)	
Other	5,008 (1.0)	1,480 (0.9)	3,243 (1.1)	285 (0.5)		3,029 (1.0)	1,118 (0.7)	701 (1.3)	
Mechanical ventilation, number (%)					< 0.001				< 0.001
Invasive	90,189 (17.3)	75,915 (44.0)	12,019 (4.1)	2,255 (4.0)		17,263 (5.8)	66,652 (41.5)	5,238 (9.8)	
Noninvasive	234,554 (44.9)	65,281 (37.9)	157,913 (53.8)	11,360 (20.2)		148,930 (50.1)	54,652 (34.1)	25,925 (48.5)	
ICU admission, number (%)	172,473 (33.0)	172,473 (100.0)	-	-	-	65,102 (21.9)	89,264 (55.6)	15,614 (29.2)	< 0.001
Remained hospitalized after ICU discharge, number (%)	32,770 (19.0)	32,770 (19.0)	-	-	-	27,775 (42.7)	3,243 (3.6)	1,303 (8.4)	< 0.001
Median length (IQR), days Median times (IQR), days	5 (2-10)	5 (2-10)	-	-	-	5 (2-9)	7 (2-16)	72 (21-139)	< 0.001
Illness onset to treatment with drugs	5 (3-8)	5 (3-8)	6 (3-9)	6 (3-8)	< 0.001	6 (3-9)	5 (2-8)	6 (3-9)	< 0.001
Illness onset to hospitalization	6 (3-9)	6 (3-9)	6 (3-10)	6 (2-9)		7 (3-10)	5 (2-8)	6 (3-10)	
Illness onset to ICU admission	7 (3-10)	7 (3-10)			-	7 (4-10)	6 (3-10)	7 (3-10)	
Hospital admission to ICU admission	0 (0-1)	0 (0-1)		_	-	0 (0-1)	0 (0-1)	0 (0-0)	
Illness onset to death	15 (9-24)	17 (10-25)	13 (7-21)	12 (7-20)	< 0.001	-	15 (9-24)	-	-
Illness onset to hospital discharge	15 (11-20)	18 (13-27)	14 (10-18)	16 (11-21)	< 0.001	15 (11-20)		-	-
Hospital admission to death	9 (4-16)	10 (5-18)	7 (2-14)	5 (1-13)		- (-)	9 (4-16)	-	-
Hospital admission to ICU discharge	9 (4-17)	9 (4-17)	-	-	-	7 (4-14)	10 (5-10)	6 (2-14)	< 0.001
ICU admission to death	9 (4-16)	9 (4-16)	-	-	<u> </u>	-	9 (4-16)	-	-
Median length hospital stay (IQR), days	8 (4-17)	12 (6-22)	7 (4-13)	8 (3-18)	< 0.001	7 (4-12)	9 (4-16)	79 (23-157)	< 0.001
Median length ICU stay (IQR), days Clinical outcomes as of 12/14/2020,	8 (3-15)	8 (3-15)	-	-	-	6 (3-12)	9 (4-16)	4 (2-11)	< 0.001
number (%)					< 0.001				-
Cured and discharged from hospital	296,002 (56.7)	64,578 (37.4)	202,042 (68.9)	29,382 (52.2)		296,002 (99.7)	-	-	
Death due to other causes	1,041 (0.2)	524 (0.3)	443 (0.2)	74 (0.1)		1,041 (0.4)	-	-	
Death associated with COVID-19	160,495 (30.7)	89,264 (51.8)	53,282 (18.2)	· · · · ·		-	160,495 (100.0)	-	
9 Still in the hospital a Includes 11,126 patients with unkn	53,503 (10.3)	15,614 (9.1)	30,963 (10.6)	6,926 (12.3)		-	-	53,503 (100.0)	

Includes 11,126 patients with unknown clinical outcome.

^b Non-survivors are classified as those whose death was associated with COVID-19, according to the SIVEP-Gripe database. Those who had COVID-19 but died

due to an unrelated cause are classified under "Survivor & non-COVID-19 death". Survivor N=296,002, non-COVID-19 death=1,041.

BMJ Open

Univariable logistic analysis indicated that the odds of in-hospital death progressively increased with age, and were higher for patients who were male, non-white, from the North and Northeast regions, needed ICU care, were obese, and had diabetes and other comorbidities (table 4). The multivariable analysis included 168,936 records (65,670 non-survivors) that had no missing data for covariates. The odds of in-hospital death for males are 1.23 times that of females, and for those in the North and Northeast regions were, respectively, 1.83 and 1.48 times that of patients in the Southeast. The Cox proportional-hazards model included 176,559 records (64,809 non-survivors). Variables associated with in-hospital death were age, sex, ethnoracial self-classification, region, ICU care, and various co-morbidities. Age, however, had the highest hazard ratios, ranging from 1.67 (95% CI: 1.49-1.89) for those aged 20-39, to 5.51 (95% CI: 4.91-6.18) for those 80 or older, compared to patients younger than 20 years (table 4).

	Table 4: Odds ratios (OR) and hazard ratios (HR) for death among hospitalized patients with confirmed COVID-19
226	

Variables	Univariable ORª (95% CI)	p-value ^b	Multivariable OR (95% CI) N = 168,936	p-value ^b	HR (95% CI) for death within 60 days of hospitalization N = 176,559
Age (reference 0-19)					,
20-39	1.35 (1.26,1.46)	< 0.001	1.66 (1.45, 1.91)	< 0.001	1.67 (1.48, 1.89)
40-59	2.94 (2.74, 3.15)	< 0.001	2.70 (2.37, 3.09)	< 0.001	2.21 (1.97, 2.48)
60-69	6.76 (6.30, 7.26)	< 0.001	5.15 (4.52, 5.88)	< 0.001	3.05 (2.72, 3.43)
70-79	11.05 (10.30, 11.86)	< 0.001	8.24 (7.24, 9.42)	< 0.001	3.90 (3.48, 4.38)
≥ 80	17.58 (16.37, 18.88)	< 0.001	14.52 (12.74, 16.59)	< 0.001	5.51 (4.91, 6.18)
Sex (reference Female)					
Male	1.10 (1.09, 1.11)	< 0.001	1.23 (1.20, 1.26)	< 0.001	1.09 (1.07, 1.10)
Ethnoracial self-classific	cation (reference White)				
Black/Brown	1.25 (1.24, 1.27)	< 0.001	1.18 (1.15, 1.22)	< 0.001	1.08 (1.06, 1.10)
Other	1.18 (1.12, 1.25)	< 0.001	1.05 (0.95, 1.16)	0.309	1.02 (0.96, 1.10)
Not reported	0.9 (0.89, 0.92)	< 0.001	0.77 (0.74, 0.80)	< 0.001	0.79 (0.77, 0.81)
Region (reference South	east)				
South	0.85 (0.83, 0.87)	< 0.001	• 0.89 (0.87, 0.92)	< 0.001	0.91 (0.89, 0.93)
Center-West	0.96 (0.94, 0.98)	< 0.001	1.04 (1.00, 1.08)	0.049	1.00 (0.97, 1.03)
North	1.31 (1.28, 1.34)	< 0.001	1.83 (1.75, 1.92)	< 0.001	1.34 (1.30, 1.39)
Northeast	1.61 (1.58, 1.64)	< 0.001	1.48 (1.43, 1.55)	< 0.001	1.10 (1.07, 1.12)
ICU	5.21 (5.14, 5.28)	< 0.001	5.20 (5.08, 5.32)	< 0.001	1.78 (1.75, 1.81)
Obesity	0.91 (0.88, 0.93)	< 0.001	1.23 (1.18, 1.27)	< 0.001	1.07 (1.04, 1.10)
Diabetes	1.32 (1.30, 1.35)	< 0.001	1.18 (1.15, 1.21)	< 0.001	1.08 (1.07, 1.10)
Asthma	0.59 (0.56, 0.61)	< 0.001	0.81 (0.77, 0.86)	< 0.001	0.88 (0.84, 0.92)
Chronic liver disease	1.87 (1.76, 1.99)	< 0.001	1.74 (1.59, 1.90)	< 0.001	1.33 (1.26, 1.40)
Chronic neurological disease	2.12 (2.06, 2.19)	< 0.001	1.65 (1.58, 1.73)	< 0.001	1.18 (1.15, 1.21)
Chronic lung disease	1.92 (1.86, 1.99)	< 0.001	1.46 (1.40, 1.53)	< 0.001	1.16 (1.13, 1.19)
Immunodeficiency	1.53 (1.47, 1.58)	< 0.001	1.93 (1.83, 2.04)	< 0.001	1.26 (1.22, 1.31)
Chronic kidney disease	2.23 (2.16, 2.30)	< 0.001	1.70 (1.63, 1.78)	< 0.001	1.17 (1.14, 1.21)

^a The N varies for univariable OR, depending on the number of missing values for each variable.

^b P-value from Wald test.

CONCLUSION

BMJ Open

This study described demographic, clinical, and radiographic characteristics, treatment, case outcome, and risk factors associated with in-hospital death of 522,167 patients hospitalized with confirmed COVID-19 in Brazil. Results show that 56.7% were discharged, 0.002% died of other causes, 30.7% died of causes associated with COVID-19, and 10.2% remained in the hospital as of December 14. Patients were mostly older than 40 years, predominantly from the Southeast region, with about one fourth needing to travel to a different municipality for hospitalization. At least one comorbidity was present in 64.5% of patients and in 76.8% of the non-survivors. From illness onset, the median time to hospital and ICU admission was 6 and 7 days, respectively; 15 days to death (17 to those admitted to the ICU), and 15 days to hospital discharge (18 days to those admitted to the ICU). Risk factors for in-hospital death were older age, being male, of Black/Brown ethnoracial self-classification, living in the North or Northeast regions, with a history of ICU admission, and various co-morbidities. Our results can be analyzed in light of findings from other countries. The use of mechanical ventilation was higher in Brazil (62.2% among all patients, 75.6% of the non-survivors) compared to patterns described for China (ranging from 17.2 to 38.7% of patients),⁸⁻¹⁰ and Germany (17% of patients),¹¹ but lower than Italy (81.7% of all patients).¹² While ICU mortality in Italy was 26%,¹² in Brazil it was 51.8%. In Brazil, 33.0% of hospitalized patients were admitted to the ICU, against 16% in Italy,¹³ and 19% in France.¹⁴ In-hospital death was observed in 18.1% of patients in France,¹⁴ 22% in Germany,¹¹ and 30.7% in Brazil. The time from illness onset to hospitalization in China⁹ was 11 days (IQR, 8-14), but much shorter in Brazil, 6 days (IQR, 3-9). The length of hospital stay, however, was about 4 days longer in China.⁹¹⁵ These comparisons need to be taken with caution. First, studies from China had a smaller sample size,

and regional variability is very large, as reported for France.¹⁴ In Brazil, for example, in-hospital death varied from 25.9% in the South region to 36.4% in the Northeast, and ICU mortality from 48.0% in the Southeast to 66.5% in the North. The time from illness to hospitalization was also longer in the North and Center-West regions, 7 days (IQR, 4-10). Our results confirm previous findings regarding symptoms and comorbidities. Hypertension, a very common comorbidity in China⁹ could not be measured from our data, but over one-third of the adult population in Brazil has that condition.¹⁶ In Brazil, 35.5% of the patients reported no comorbidities, while in New York City this number was 6.1%,¹⁷ and in China it was 52%.⁹ Diabetes was reported in 19% of patients in China,⁹ 33.8% in New York City,¹⁷ and 25.7% in Brazil. Part of these differences reflects the disease burden in each locality, but also the lack of standardized data collection (e.g., conditions systematically collected in one country and only reported in the 'other' category in another country). The observed associations of age, sex, obesity, and diabetes with in-hospital death corroborate previous findings.⁵⁶¹⁴ The higher risk among non-white patients was previously reported in Brazil, the UK, and the US.¹⁸⁻²² In Brazil, this reflects structural inequalities that made large fractions of the population more vulnerable to COVID-19 (e.g., people living in areas with precarious infrastructure, overcrowded households, regions with low supply of physicians and hospital services, and who depend on informal labor).^{23 24} Those inequalities are also captured by a higher hazard ratio in the North and Northeast regions, where Brazil consistently reports worse socioeconomic indicators.²⁵ Currently, the North region has the lowest rates of hospital beds, ICU beds, and physicians per person.²⁶ Indeed, the region had the worst indicators in terms of mortality and time to hospitalization, and patients who were hospitalized in a municipality different from the one where they live had to travel 122.0 km (IQR, 58.3-258.6) while those in

Page 19 of 32

BMJ Open

1	
2	
3	
4	
5	
6 7	
8	
9	
10	
11	
12	
13	
14 15	
16	
16 17	
18	
19	
20	
20 21 22	
23	
24	
25	
26	
27 28	
20 29	
30	
31	
32	
33 34	
35	
36	
37	
38	
39	
40 41	
42	
43	
44	
45	
46	
47 48	
49	
50	
51	
52	
53 54	
54 55	
56	
57	
58	
59	
60	

275	the Southeast traveled 22.3 km (IQR, 16.1-36.3). Hospitalization in a different municipality
276	occurs when the place of residence has no hospitals, has no available hospital beds, or when the
277	closest hospital is actually outside the municipality of residence. In Brazil, the size of
278	municipalities varies widely: 23% have 5,000 residents or less, and 5% have 100,000 or more
279	residents. Of the 5,570 municipalities, 37% and 75% have no hospitals and no ICU care,
280	respectively. A regionalization process guarantees that all the population has access to hospital
281	care. ²⁷ However, when hospitals reach capacity, as was observed in several cities in Brazil in late
282	April and May, municipalities without hospitals and ICU units are unable to provide proper care,
283	which may have contributed to higher COVID-19 mortality. Therefore, risk factors for in-
284	hospital mortality due to COVID-19 expose local and structural inequalities.
285	This study has some limitations. First, we used administrative records captured in structured
286	surveillance forms. Those lack details available in hospital medical records and may have
287	accuracy and completeness problems. In addition, it limits the types of comorbidities and
288	symptoms reported, as those listed under the 'other' category were not systematically collected
289	from all cases (e.g., loss of taste and smell). Second, we did not have access to laboratory results
290	other than COVID-19 tests (e.g., complete blood count). While this does not change any of our
291	results, they would allow for a better characterization of the clinical course of the disease. Third,
292	23.1% of patients did not report information on ethnoracial self-classification, 10.8% did not
293	have information on ICU admission, and for 2.1% there was no information on clinical outcome.
294	This is not uncommon in the analysis of administrative records. ²² Here we report all records and
295	included an additional category (ethnoracial self-classification not reported) in the risk factor
296	analysis.

2	
3	
4	
5	
6	
0 7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21 22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40 49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
50	

1

297 Despite these limitations, this study provides a comprehensive description of characteristics, 298 outcomes, and risk factors for mortality of patients hospitalized with COVID-19 in Brazil, and 299 the largest cohort of patients so far analyzed (N=522,167). Results shed light on commonalities 300 and differences between Brazil and other countries affected by COVID-19, and highlight 301 inequalities in disease outcomes. Most importantly, our results could be used to inform 302 coordinated actions to target those who currently bear the highest morbidity and mortality 303 burden. Currently, Brazil's response to COVID-19 did not comprehensively and effectively utilize its community-based primary health care program.²⁸⁻³⁰ Brazil has a network of almost 304 305 270,000 community health workers that reach out to about 70% of the Brazilian population. 306 These agents could actively identify vulnerable people who face higher risk of mortality, could 307 act as agents of information to sensitize the population and boost adherence to control measures 308 (e.g., use of masks), and could continue to deliver community-based primary care services that 309 have been, for the most part, interrupted by the pandemic. These agents will also be important to 310 support the delivery of vaccination (once it starts) to the most vulnerable. Currently, with more 311 than 200,000 deaths and with hospital occupancy increasing at alarming rates, leveraging and 312 strengthening the existing network of primary health care is paramount to contain the sustained 313 and unequal burden of COVID-19 in Brazil. 314

315 Contributors: MCC and GVAF conceived the study, were responsible for data analysis and
316 interpretation. MCC wrote the manuscript. GVAF and EMM acquired the data. GVAF and SG
317 were responsible for data curation. SG ran the statistical models and contributed to writing. All
318 authors edited and approved the final version of the manuscript.

Page 21 of 32

BMJ Open

1 2		
2 3 4	319	Funding: This research received no specific grant from any funding agency in the public,
5 6 7	320	commercial or not-for-profit sectors.
8 9 10	321	Data availability statement: The SIVEP-Gripe dataset is publicly available on the Ministry of
11 12	322	Health's DATASUS website (<u>https://opendatasus.saude.gov.br/nl/dataset</u>).
13 14 15	323	Acknowledgements: We would like to thank Nicholas Arisco, M.S., for technical assistance.
16 17	324	
18 19	325	Figure 1: Age distribution of patients, density curves of length of time from hospital
20 21 22	326	admission to death, and survival curve 60 days after hospital admission. (a) Age distribution
22 23 24	327	of patients hospitalized. (b) Age distribution of in-hospital deaths. (c) Density of number of days
25 26	328	from hospital admission to death up to 60 days after hospital admission, detailed by ICU
27 28	329	admission status. (d) Survival curve estimated with Kaplan Meier and considering 60 days from
29 30 31	330	hospital admission.
32 33		
34 35		hospital admission.
36 37		
38 39 40		
40 41 42		
43 44		
45 46		
47 48		
49 50		
51 52		
53 54		
55 56		
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

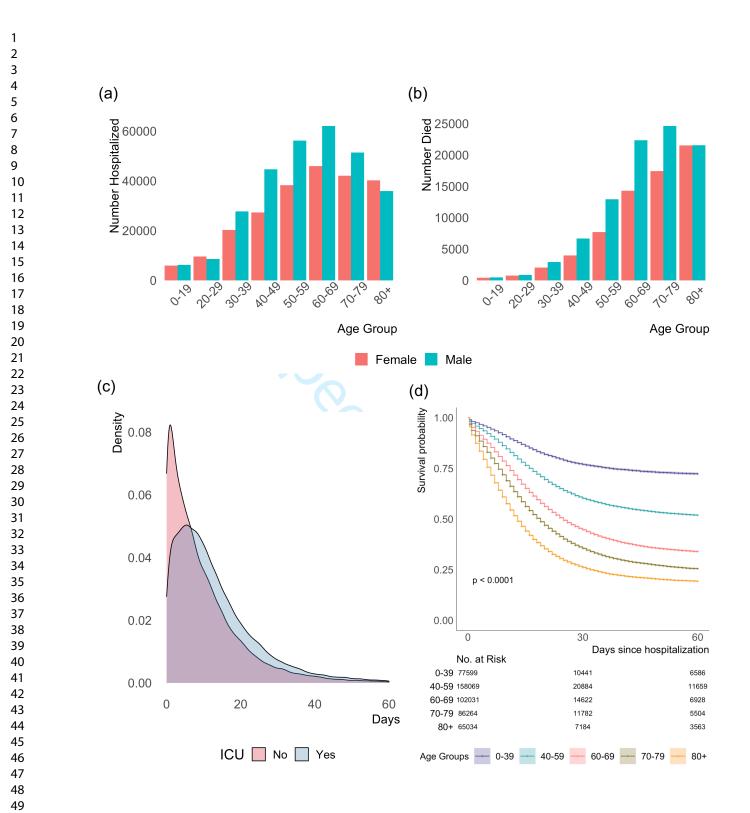
3 4 5 6	331	References
7 8	332	1. World Health Organization. Coronavirus disease (COVID-19) outbreak situation:
9 10 11	333	https://www.who.int/emergencies/diseases/novel-coronavirus-2019, 2020.
11 12 13	334	2. Brasil, Ministério da Saúde. A experiência brasileira em sistemas de informação em saúde.
14 15	335	Série B Textos Básicos de Saúde. Brasília: Ministério da Saúde, Organização Pan-Americana
16 17	336	da Saúde, Fundação Oswaldo Cruz. Available at:
18 19 20	337	http://bvsms.saude.gov.br/bvs/publicacoes/experiencia_brasileira_sistemas_saude_volume2.p
20 21 22	338	<u>df</u> , 2009.
23 24	339	3. Lima-Costa MF, Rodrigues LC, Barreto ML, et al. Genomic ancestry and ethnoracial self-
25 26 27	340	classification based on 5,871 community-dwelling Brazilians (The Epigen Initiative).
27 28 29	341	Scientific Reports 2015;5(1):9812. doi: 10.1038/srep09812
30 31	342	4. Brasil, Ministério da Saúde. Guia de Vigilância Epidemiológica. Emergência de Saúde Pública
32 33	343	de Importância Nacional pela Doença pelo Coronavírus 2019. Vigilância de Síndromes
34 35 36	344	Respiratórias Agudas COVID-19. August 5, 2020 ed: Ministério da Saúde.
37 38	345	https://portalarquivos.saude.gov.br/images/af_gvs_coronavirus_6ago20_ajustes-finais-2.pdf,
39 40	346	2020.
41 42 43	347	5. Zheng Z, Peng F, Xu B, et al. Risk factors of critical & mortal COVID-19 cases: A systematic
44 45	348	literature review and meta-analysis. J Infect 2020:S0163-4453(20)30234-6. doi:
46 47	349	10.1016/j.jinf.2020.04.021
48 49 50	350	6. Li X, Xu S, Yu M, et al. Risk factors for severity and mortality in adult COVID-19 inpatients
50 51 52	351	in Wuhan. Journal of Allergy and Clinical Immunology 2020;146(1):110-18. doi:
53 54	352	https://doi.org/10.1016/j.jaci.2020.04.006
55 56 57 58 59		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml
60		i or peer rettert only intep//onljopen.onlj.eon/site/ubout/guidelites/vititit

Page 23 of 32

60

BMJ Open

1 2		
3 4	353	7. Esai Selvan M. Risk factors for death from COVID-19. Nature Reviews Immunology 2020
5 6 7 8 9 10 11 12 13 14 15	354	doi: 10.1038/s41577-020-0351-0
	355	8. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of
	356	2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet
	357	2020;395(10223):507-13. doi: 10.1016/s0140-6736(20)30211-7 [published Online First:
	358	2020/02/03]
16 17 18	359	9. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients
19 20	360	with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet 2020 doi:
21 22	361	10.1016/S0140-6736(20)30566-3
23 24 25	362	10. Lai CC, Liu YH, Wang CY, et al. Asymptomatic carrier state, acute respiratory disease, and
25 26 27 28 29	363	pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts and
	364	myths. J Microbiol Immunol Infect 2020;53(3):404-12. doi: 10.1016/j.jmii.2020.02.012
30 31 32	365	[published Online First: 2020/03/17]
32 33 34	366	11. Karagiannidis C, Mostert C, Hentschker C, et al. Case characteristics, resource use, and
35 36 37 38 39 40 41 42 43	367	outcomes of 10021 patients with COVID-19 admitted to 920 German hospitals: an
	368	observational study. The Lancet Respiratory Medicine 2020 doi: 10.1016/S2213-
	369	2600(20)30316-7
	370	12. Grasselli G, Zangrillo A, Zanella A, et al. Baseline Characteristics and Outcomes of 1591
44 45	371	Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. Jama
46 47	372	2020;323(16):1574-81. doi: 10.1001/jama.2020.5394 [published Online First: 2020/04/07]
48 49 50	373	13. Grasselli G, Pesenti A, Cecconi M. Critical Care Utilization for the COVID-19 Outbreak in
51 52	374	Lombardy, Italy: Early Experience and Forecast During an Emergency Response. JAMA 2020
53 54	375	doi: 10.1001/jama.2020.4031
55 56 57		
58 59		


2		
- 3 4	376	14. Salje H, Tran Kiem C, Lefrancq N, et al. Estimating the burden of SARS-CoV-2 in France.
5 6	377	Science 2020;369(6500):208-11. doi: 10.1126/science.abc3517
7 8	378	15. Guan W-j, Ni Z-y, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in
9 10 11	379	China. New England Journal of Medicine 2020 doi: 10.1056/NEJMoa2002032
12 13	380	16. Macinko J, Leventhal DGP, Lima-Costa MF. Primary Care and the Hypertension Care
14 15	381	Continuum in Brazil. Journal of Ambulatory Care Management 2018;41(1):34-46. doi:
16 17	382	10.1097/JAC.00000000000222
18 19 20	383	17. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting Characteristics, Comorbidities, and
20 21 22	384	Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area.
23 24	385	JAMA 2020;323(20):2052-59. doi: 10.1001/jama.2020.6775
25 26	386	18. Baqui P, Bica I, Marra V, et al. Ethnic and regional variations in hospital mortality from
27 28 29	387	COVID-19 in Brazil: a cross-sectional observational study. The Lancet Global Health
30 31	388	2020;Published: July 02, 2020 doi: 10.1016/S2214-109X(20)30285-0
32 33	389	19. Price-Haywood EG, Burton J, Fort D, et al. Hospitalization and Mortality among Black
34 35 26	390	Patients and White Patients with Covid-19. New England Journal of Medicine
36 37 38	391	2020;382(26):2534-43. doi: 10.1056/NEJMsa2011686
39 40	392	20. Cordes J, Castro MC. Spatial analysis of COVID-19 clusters and contextual factors in New
41 42	393	York City. Spatial and Spatio-temporal Epidemiology 2020;34:100355. doi:
43 44	394	https://doi.org/10.1016/j.sste.2020.100355
45 46 47	395	21. Golestaneh L, Neugarten J, Fisher M, et al. The association of race and COVID-19 mortality.
48 49	396	<i>EClinicalMedicine</i> 2020; Published: July 14, 2020 doi: 10.1016/j.eclinm.2020.100455
50 51	390	ECunicalMedicine 2020, Published: July 14, 2020 dol: 10.1016/j.ecinim.2020.100455
52		
53 54		
55 56		
57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 25 of 32

BMJ Open

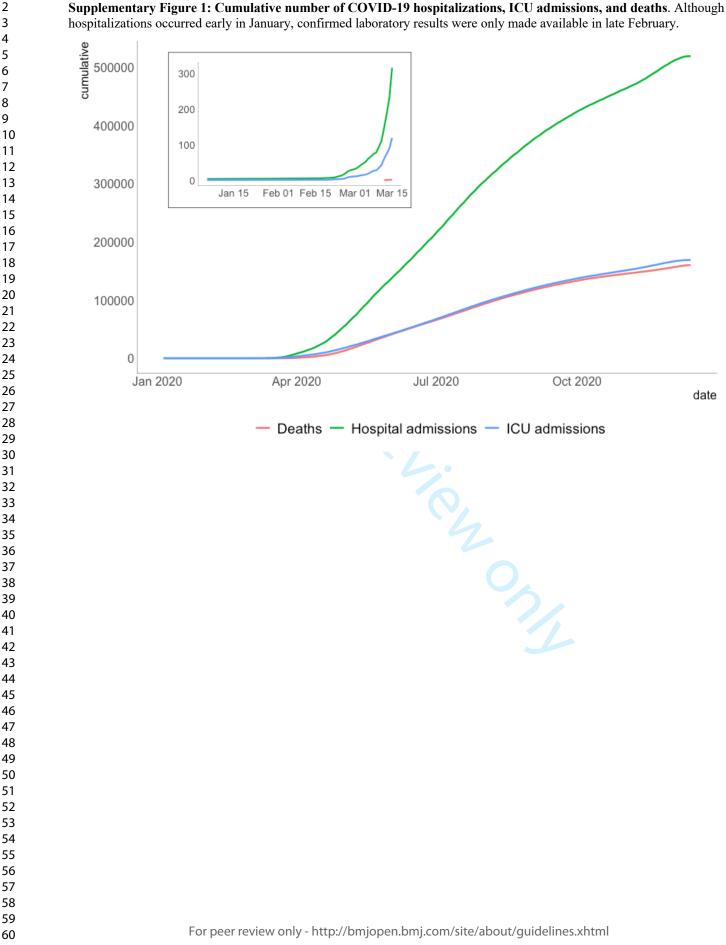
1 2		
- 3 4	397	22. Williamson E, Walker AJ, Bhaskaran KJ, et al. OpenSAFELY: factors associated with
5 6	398	COVID-19-related hospital death in the linked electronic health records of 17 million adult
7 8 9	399	NHS patients. medRxiv 2020:2020.05.06.20092999. doi: 10.1101/2020.05.06.20092999
9 10 11	400	23. Castro MC, Resende de Carvalho L, Chin T, et al. Demand for hospitalization services for
12 13	401	COVID-19 patients in Brazil. medRxiv 2020:2020.03.30.20047662. doi:
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30	402	10.1101/2020.03.30.20047662
	403	24. Sousa Júnior WCd, Gonçalves DA, Cruz DB. COVID-19: Local/regional inequalities and
	404	impacts over critical healthcare infrastructure in Brazil. Ambiente & Sociedade 2020;23
	405	25. Menezes Filho N, Kirschbaum C. Education and Inequality in Brazil. In: Arretche M, ed.
	406	Paths of Inequality in Brazil: A Half-Century of Changes. Cham: Springer International
	407	Publishing 2019:69-88.
	408	26. Carvalho LR, Andrade MV, Amaral PVM. Avaliação dos parâmetros de oferta mínimos para
30 31 32	409	os leitos SUS no Brasil, 2015. Planejamento e Políticas Públicas - PPP/Ipea 2020;In Press
33 34 35 36	410	27. Castro MC, Massuda A, Almeida G, et al. Brazil's unified health system: the first 30 years
	411	and prospects for the future. Lancet 2019;394(10195):345-56. doi: 10.1016/s0140-
37 38	412	6736(19)31243-7 [published Online First: 2019/07/16]
 39 40 41 42 43 44 45 46 47 48 49 50 	413	28. Avelar e Silva RN, Russo G, Matijasevich A, et al. Covid-19 in Brazil has exposed socio-
	414	economic inequalities and underfunding of its public health system. BMJ Opinion 2020; June
	415	19
	416	29. Daumas RP, Silva GAe, Tasca R, et al. O papel da atenção primária na rede de atenção à
	417	saúde no Brasil: limites e possibilidades no enfrentamento da COVID-19. Cadernos de Saúde
51 52	418	<i>Pública</i> 2020;36
53 54		
55 56 57		
58 59		

1 2		
2 3 4	419	30. Lotta G, Wenham C, Nunes J, et al. Community health workers reveal COVID-19 disaster in
5 6	420	Brazil. Lancet 2020 doi: 10.1016/s0140-6736(20)31521-x [published Online First:
7 8	421	2020/07/14]
9 10 11	422	
11 12 13		
13 14 15		
16 17		
18 19		
20 21		
22 23 24		
24 25 26		
27 28		
29 30		
31 32		
33 34 25		
35 36 37		
38 39		
40 41		
42 43		
44 45 46		
40 47 48		
49 50		
51 52		
53 54		
55 56		
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

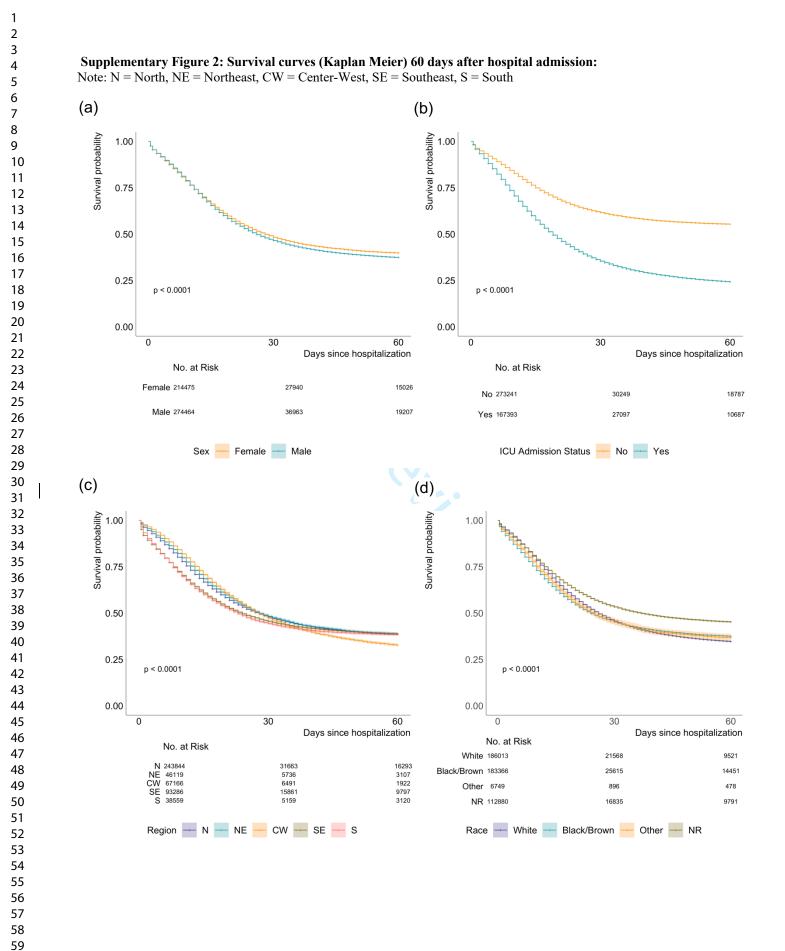
Supplementary material for "Characteristics, outcomes and risk factors for mortality of 522,167 patients hospitalized with COVID-19 in Brazil: a retrospective cohort study"

tor beer terien only

Supplementary Table 1: Data	completeness in the datase	et of hospitalized individuals wi	th confirmed COVID-19


from SIVEP-Gripe data (as of December 14, 2020)

Variable	Missing	Ν	% Complete
Hospitalization	0	522,167	100%
Final diagnosis of the case	0	522,167	100%
Age informed by patient	0	522,167	100%
Type of age (day, month, year)	0	522,167	100%
Sex	84	522,167	100%
Gestational age	26,081	299,513	91%
Puerperal ^a	133,695	299,513	55%
Ethnoracial self-classification	120,799	522,167	77%
Federal unit of residence	0	522,167	100%
Municipality of residence ^b	36	522,167	100%
Municipality of notification	0	522,167	100%
Comorbidities ^a		,	
Chronic cardiovascular disease	246,121	522,167	53%
Chronic hematologic diseases	314,925	522,167	40%
Chronic hepatic disease	315,473	522,167	40%
Asthma	311,743	522,167	40%
Diabetes	264,470	522,167	49%
Chronic neurological disease	309,103	522,167	41%
Chronic lung disease	309,631	522,167	41%
Immunodeficiency	312,874	522,167	40%
Chronic renal disease	309,780	522,167	41%
Obesity	306,964	522,167	41%
Other comorbidities	272,160	522,167	48%
Symptoms ^a	272,100	522,107	107
Fever	65,355	522,167	87%
Cough	56,324	522,167	89%
Sore throat	140,061	522,167	73%
Shortness of breath	56,843	522,167	89%
Respiratory distress syndrome	90,093	522,167	83%
Other symptoms descriptive	272,160	522,167	48%
Chest radiograph result	222,990	522,167	57%
Type of drug treatment ^a	434,008	522,167	17%
Mechanical ventilation	75,907	522,167	85%
ICU admission	56,310	522,167	89%
Date of ICU discharge ^c	46,919	522,167	91%
Date of hospital discharge of death ^c	31,755	522,167	94%
Date of onset of illness	0	522,167	100%
Date of treatment with drugs	6,993	93,688	93%
Date of hospitalization ^c	3,170	522,167	937
Date of ICU admission ^c	3,580	172,473	98%
Date of case closed	8,457	468,664	98%
Clinical outcome (discharge, death, still in hospital)	11,126	522,167	98%


a. Unlike other fields (such as age and sex), comorbidities, symptoms, peruperal, and drugs response does not necessarily mean missing information, but absence of those conditions.

b. The 36 observations missing municipality of residence are foreigners.

c. Missingness in several date variables could be resolved by cross-checking with other variables. Doing so reduced missingness by 0.04-10.3 percentage points from the original missingness shown above.

BMJ Open

STROBE Statement-checklist of items that should be included in reports of observational studies

1 2 3 4 5 6	 (a) Indicate the study's design with a commonly used term in the title or the abstract (b) Provide in the abstract an informative and balanced summary of what was done and what was found Explain the scientific background and rationale for the investigation being reported State specific objectives, including any prespecified hypotheses Present key elements of study design early in the paper Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale 	1 2 4 4 5 4-5 5
3 4 5	 was done and what was found Explain the scientific background and rationale for the investigation being reported State specific objectives, including any prespecified hypotheses Present key elements of study design early in the paper Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and 	4 4 5 4-5
3 4 5	reported State specific objectives, including any prespecified hypotheses Present key elements of study design early in the paper Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up <i>Case-control study</i> —Give the eligibility criteria, and the sources and	4 5 4-5
3 4 5	reported State specific objectives, including any prespecified hypotheses Present key elements of study design early in the paper Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up <i>Case-control study</i> —Give the eligibility criteria, and the sources and	4 5 4-5
4 5	State specific objectives, including any prespecified hypotheses Present key elements of study design early in the paper Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and	5 4-5
5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and	4-5
5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and	4-5
	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and	
6	(a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up <i>Case-control study</i> —Give the eligibility criteria, and the sources and	5
Image: Second		
Variables 7 Clearly define all outcomes, exposures, predictors, potential confounder and effect modifiers. Give diagnostic criteria, if applicable		5-6
measurement of assessment (measurement). Describe		5
9	Describe any efforts to address potential sources of bias	6
10	Explain how the study size was arrived at	5
11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	6
12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	5-6
	(b) Describe any methods used to examine subgroups and interactions	
	 (c) Explain how missing data were addressed (d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed Cross-sectional study—If applicable, describe analytical methods taking 	6
	8* 9 10 11	methods of selection of participants (b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case 7 Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable 8* For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group 9 Describe any efforts to address potential sources of bias 10 Explain how the study size was arrived at 11 Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why 12 (a) Describe all statistical methods, including those used to control for confounding (b) Describe any methods used to examine subgroups and interactions (c) Explain how missing data were addressed (d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed

Continued on next page

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	7
-		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	7-9
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	7-8
		(c) Cohort study—Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures over time	7-1
		Case-control study—Report numbers in each exposure category, or summary	
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	7-1
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	13
		their precision (eg, 95% confidence interval). Make clear which confounders were	14
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	7-1
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	14
			18
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	17
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	14
merpretation		multiplicity of analyses, results from similar studies, and other relevant evidence	18
		indupriently of analyses, results from similar studies, and other relevant evidence	10
Generalisability	21	Discuss the generalisability (external validity) of the study results	
Generalisability			
-			18

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.

BMJ Open

Characteristics, outcomes and risk factors for mortality of 522,167 patients hospitalized with COVID-19 in Brazil: a retrospective cohort study

Journal:	BMJ Open
Manuscript ID	bmjopen-2021-049089.R1
Article Type:	Original research
Date Submitted by the Author:	17-Feb-2021
Complete List of Authors:	Castro, Marcia; Harvard University T H Chan School of Public Health, Global Health and Population Gurzenda, Susie; Harvard University T H Chan School of Public Health, Global Health and Population Macário, Eduardo; Brazilian Ministry of Health, Secretariat of Health Surveillance Araújo de França, Giovanny ; Brazilian Ministry of Health, Secretariat of Health Surveillance Brasilia
Primary Subject Heading :	Public health
Secondary Subject Heading:	Global health, Infectious diseases
Keywords:	Public health < INFECTIOUS DISEASES, COVID-19, PUBLIC HEALTH

I, the Submitting Author has the right to grant and does grant on behalf of all authors of the Work (as defined in the below author licence), an exclusive licence and/or a non-exclusive licence for contributions from authors who are: i) UK Crown employees; ii) where BMJ has agreed a CC-BY licence shall apply, and/or iii) in accordance with the terms applicable for US Federal Government officers or employees acting as part of their official duties; on a worldwide, perpetual, irrevocable, royalty-free basis to BMJ Publishing Group Ltd ("BMJ") its licensees and where the relevant Journal is co-owned by BMJ to the co-owners of the Journal, to publish the Work in this journal and any other BMJ products and to exploit all rights, as set out in our <u>licence</u>.

The Submitting Author accepts and understands that any supply made under these terms is made by BMJ to the Submitting Author unless you are acting as an employee on behalf of your employer or a postgraduate student of an affiliated institution which is paying any applicable article publishing charge ("APC") for Open Access articles. Where the Submitting Author wishes to make the Work available on an Open Access basis (and intends to pay the relevant APC), the terms of reuse of such Open Access shall be governed by a Creative Commons licence – details of these licences and which <u>Creative Commons</u> licence will apply to this Work are set out in our licence referred to above.

Other than as permitted in any relevant BMJ Author's Self Archiving Policies, I confirm this Work has not been accepted for publication elsewhere, is not being considered for publication elsewhere and does not duplicate material already published. I confirm all authors consent to publication of this Work and authorise the granting of this licence.

reziez onz

For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

2 3 4	1	Characteristics, outcomes and risk factors for mortality of 522,167 patients
5 6 7	2	hospitalized with COVID-19 in Brazil: a retrospective cohort study
8 9	3	
10 11 12	4	Marcia C. Castro, PhD1*, Susie Gurzenda, SM1, Eduardo Marques Macário, PhD2, Giovanny V.
13 14 15	5	A. França, PhD ²
15 16 17	6	
18 19 20	7	¹ Harvard T.H. Chan School of Public Health, Department of Global Health and Population, 665
20 21 22	8	Huntington Avenue, Building 1, 11th floor, Boston, MA 02115, United States of America
23 24	9	² Secretariat of Health Surveillance, Brazilian Ministry of Health, Setor de Rádio e Televisão
25 26 27	10	Norte (SRTV) 701, Via W5 Norte, Edifício PO700. Brasília, Distrito Federal, 70719-040, Brazil
28 29	11	
30 31 32	12	* Corresponding author: Harvard T.H. Chan School of Public Health, Department of Global
33 34	13	Health and Population, 665 Huntington Avenue, Building 1, 11th floor, room 1102A, Boston,
35 36 37	14	MA 02115, United States of America. Tel: +1-617-432-6731. Email: mcastro@hsph.harvard.edu
38 39	15	
40 41 42	16	Word count: 2,751
43 44	17	
45 46 47	18	
47 48 49		
50		
51 52		
53 54		
55 56		
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

ABSTRACT

Objective

- To provide a comprehensive description of demographic, clinical, and radiographic
- characteristics; treatment and case outcomes; and risk factors associated with in-hospital death of
- patients hospitalized with COVID-19 in Brazil.

Design

Retrospective cohort study of hospitalized patients diagnosed with COVID-19.

Setting

Data from all hospitals across Brazil.

Participants

522,167 hospitalized patients in Brazil by December 14, 2020 with severe acute respiratory illness, and a confirmed diagnosis for COVID-19.

Primary and Secondary Outcome Measures

- Prevalence of symptoms and comorbidities were compared by clinical outcomes and intensive
 - care unit (ICU) admission status. Survival was assessed using Kaplan Meier survival estimates.
 - Risk factors associated with in-hospital death were evaluated with multivariable Cox
 - proportional hazards regression.

Results

Of the 522,167 patients included in this study, 56.7% were discharged, 0.002% died of other causes, 30.7% died of causes associated with COVID-19, and 10.2% remained hospitalized. The median age of patients was 61 years (interquartile range [IQR], 47-73), and of non-survivors 71 years (IQR, 60-80); 292,570 patients (56.0%) were men. At least one comorbidity was present in 64.5% of patients and in 76.8% of non-survivors. From illness onset, the median times to hospital and ICU admission were 6 days (IQR, 3-9) and 7 days (IQR, 3-10), respectively; 15 days (IQR, 9-24) to death, and 15 days (IQR, 11-20) to hospital discharge. Risk factors for in-hospital death included old age, Black/Brown ethnoracial self-classification, ICU admission, being male, living in the North and Northeast regions, and various co-morbidities. Age had the highest hazard ratios of 5.51 (95% CI: 4.91-6.18) for patients \geq 80, compared to those \leq 20.

Conclusions

Characteristics of patients and risk factors for in-hospital mortality highlight inequities of COVID-19 outcomes in Brazil. As the pandemic continues to unfold, targeted policies that

- address those inequities are needed to mitigate the unequal burden of COVID-19.

BMJ Open

2	
3	
4	
5	
6	
7	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
59	
011	

60

73 INTRODUCTION

74 On March 11, 2020 the World Health Organization declared COVID-19 as a pandemic. Caused 75 by the novel coronavirus SARS-CoV-2, it emerged in China and quickly spread across the 76 country and beyond. As of February 16, 2021, it was present in 223 countries and territories, 77 with 108,822,960 confirmed cases and 2,403,641 confirmed deaths.¹ Brazil recorded the first 78 confirmed COVID-19 case on February 26, 2020 and the first death on March 12, both in São 79 Paulo State. In 24 days, the disease had spread to all Federal Units. As of February 16, 2021, 80 9,834,513 cases (9% of worldwide cases) and 239,245 deaths (10% of worldwide deaths) had 81 been reported in Brazil, the second-highest in the world, behind only the US. These numbers are 82 underestimated since most mild cases are not being tested and thus are not likely to be reported, 83 and some deaths may be reported with ill-defined causes, or not reported at all. Brazil has a comprehensive health information system,² with the systematic collection of births, 84 85 deaths, hospitalizations, and diseases of mandatory notification, among others. However, a 86 complete and linked registry of records combining data from ambulatory and inpatient care, 87 laboratory and radiologic results, and outcome of the disease is not available. Therefore, there is 88 limited information on the course of the disease for every case reported in Brazil. 89 Currently, the most detailed data available in Brazil refer to hospitalizations due to severe acute 90 respiratory illness (SARI). Here, we use these data to provide a comprehensive description of 91 demographic, clinical, and radiographic characteristics, treatment, case outcome, and risk factors 92 associated with in-hospital death of patients hospitalized with SARI with a confirmed diagnosis 93 for COVID-19, as of December 14, 2020. We analyze the largest retrospective number of cases 94 (N=522,167) and we assess whether the Brazilian case is comparable to patterns previously 95 described for other countries.

2 3 4	96	
5 6 7 8	97	METHODS
9 10	98	Data Sources
11 12 13	99	We used de-identified records from the Influenza Epidemiological Surveillance Information
14 15	100	System (Sistema de Informação de Vigilância Epidemiológica da Gripe, SIVEP-Gripe, in
16 17 18	101	Portuguese), an information system of the Ministry of Health that captures all notifications of
19 20	102	SARI hospitalizations in both public and private hospitals. The system is updated daily, and
21 22	103	every two weeks a new dataset is made publicly available
23 24 25	104	(<u>https://opendatasus.saude.gov.br/nl/dataset</u>). Here we analyzed records as of December 14, 2020
25 26 27	105	(N=1,029,684 notifications), after 15,419 duplicate records were removed by the Ministry of
28 29	106	Health. Each record has data on patient's age, sex, place of residence and of hospitalization,
30 31	107	ethnoracial self-classification, ³ pregnancy status, comorbidities, and symptoms; drug treatment;
32 33 34	108	radiologic test results; and dates of illness onset, hospitalization, ICU admission, and outcome
35 36	109	(death, release, still hospitalized). We considered only records of patients hospitalized with a
37 38	110	confirmed diagnosis for COVID-19 ($N = 522,167$). Diagnosis followed the Ministry of Health
39 40 41	111	guidelines. ⁴
42 43	112	
44 45	113	Statistical Analysis
46 47 48	114	Characteristics of inpatients were summarized in three groups: demographic, clinical and
48 49 50	115	radiographic, and treatment and outcomes. Medians and interquartile ranges (IQR) were used to
51 52	116	describe continuous variables, and counts and percentages to describe categorical variables.
53 54	117	Differences between inpatients that needed and did not need ICU admission and those that
55 56 57 58	118	survived and did not survive were assessed by Whitney U, χ^2 , or Fisher's exact test, as
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

Page 7 of 32

BMJ Open

appropriate. No data imputation was performed for missing data (see online supplementary table1 for information on data completeness).

Survival curves of inpatients at 60 days of hospitalization by age, sex, ethnoracial self-classification, region, and ICU admission were estimated using the Kaplan-Meier estimator and compared with the log-rank test. Factors associated with inpatient death were identified by univariable and multivariable logistic regression (excluding from the analysis those that remained hospitalized). Considering time to death as the outcome, hazard ratios were estimated using Cox proportional-hazards models. Based on previous studies⁵⁻⁷ and on our available information, covariates included in both logistic and Cox models were age (0-19, 20-39, 40-59, 60-69, 70-79, and 80 or more years), sex, ethnoracial self-classification (White, Black/Brown, other, not reported), region (North – where Amazonia is located, Northeast, South, Southeast – where the cities of São Paulo and Rio de Janeiro are located, and Center-West), comorbidities (diabetes, asthma, chronic liver disease, chronic neurological disease, chronic lung disease, immunodeficiency, and chronic kidney disease), obesity, and ICU admission. The variable ethnoracial self-classification was missing in 23.1% of the records, and we added those as a separate category (not reported). Distances between municipalities of residence and hospitalization were calculated in ArcMap, version 10.6 (ESRI, Redlands, CA, USA). All analyses were performed in Stata, version 15.1 (Stata Corp., College Station, TX, USA), and R version 4.0.0 (RStudio Team, Boston, MA, USA).

7 138

139 Patient and public involvement

Our analysis used administrative records, and thus study participants were not involved in the
design of the study. Public involvement was achieved through collaboration with the Ministry of

Health, with whom we defined the research questions to fill in knowledge gaps and inform decision making. Results were discussed and shared with the Ministry, and their wide dissemination with public health officials, researchers, and through the media will reach the broader public.

RESULTS

As of December 14, 2020, 522,167 patients had been hospitalized with confirmed COVID-19 since the beginning of the epidemic in Brazil. Of those, 296,002 (56.7%) were discharged, 1,004 (0.002%) died of other causes, 160,495 (30.7%) died of causes associated with COVID-19, 53,503 (10.2%) remained hospitalized. Clinical outcome was unknown for 11,126 (2.1%) patients (table 1). The cumulative curve of hospital admissions (online supplementary figure 1) shows the fast increase in severe cases that required hospitalization, following the steep increase in COVID-19 transmission in Brazil since the end of March. The median age of patients was 61 years (IQR, 47-73), and much higher for non-survivors, 71 years (IQR, 60-80), as shown by the age distribution in figures 1a-b. Patients aged 60 years or more represented 50.1% of hospitalizations, 59.0% of ICU admissions, and 74.0% of deaths associated with COVID-19. Patients were mostly males (56.0%) and from the Southeast region (49.3%). Among females, 2.5% were pregnant or puerperal at the time of hospitalization, and 7.5% of those died in the hospital. A total of 172,473 (33.0%) patients with median age of 65 years (IQR, 52-76) needed ICU admission. Of all hospitalizations, 37.7% of the patients were White, and 37.9% were Black/Brown. Among survivors, 38.8% were White, while among non-survivors 41.7% were Black/Brown. About 25% of the patients traveled a median of 32.0 km (IQR, 18.6-64.1) to be hospitalized in a municipality different from where they reside (table 1).

12166Table 1. Demographic characteristics of patients

Age Median (IQR) - years Distribution, number (%) 0-19 20-39		65 (52-76)	59 (45-72)	<i></i>					
Distribution, number (%) 0-19)	65 (52-76)	59 (45-72)		0.001	56 (10 60)			.0.001
0-19				61 (47-74)	<0.001 <0.001	56 (42-68)	71 (60-80)	60 (46-72)	<0.001 <0.001
	13,136 (2.5)	3,211 (1.9)	8,517 (2.9)	1,408 (2.5)		9,994 (3.4)	985 (0.6)	1,628 (3.0)	
20-39	71,728 (13.7)	16,978 (9.8)	46,823 (16.0)	7,927 (14.1)		54,889 (18.5)	7,299 (4.6)	7,814 (14.6)	
40-59	170,266 (32.6)	50,445 (29.3)	101,922 (34.7)	17,899 (31.8)		114,769 (38.6)	33,405 (20.8)	18,196 (34.0)	
60-69	108,416 (20.8)	39,362 (22.8)	57,404 (19.6)	11,650 (20.7)		56,788 (19.1)	38,044 (23.7)	11,352 (21.2)	
70-79	90,800 (17.4)	35,944 (20.8)	44,943 (15.3)	9,913 (17.6)		38,304 (12.9)	41,883 (26.1)	8,942 (16.7)	
≥ 80	67,808 (13.0)	26,530 (15.4)	33,769 (11.5)	7,509 (13.3)		22,303 (7.5)	38,872 (24.2)	5,570 (10.4)	
Sex, number (%)	07,000 (12.0)	20,000 (1011)		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	< 0.001	,000 (1.0)	20,072 (22)	0,0,0 (10.1)	< 0.001
Male	292,570 (56.0)	100,399 (58.2)	161,377 (55.0)	30,794 (54.7)	0.001	163,967 (55.2)	92,376 (58.6)	30,146 (56.3)	0.001
Female	229,513 (44.9)	72,060 (41.8)	131,964 (45.0)	25,489 (45.3)		133,028 (44.8)	68,101 (42.4)	23,345 (43.6)	
Pregnant, number (%)	4,441 (1.9)	802 (1.1)	3,249 (2.5)	390 (1.5)	< 0.001	3,603 (2.7)	230 (0.3)	469 (2.0)	< 0.001
Puerperal, number (%)	1,350 (0.6)	426 (0.6)	850 (0.6)	74 (0.3)	< 0.001	965 (0.7)	204 (0.4)	148 (0.6)	< 0.001
Ethnoracial, number (%)	1,550 (0.0)	120 (0.0)	000 (0.0)	, 1 (0.5)	< 0.001	900 (0.7)	201 (0.1)	110 (0.0)	< 0.001
White	196,035 (37.5)	67,619 (39.2)	114,339 (39.0)	14,077 (25.0)	0.001	115,358 (38.8)	58,487 (36.4)	19,257 (36.0)	0.001
Black/Brown	198,096 (37.9)	61,450 (35.6)	114,378 (39.0)	22,268 (39.6)		106,312 (35.8)	66,889 (41.7)	19,891 (37.2)	
Other	7,237 (1.4)	2,135 (1.2)	4,191(1.4)	911 (1.6)		4,028 (1.4)	2,332 (1.5)	710 (1.3)	
Not reported	120,799 (23.1)	41,269 (23.9)	60,476 (20.6)	19,054 (33.8)		71,345 (24.0)	32,787 (20.4)	13,645 (25.5)	
Region of residence, numl		, , ,	, , ,		< 0.001	, , ,	, , , ,	, , , ,	< 0.001
North	41,961 (8.0)	10,024 (5.8)	27,065 (9.2)	4,872 (8.7)		23,149 (7.8)	14,537 (9.1)	3,559 (6.7)	
Northeast	104,213 (20.0)	33,220 (19.3)	50,377 (17.2)	20,616 (36.6)		49,733 (16.7)	37,919 (23.6)	12,695 (23.7)	
Center-West	48,864 (9.4)	16,581 (9.6)	28,872 (9.8)	3,411 (6.1)		29,169 (9.8)	13,532 (8.4)	4,759 (8.9)	
Southeast	257,503 (49.3)	88,817 (51.5)	144,010 (49.1)	24,676 (43.8)		151,595 (51.0)	76,494 (47.7)	25,050 (46.8)	
South	69,590 (13.3)	23,814 (13.8)	43,042 (14.7)	2,734 (4.9)		43,380 (14.6)	17,997 (11.2)	7,439 (13.9)	
Foreigner	36 (0.0)	17 (0.0)	18 (0.0)	1 (0.0)		17 (0.0)	16 (0.0)	1 (0.0)	
Hospital in the same muni	cipality of				< 0.001				< 0.001
residence, number (%)					<0.001				<0.001
Yes	388,304 (74.4)	118,002 (68.4)	227,423 (77.5)	42,879 (76.2)		224,134 (75.5)	116,664 (72.7)	39,772 (74.3)	
No	133,827 (25.6)	54,454 (31.6)	65,943 (22.5)	13,430 (23.9)		72,892 (24.5)	43,815 (27.3)	13,730 (25.7)	
Distance (km) from residence to hospital ^b	32.0 (18.4-64.1)	35.6 (19.8-77.8)	29.4 (18.0-56.6)	25.8 (14.5-54.7)	< 0.001	29.8 (18.1-57.8)	34.1 (19.1-71.9) 3	34.5 (18.8-75.9)	< 0.001

Comorbidities were observed in 64.5% of the patients, 74.6% of those who needed ICU admission, 76.8% of non-survivors, and 58.5% of the survivors and those whose death was not associated with COVID-19. With the exception of asthma, all comorbidities had a higher prevalence among non-survivors (compared to all patients). The most common comorbidities were chronic cardiovascular disease (34.5% of patients and 43.5% of non-survivors) and diabetes (25.7% of patients and 33.0% of non-survivors). Obesity was reported in 7.4% of the patients and 10.5% of those who needed ICU admission. The most common symptoms were fever, cough, shortness of breath, low oxygen saturation, and respiratory distress symptoms (table 2).

Table 2. Clinical and radiographic characteristics of patients

	Characteristic	All patients (N = 522,167) ^a	ICU admission (N = 172,473)	Non-ICU admission (N = 293,384)	Not reported (N = 56,310)	p- value	Survivor & non-COVID- 19 death (N = 297,043)	Non-survivor (N = 160,495) ^b	Still in the hospital (N = 53,503)	p- value
	Any comorbidity, number (%)	336,909 (64.5)	128,590 (74.6)	179,847 (61.3)	28,472 (50.6)	< 0.001	173,828 (58.5)	123,265 (76.8)	33,318 (62.3)	< 0.001
C	Chronic cardiovascular disease	180,370 (34.5)	72,196 (41.9)	93,574 (31.9)	14,600 (25.9)	< 0.001	89,402 (30.1)	69,768 (43.5)	17,980 (33.6)	< 0.001
	Chronic hematologic diseases	4,134 (0.8)	1,687 (1.0)	2,204 (0.8)	243 (0.4)	< 0.001	1,957 (0.7)	1,739 (1.1)	365 (0.7)	< 0.001
	Chronic hepatic disease	4,732 (0.9)	2,101 (1.2)	2,309 (0.8)	322 (0.6)	< 0.001	1,924 (0.7)	2,368 (1.5)	361 (0.7)	< 0.001
	Asthma	14,567 (2.8)	4,947 (2.9)	8,639 (2.9)	981 (1.7)	< 0.001	9,130 (3.1)	3,634 (2.3)	1,514 (2.8)	< 0.001
	Diabetes	134,391 (25.7)	53,717 (31.2)	69,078 (23.6)	11,596 (20.6)	< 0.001	65,941 (22.2)	52,958 (33.0)	12,844 (24.0)	< 0.001
	Chronic neurological disease	21,016 (4.0)	8,821 (5.1)	10,832 (3.7)	1,363 (2.4)	< 0.001	8,113 (2.7)	10,943 (6.8)	1,622 (3.0)	< 0.001
	Chronic lung disease	20,140 (3.9)	9,249 (5.4)	9,483 (3.2)	1,408 (2.5)	< 0.001	8,222 (2.8)	10,021 (6.2)	1,621 (3.0)	< 0.001
	Immunodeficiency	13,967 (2.7)	5,689 (3.3)	7,376 (2.5)	902 (1.6)	< 0.001	6,351 (2.1)	6,283 (3.9)	1,132 (2.1)	< 0.001
	Chronic renal disease	21,725 (4.2)	10,684 (6.2)	9,429 (3.2)	1,512 (2.9)	< 0.001	8,149 (2.7)	11,491 (7.2)	1,743 (3.3)	< 0.001
	Obesity	38,415 (7.4)	18,057 (10.5)	17,998 (6.1)	2,360 (4.2)	< 0.001	20,993 (7.1)	12,765 (8.0)	4,005 (7.5)	< 0.001
	Others ^c	144,081 (27.6)	58,139 (33.7)	74,994 (25.6)	10,948 (19.4)	< 0.001	72,598 (24.4)	55,866 (34.8)	13,042 (24.4)	< 0.001
S	Symptoms, number (%)									
	Fever	188,572 (64.3)	104,650 (60.7)	188,572 (64.3)	34,789 (61.8)	< 0.001	194,578 (65.5)	93,933 (58.5)	32,586 (60.9)	< 0.001
	Cough	369,192 (70.7)	115,147 (66.7)	215,084 (73.3)	38,961 (69.2)	< 0.001	219,433 (73.9)	105,252 (65.6)	36,717 (68.6)	< 0.001
	Sore throat	90,487 (17.3)	23,531 (13.6)	56,653 (19.3)	10,303 (18.3)	< 0.001	56,741 (19.1)	22,982 (14.3)	8,872 (16.6)	< 0.001
	Shortness of breath	367,917 (70.5)	131,799 (76.4)	199,805 (68.1)	36,313 (64.5)	< 0.001	200,051 (67.4)	124,724 (77.7)	35,709 (66.7)	< 0.001
	Respiratory distress syndrome	296,238 (56.7)	107,762 (62.5)	163,370 (55.7)	25,106 (44.7)	< 0.001	157,412 (53.0)	104,555 (65.2)	28,046 (52.4)	< 0.001
	Oxygen saturation <95%	303,282 (58.1)	116,355 (67.5)	160,837 (54.8)	26,090 (46.3)	< 0.001	156,349 (52.6)	111,097 (69.2)	29,704 (55.5)	< 0.001
	Diarrhea	71,069 (13.6)	20,340 (11.8)	44,411 (15.1)	6,318 (11.2)	< 0.001	44,961 (15.1)	17,419 (10.9)	7,264 (13.6)	< 0.001
	Vomiting	41,974 (8.0)	11,950 (6.9)	26,177 (8.9)	3,847 (6.8)	< 0.001	25,799 (8.7)	11,076 (6.9)	4,156 (7.8)	< 0.001
	Others ^d	179,222 (34.3)	58,268 (33.8)	105,646 (36.0)	15,308 (27.2)	< 0.001	112,278 (37.8)	45,263 (28.2)	18,294 (34.2)	< 0.001
(Chest radiograph, number (%)					< 0.001				< 0.001
	Normal	11,816 (2.3)	3,403 (2.0)	7,782 (2.7)	631 (1.1)		7,895 (2.7)	2,558 (1.6)	1,091 (2.0)	
	Interstitial abnormalities	81,412 (15.6)	28,091 (16.3)	48,864 (16.7)	4,457 (7.9)		45,320 (15.3)	27,071 (16.9)	7,500 (14.0)	
	Other ^e	85,870 (16.4)	35,844 (20.8)	47,185 (16.1)	2,841 (5.1)		246,250 (82.9)	132,429 (82.5)	47,639 (89.0)	
32 - 33 34 35 36 37	^a Includes 11,126 patients wit ^b Non-survivors are classified due to an unrelated cause are ^c Other comorbidities that we anemia, bronchitis, dyslipider	as those whose de classified under " re not specifically	eath was associate Survivor & non-C asked about in th	OVID-19 death".	Survivor N=296,	002, non-0	COVID-19 death=1	1,041.		

188 ^d Other symptoms that were not specifically asked about in the surveillance form, but self-reported as "other" include, but are not limited to: loss of taste, loss of

- 189 smell, myalgia, weakness, body ache, fatigue, exhaustion, tachypnea, and syncope.
- ^e Includes consolidation, mixed, and other.

 For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

For beer review only

Page 13 of 32

BMJ Open

The median time from illness onset to hospital admission was 6 days (IQR, 3-9), slightly shorter among non-survivors, 5 days (IQR, 2-8). Mechanical ventilation was needed by 62.2% of all patients, and by 75.6% of those who died. Invasive ventilation was more common in the ICU (44.0%). Oseltamivir, an antiviral medication, was the most common drug used during treatment (15.8% overall, and 17.6% among those in ICU), and the median time from illness onset to treatment was 5 days (IQR, 3-8). Of the patients that needed ICU, 51.8% died from causes associated with COVID-19, and 19.0% remained hospitalized after ICU discharge for 5 days (IQR, 2-10). The median time from illness onset to ICU admission was 7 days (IQR, 3-10), and the medium length of ICU stay was 8 days (IQR, 3-15) for all patients, 9 days (IQR, 4-16) for the deceased. Among the 160,495 patients who died of causes associated with COVID-19 by December 14, the median time from illness onset to death was 15 days (IQR, 9-24) (table 3). Medium length of hospital stay was 8 days (IQR, 4-17), but longer for those who needed ICU admission, 12 days (IQR, 6-22). The density of time from hospital admission to death is positively skewed, more so for those who did not get admitted to the ICU (figure 1c). Kaplan Meier curves (figure 1d and online supplementary figure 2) for a period of up to 60 days after hospital admission showed that survival curves were significantly different by age, region, sex, ethnoracial self-classification, and ICU admission.

Table 3. Treatment and outcomes of patients

Variable	All patients (N = 522,167) ^a	ICU admission (N = 172,473)	Non-ICU admission (N = 293,384)	Not reported (N = 56,310)	p-value	Survivor & non-COVID- 19 death (N = 297,043)	Non-survivor (N = 160,495)	Still in the hospital (N = 53,503)	p-value
Treatment with drugs, number (%)					< 0.001				< 0.001
Oseltamivir	82,659 (15.8)	30,341 (17.6)	47,317 (16.1)	5,001 (8.9)		50,091 (16.9)	27,192 (16.9)	4,242 (7.9)	
Zanamivir	492 (0.1)	152 (0.1)	303 (0.1)	37 (0.1)		298 (0.1)	128 (0.1)	56 (0.1)	
Other	5,008 (1.0)	1,480 (0.9)	3,243 (1.1)	285 (0.5)		3,029 (1.0)	1,118 (0.7)	701 (1.3)	
Mechanical ventilation, number (%)					< 0.001				< 0.001
Invasive	90,189 (17.3)	75,915 (44.0)	12,019 (4.1)	2,255 (4.0)		17,263 (5.8)	66,652 (41.5)	5,238 (9.8)	
Noninvasive	234,554 (44.9)	65,281 (37.9)	157,913 (53.8)	11,360 (20.2)		148,930 (50.1)	54,652 (34.1)	25,925 (48.5)	
ICU admission, number (%)	172,473 (33.0)	172,473 (100.0)	-	-	-	65,102 (21.9)	89,264 (55.6)	15,614 (29.2)	< 0.001
Remained hospitalized after ICU discharge, number (%)	32,770 (19.0)	32,770 (19.0)	-	-	-	27,775 (42.7)	3,243 (3.6)	1,303 (8.4)	< 0.001
Median length (IQR), days Median times (IQR), days	5 (2-10)	5 (2-10)	-	-	-	5 (2-9)	7 (2-16)	72 (21-139)	< 0.001
Illness onset to treatment with drugs	5 (3-8)	5 (3-8)	6 (3-9)	6 (3-8)	< 0.001	6 (3-9)	5 (2-8)	6 (3-9)	< 0.001
Illness onset to hospitalization	6 (3-9)	6 (3-9)	6 (3-10)	6 (2-9)		7 (3-10)	5 (2-8)	6 (3-10)	
Illness onset to ICU admission	7 (3-10)	7 (3-10)			-	7 (4-10)	6 (3-10)	7 (3-10)	
Hospital admission to ICU admission	0 (0-1)	0 (0-1)		_	-	0 (0-1)	0 (0-1)	0 (0-0)	
Illness onset to death	15 (9-24)	17 (10-25)	13 (7-21)	12 (7-20)	< 0.001	-	15 (9-24)	-	-
Illness onset to hospital discharge	15 (11-20)	18 (13-27)	14 (10-18)	16 (11-21)	< 0.001	15 (11-20)		-	-
Hospital admission to death	9 (4-16)	10 (5-18)	7 (2-14)	5 (1-13)		- (-)	9 (4-16)	-	-
Hospital admission to ICU discharge	9 (4-17)	9 (4-17)	-	-	-	7 (4-14)	10 (5-10)	6 (2-14)	< 0.001
ICU admission to death	9 (4-16)	9 (4-16)	-	-	<u> </u>	-	9 (4-16)	-	-
Median length hospital stay (IQR), days	8 (4-17)	12 (6-22)	7 (4-13)	8 (3-18)	< 0.001	7 (4-12)	9 (4-16)	79 (23-157)	< 0.001
Median length ICU stay (IQR), days Clinical outcomes as of 12/14/2020,	8 (3-15)	8 (3-15)	-	-	-	6 (3-12)	9 (4-16)	4 (2-11)	< 0.001
number (%)					< 0.001				-
Cured and discharged from hospital	296,002 (56.7)	64,578 (37.4)	202,042 (68.9)	29,382 (52.2)		296,002 (99.7)	-	-	
Death due to other causes	1,041 (0.2)	524 (0.3)	443 (0.2)	74 (0.1)		1,041 (0.4)	-	-	
Death associated with COVID-19	160,495 (30.7)	89,264 (51.8)	53,282 (18.2)	· · · · ·		-	160,495 (100.0)	-	
9 Still in the hospital a Includes 11,126 patients with unkn	53,503 (10.3)	15,614 (9.1)	30,963 (10.6)	6,926 (12.3)		-	-	53,503 (100.0)	

Includes 11,126 patients with unknown clinical outcome.

^b Non-survivors are classified as those whose death was associated with COVID-19, according to the SIVEP-Gripe database. Those who had COVID-19 but died

due to an unrelated cause are classified under "Survivor & non-COVID-19 death". Survivor N=296,002, non-COVID-19 death=1,041.

BMJ Open

Univariable logistic analysis indicated that the odds of in-hospital death progressively increased with age, and were higher for patients who were male, non-white, from the North and Northeast regions, needed ICU care, were obese, and had diabetes and other comorbidities (table 4). The multivariable analysis included 168,936 records (65,670 non-survivors) that had no missing data for covariates. The odds of in-hospital death for males are 1.23 times that of females, and for those in the North and Northeast regions were, respectively, 1.83 and 1.48 times that of patients in the Southeast. The Cox proportional-hazards model included 176,559 records (64,809 non-survivors). Variables associated with in-hospital death were age, sex, ethnoracial self-classification, region, ICU care, and various co-morbidities. Age, however, had the highest hazard ratios, ranging from 1.67 (95% CI: 1.49-1.89) for those aged 20-39, to 5.51 (95% CI: 4.91-6.18) for those 80 or older, compared to patients younger than 20 years (table 4).

	Table 4: Odds ratios (OR) and hazard ratios (HR) for death among hospitalized patients with confirmed COVID-19
226	

Variables	Univariable ORª (95% CI)	p-value ^b	Multivariable OR (95% CI) N = 168,936	p-value ^b	HR (95% CI) for death within 60 days of hospitalization N = 176,559
Age (reference 0-19)					,
20-39	1.35 (1.26,1.46)	< 0.001	1.66 (1.45, 1.91)	< 0.001	1.67 (1.48, 1.89)
40-59	2.94 (2.74, 3.15)	< 0.001	2.70 (2.37, 3.09)	< 0.001	2.21 (1.97, 2.48)
60-69	6.76 (6.30, 7.26)	< 0.001	5.15 (4.52, 5.88)	< 0.001	3.05 (2.72, 3.43)
70-79	11.05 (10.30, 11.86)	< 0.001	8.24 (7.24, 9.42)	< 0.001	3.90 (3.48, 4.38)
≥ 80	17.58 (16.37, 18.88)	< 0.001	14.52 (12.74, 16.59)	< 0.001	5.51 (4.91, 6.18)
Sex (reference Female)					
Male	1.10 (1.09, 1.11)	< 0.001	1.23 (1.20, 1.26)	< 0.001	1.09 (1.07, 1.10)
Ethnoracial self-classific	cation (reference White)				
Black/Brown	1.25 (1.24, 1.27)	< 0.001	1.18 (1.15, 1.22)	< 0.001	1.08 (1.06, 1.10)
Other	1.18 (1.12, 1.25)	< 0.001	1.05 (0.95, 1.16)	0.309	1.02 (0.96, 1.10)
Not reported	0.9 (0.89, 0.92)	< 0.001	0.77 (0.74, 0.80)	< 0.001	0.79 (0.77, 0.81)
Region (reference South	east)				
South	0.85 (0.83, 0.87)	< 0.001	0.89 (0.87, 0.92)	< 0.001	0.91 (0.89, 0.93)
Center-West	0.96 (0.94, 0.98)	< 0.001	1.04 (1.00, 1.08)	0.049	1.00 (0.97, 1.03)
North	1.31 (1.28, 1.34)	< 0.001	1.83 (1.75, 1.92)	< 0.001	1.34 (1.30, 1.39)
Northeast	1.61 (1.58, 1.64)	< 0.001	1.48 (1.43, 1.55)	< 0.001	1.10 (1.07, 1.12)
ICU	5.21 (5.14, 5.28)	< 0.001	5.20 (5.08, 5.32)	< 0.001	1.78 (1.75, 1.81)
Obesity	0.91 (0.88, 0.93)	< 0.001	1.23 (1.18, 1.27)	< 0.001	1.07 (1.04, 1.10)
Diabetes	1.32 (1.30, 1.35)	< 0.001	1.18 (1.15, 1.21)	< 0.001	1.08 (1.07, 1.10)
Asthma	0.59 (0.56, 0.61)	< 0.001	0.81 (0.77, 0.86)	< 0.001	0.88 (0.84, 0.92)
Chronic liver disease	1.87 (1.76, 1.99)	< 0.001	1.74 (1.59, 1.90)	< 0.001	1.33 (1.26, 1.40)
Chronic neurological disease	2.12 (2.06, 2.19)	< 0.001	1.65 (1.58, 1.73)	< 0.001	1.18 (1.15, 1.21)
Chronic lung disease	1.92 (1.86, 1.99)	< 0.001	1.46 (1.40, 1.53)	< 0.001	1.16 (1.13, 1.19)
Immunodeficiency	1.53 (1.47, 1.58)	< 0.001	1.93 (1.83, 2.04)	< 0.001	1.26 (1.22, 1.31)
Chronic kidney disease	2.23 (2.16, 2.30)	< 0.001	1.70 (1.63, 1.78)	< 0.001	1.17 (1.14, 1.21)

^a The N varies for univariable OR, depending on the number of missing values for each variable.

^b P-value from Wald test.

DISCUSSION

BMJ Open

This study described demographic, clinical, and radiographic characteristics, treatment, case outcome, and risk factors associated with in-hospital death of 522,167 patients hospitalized with confirmed COVID-19 in Brazil. Results show that 56.7% were discharged, 0.002% died of other causes, 30.7% died of causes associated with COVID-19, and 10.2% remained in the hospital as of December 14. Patients were mostly older than 40 years, predominantly from the Southeast region, with about one fourth needing to travel to a different municipality for hospitalization. At least one comorbidity was present in 64.5% of patients and in 76.8% of the non-survivors. From illness onset, the median time to hospital and ICU admission was 6 and 7 days, respectively; 15 days to death (17 to those admitted to the ICU), and 15 days to hospital discharge (18 days to those admitted to the ICU). Risk factors for in-hospital death were older age, being male, of Black/Brown ethnoracial self-classification, living in the North or Northeast regions, with a history of ICU admission, and various co-morbidities. Our results can be analyzed in light of findings from other countries. The use of mechanical ventilation was higher in Brazil (62.2% among all patients, 75.6% of the non-survivors) compared to patterns described for China (ranging from 17.2 to 38.7% of patients),⁸⁻¹⁰ and Germany (17% of patients),¹¹ but lower than Italy (81.7% of all patients).¹² While ICU mortality in Italy was 26%,¹² in Brazil it was 51.8%. In Brazil, 33.0% of hospitalized patients were admitted to the ICU, against 16% in Italy,¹³ and 19% in France.¹⁴ In-hospital death was observed in 18.1% of patients in France,¹⁴ 22% in Germany,¹¹ and 30.7% in Brazil. The time from illness onset to hospitalization in China⁹ was 11 days (IQR, 8-14), but much shorter in Brazil, 6 days (IQR, 3-9). The length of hospital stay, however, was about 4 days longer in China.⁹¹⁵ These comparisons need to be taken with caution. First, studies from China had a smaller sample size,

and regional variability is very large, as reported for France.¹⁴ In Brazil, for example, in-hospital death varied from 25.9% in the South region to 36.4% in the Northeast, and ICU mortality from 48.0% in the Southeast to 66.5% in the North. The time from illness to hospitalization was also longer in the North and Center-West regions, 7 days (IQR, 4-10). Our results confirm previous findings regarding symptoms and comorbidities. Hypertension, a very common comorbidity in China⁹ could not be measured from our data, but over one-third of the adult population in Brazil has that condition.¹⁶ In Brazil, 35.5% of the patients reported no comorbidities, while in New York City this number was 6.1%,¹⁷ and in China it was 52%.⁹ Diabetes was reported in 19% of patients in China,⁹ 33.8% in New York City,¹⁷ and 25.7% in Brazil. Part of these differences reflects the disease burden in each locality, but also the lack of standardized data collection (e.g., conditions systematically collected in one country and only reported in the 'other' category in another country). The observed associations of age, sex, obesity, and diabetes with in-hospital death corroborate previous findings.⁵⁶¹⁴ The higher risk among non-white patients was previously reported in Brazil, the UK, and the US.¹⁸⁻²² In Brazil, this reflects structural inequalities that made large fractions of the population more vulnerable to COVID-19 (e.g., people living in areas with precarious infrastructure, overcrowded households, regions with low supply of physicians and hospital services, and who depend on informal labor).^{23 24} Those inequalities are also captured by a higher hazard ratio in the North and Northeast regions, where Brazil consistently reports worse socioeconomic indicators.²⁵ Currently, the North region has the lowest rates of hospital beds, ICU beds, and physicians per person.²⁶ Indeed, the region had the worst indicators in terms of mortality and time to hospitalization, and patients who were hospitalized in a municipality different from the one where they live had to travel 122.0 km (IQR, 58.3-258.6) while those in

Page 19 of 32

BMJ Open

1	
2	
3	
4	
5	
6 7	
8	
9	
10	
11	
12	
13	
14 15	
16	
16 17	
18	
19	
20	
20 21 22	
23	
24	
25	
26	
27 28	
20 29	
30	
31	
32	
33 34	
35	
36	
37	
38	
39	
40 41	
42	
43	
44	
45	
46	
47 48	
49	
50	
51	
52	
53 54	
54 55	
56	
57	
58	
59	
60	

275	the Southeast traveled 22.3 km (IQR, 16.1-36.3). Hospitalization in a different municipality
276	occurs when the place of residence has no hospitals, has no available hospital beds, or when the
277	closest hospital is actually outside the municipality of residence. In Brazil, the size of
278	municipalities varies widely: 23% have 5,000 residents or less, and 5% have 100,000 or more
279	residents. Of the 5,570 municipalities, 37% and 75% have no hospitals and no ICU care,
280	respectively. A regionalization process guarantees that all the population has access to hospital
281	care. ²⁷ However, when hospitals reach capacity, as was observed in several cities in Brazil in late
282	April and May, municipalities without hospitals and ICU units are unable to provide proper care,
283	which may have contributed to higher COVID-19 mortality. Therefore, risk factors for in-
284	hospital mortality due to COVID-19 expose local and structural inequalities.
285	This study has some limitations. First, we used administrative records captured in structured
286	surveillance forms. Those lack details available in hospital medical records and may have
287	accuracy and completeness problems. In addition, it limits the types of comorbidities and
288	symptoms reported, as those listed under the 'other' category were not systematically collected
289	from all cases (e.g., loss of taste and smell). Second, we did not have access to laboratory results
290	other than COVID-19 tests (e.g., complete blood count). While this does not change any of our
291	results, they would allow for a better characterization of the clinical course of the disease. Third,
292	23.1% of patients did not report information on ethnoracial self-classification, 10.8% did not
293	have information on ICU admission, and for 2.1% there was no information on clinical outcome.
294	This is not uncommon in the analysis of administrative records. ²² Here we report all records and
295	included an additional category (ethnoracial self-classification not reported) in the risk factor
296	analysis.

2	
3	
4	
5	
6	
0 7	
/	
8	
9	
10	
11	
12	
13	
14	
15	
16	
17	
18	
19	
20	
21 22	
23	
24	
25	
26	
27	
28	
29	
30	
31	
32	
33	
34	
35	
36	
37	
38	
39	
40	
41	
42	
43	
44	
45	
46	
47	
48	
40 49	
50	
51	
52	
53	
54	
55	
56	
57	
58	
59	
60	
50	

1

297 Despite these limitations, this study provides a comprehensive description of characteristics, 298 outcomes, and risk factors for mortality of patients hospitalized with COVID-19 in Brazil, and 299 the largest cohort of patients so far analyzed (N=522,167). Results shed light on commonalities 300 and differences between Brazil and other countries affected by COVID-19, and highlight 301 inequalities in disease outcomes. Most importantly, our results could be used to inform 302 coordinated actions to target those who currently bear the highest morbidity and mortality 303 burden. Currently, Brazil's response to COVID-19 did not comprehensively and effectively utilize its community-based primary health care program.²⁸⁻³⁰ Brazil has a network of almost 304 305 270,000 community health workers that reach out to about 70% of the Brazilian population. 306 These agents could actively identify vulnerable people who face higher risk of mortality, could 307 act as agents of information to sensitize the population and boost adherence to control measures 308 (e.g., use of masks), and could continue to deliver community-based primary care services that 309 have been, for the most part, interrupted by the pandemic. These agents will also be important to 310 support the delivery of vaccination (once it starts) to the most vulnerable. Currently, with more 311 than 200,000 deaths and with hospital occupancy increasing at alarming rates, leveraging and 312 strengthening the existing network of primary health care is paramount to contain the sustained 313 and unequal burden of COVID-19 in Brazil. 314

315 Contributors: MCC and GVAF conceived the study, were responsible for data analysis and
316 interpretation. MCC wrote the manuscript. GVAF and EMM acquired the data. GVAF and SG
317 were responsible for data curation. SG ran the statistical models and contributed to writing. All
318 authors edited and approved the final version of the manuscript.

1 2		
2 3 4	319	Funding: This research received no specific grant from any funding agency in the public,
5 6 7	320	commercial or not-for-profit sectors.
8 9 10	321	Competing interests: None declared.
11 12 13	322	Data availability statement: The SIVEP-Gripe dataset is publicly available on the Ministry of
14 15	323	Health's DATASUS website (<u>https://opendatasus.saude.gov.br/nl/dataset</u>).
16 17 18	324	Acknowledgements: We would like to thank Nicholas Arisco, M.S., for technical assistance.
19 20	325	
21 22 23	326	Figure 1: Age distribution of patients, density curves of length of time from hospital
23 24 25	327	admission to death, and survival curve 60 days after hospital admission. (a) Age distribution
26 27	328	of patients hospitalized. (b) Age distribution of in-hospital deaths. (c) Density of number of days
28 29 30	329	from hospital admission to death up to 60 days after hospital admission, detailed by ICU
30 31 32	330	admission status. (d) Survival curve estimated with Kaplan Meier and considering 60 days from
33 34 25	331	hospital admission.
35 36		
37 38		
39 40		
41		
42 43		
44		
45 46		
47		
48 49		
50		
51 52		
52 53		
54		
55 56		
57		
58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

3 4 5 6	332	References
7 8	333	1. World Health Organization. Coronavirus disease (COVID-19) outbreak situation:
9 10 11	334	https://www.who.int/emergencies/diseases/novel-coronavirus-2019, 2021.
12 13	335	2. Brasil, Ministério da Saúde. A experiência brasileira em sistemas de informação em saúde.
14 15	336	Série B Textos Básicos de Saúde. Brasília: Ministério da Saúde, Organização Pan-Americana
16 17 18	337	da Saúde, Fundação Oswaldo Cruz. Available at:
19 20	338	http://bvsms.saude.gov.br/bvs/publicacoes/experiencia_brasileira_sistemas_saude_volume2.p
21 22	339	<u>df</u> , 2009.
23 24 25	340	3. Lima-Costa MF, Rodrigues LC, Barreto ML, et al. Genomic ancestry and ethnoracial self-
26 27	341	classification based on 5,871 community-dwelling Brazilians (The Epigen Initiative).
28 29	342	Scientific Reports 2015;5(1):9812. doi: 10.1038/srep09812
30 31 22	343	4. Brasil, Ministério da Saúde. Guia de Vigilância Epidemiológica. Emergência de Saúde Pública
32 33 34	344	de Importância Nacional pela Doença pelo Coronavírus 2019. Vigilância de Síndromes
35 36	345	Respiratórias Agudas COVID-19. August 5, 2020 ed: Ministério da Saúde.
37 38	346	https://portalarquivos.saude.gov.br/images/af_gvs_coronavirus_6ago20_ajustes-finais-2.pdf,
39 40 41	347	2020.
42 43	348	5. Zheng Z, Peng F, Xu B, et al. Risk factors of critical & mortal COVID-19 cases: A systematic
44 45	349	literature review and meta-analysis. J Infect 2020:S0163-4453(20)30234-6. doi:
46 47 48	350	10.1016/j.jinf.2020.04.021
49 50	351	6. Li X, Xu S, Yu M, et al. Risk factors for severity and mortality in adult COVID-19 inpatients
51 52	352	in Wuhan. Journal of Allergy and Clinical Immunology 2020;146(1):110-18. doi:
53 54 55 56 57 58	353	https://doi.org/10.1016/j.jaci.2020.04.006
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

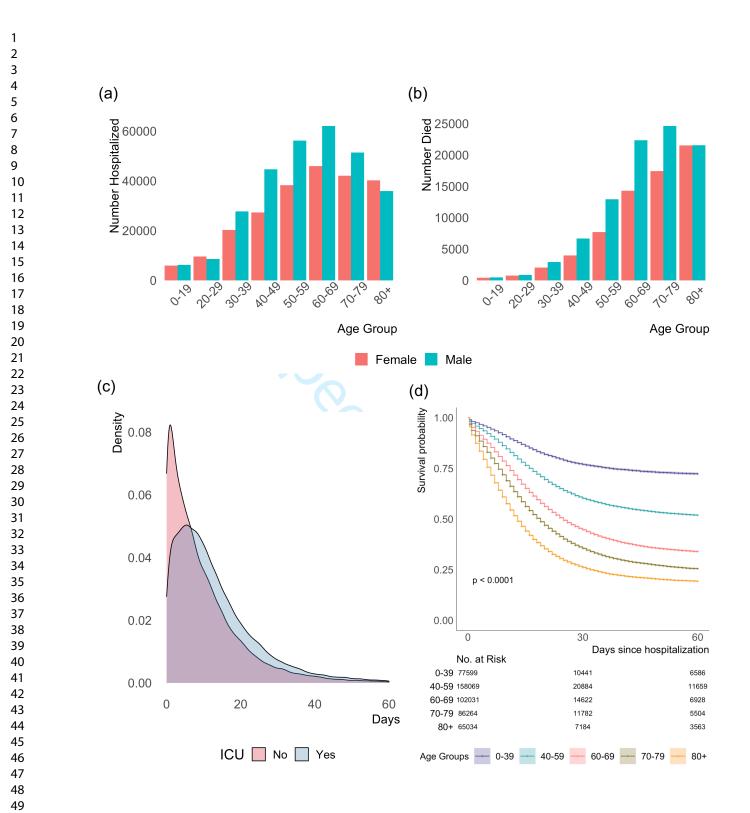
Page 23 of 32

60

BMJ Open

1 2							
3 4	354	7. Esai Selvan M. Risk factors for death from COVID-19. Nature Reviews Immunology 2020					
5 6	355	doi: 10.1038/s41577-020-0351-0					
7 8 9 10 11 12 13 14 15	356	8. Chen N, Zhou M, Dong X, et al. Epidemiological and clinical characteristics of 99 cases of					
	357	2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet					
	358	2020;395(10223):507-13. doi: 10.1016/s0140-6736(20)30211-7 [published Online First:					
	359	2020/02/03]					
16 17 18	360	9. Zhou F, Yu T, Du R, et al. Clinical course and risk factors for mortality of adult inpatients					
19 20	361	with COVID-19 in Wuhan, China: a retrospective cohort study. The Lancet 2020 doi:					
21 22	362	10.1016/S0140-6736(20)30566-3					
23 24 25	363	10. Lai CC, Liu YH, Wang CY, et al. Asymptomatic carrier state, acute respiratory disease, and					
26 27 28 29 30 31 32 33 34 35 36	364	pneumonia due to severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2): Facts an					
	365	myths. J Microbiol Immunol Infect 2020;53(3):404-12. doi: 10.1016/j.jmii.2020.02.012					
	366	[published Online First: 2020/03/17]					
	367	11. Karagiannidis C, Mostert C, Hentschker C, et al. Case characteristics, resource use, and					
	368	outcomes of 10021 patients with COVID-19 admitted to 920 German hospitals: an					
37 38	369	observational study. The Lancet Respiratory Medicine 2020 doi: 10.1016/S2213-					
39 40 41	370	2600(20)30316-7					
42 43	371	12. Grasselli G, Zangrillo A, Zanella A, et al. Baseline Characteristics and Outcomes of 1591					
44 45	372	Patients Infected With SARS-CoV-2 Admitted to ICUs of the Lombardy Region, Italy. Jama					
46 47 48	373	2020;323(16):1574-81. doi: 10.1001/jama.2020.5394 [published Online First: 2020/04/07]					
48 49 50	374	13. Grasselli G, Pesenti A, Cecconi M. Critical Care Utilization for the COVID-19 Outbreak in					
51 52	375	Lombardy, Italy: Early Experience and Forecast During an Emergency Response. JAMA 2020					
53 54	376	doi: 10.1001/jama.2020.4031					
55 56 57							
58 59							

3 4	377	14. Salje H, Tran Kiem C, Lefrancq N, et al. Estimating the burden of SARS-CoV-2 in France.
5 6	378	Science 2020;369(6500):208-11. doi: 10.1126/science.abc3517
7 8	379	15. Guan W-j, Ni Z-y, Hu Y, et al. Clinical Characteristics of Coronavirus Disease 2019 in
9 10 11	380	China. New England Journal of Medicine 2020 doi: 10.1056/NEJMoa2002032
12 13	381	16. Macinko J, Leventhal DGP, Lima-Costa MF. Primary Care and the Hypertension Care
14 15	382	Continuum in Brazil. Journal of Ambulatory Care Management 2018;41(1):34-46. doi:
16 17 18	383	10.1097/JAC.00000000000222
19 20	384	17. Richardson S, Hirsch JS, Narasimhan M, et al. Presenting Characteristics, Comorbidities, and
21 22	385	Outcomes Among 5700 Patients Hospitalized With COVID-19 in the New York City Area.
23 24 25	386	JAMA 2020;323(20):2052-59. doi: 10.1001/jama.2020.6775
25 26 27	387	18. Baqui P, Bica I, Marra V, et al. Ethnic and regional variations in hospital mortality from
28 29	388	COVID-19 in Brazil: a cross-sectional observational study. The Lancet Global Health
30 31 32	389	2020;Published: July 02, 2020 doi: 10.1016/S2214-109X(20)30285-0
32 33 34	390	19. Price-Haywood EG, Burton J, Fort D, et al. Hospitalization and Mortality among Black
35 36	391	Patients and White Patients with Covid-19. New England Journal of Medicine
37 38 30	392	2020;382(26):2534-43. doi: 10.1056/NEJMsa2011686
39 40 41	393	20. Cordes J, Castro MC. Spatial analysis of COVID-19 clusters and contextual factors in New
42 43	394	York City. Spatial and Spatio-temporal Epidemiology 2020;34:100355. doi:
44 45	395	https://doi.org/10.1016/j.sste.2020.100355
46 47 48	396	21. Golestaneh L, Neugarten J, Fisher M, et al. The association of race and COVID-19 mortality.
49 50	397	EClinicalMedicine 2020; Published: July 14, 2020 doi: 10.1016/j.eclinm.2020.100455
51 52		
53 54 55		
56 57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml


Page 25 of 32

1

BMJ Open

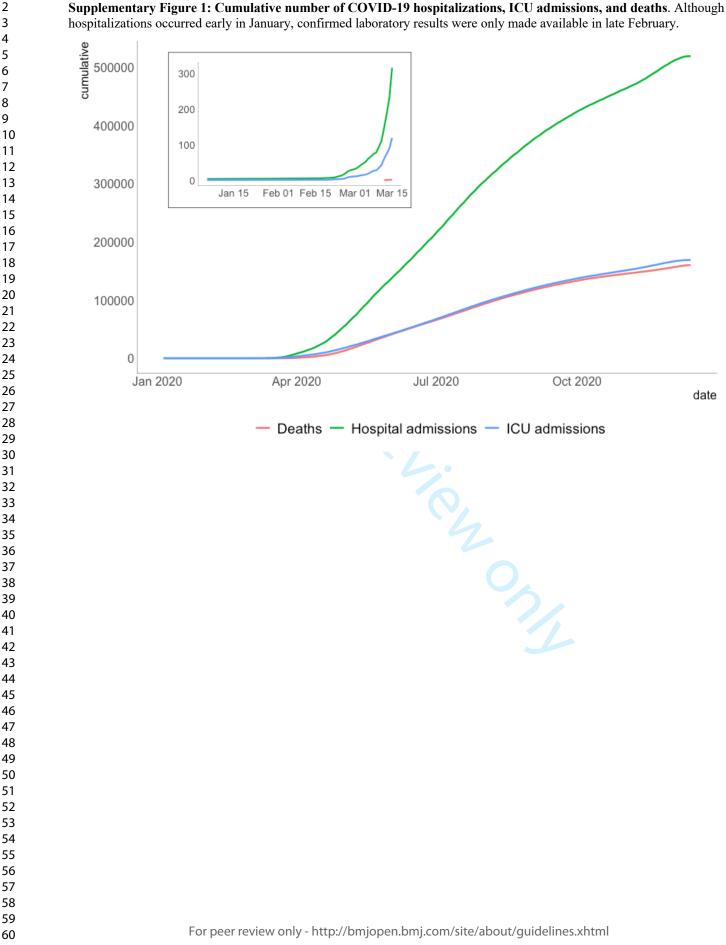
2		
3 4	398	22. Williamson E, Walker AJ, Bhaskaran KJ, et al. OpenSAFELY: factors associated with
5 6	399	COVID-19-related hospital death in the linked electronic health records of 17 million adult
7 8 0	400	NHS patients. medRxiv 2020:2020.05.06.20092999. doi: 10.1101/2020.05.06.20092999
9 10 11	401	23. Castro MC, Resende de Carvalho L, Chin T, et al. Demand for hospitalization services for
12 13	402	COVID-19 patients in Brazil. medRxiv 2020:2020.03.30.20047662. doi:
14 15	403	10.1101/2020.03.30.20047662
16 17 18	404	24. Sousa Júnior WCd, Gonçalves DA, Cruz DB. COVID-19: Local/regional inequalities and
19 20	405	impacts over critical healthcare infrastructure in Brazil. Ambiente & Sociedade 2020;23
21 22	406	25. Menezes Filho N, Kirschbaum C. Education and Inequality in Brazil. In: Arretche M, ed.
23 24 25	407	Paths of Inequality in Brazil: A Half-Century of Changes. Cham: Springer International
25 26 27	408	Publishing 2019:69-88.
28 29	409	26. Carvalho LR, Andrade MV, Amaral PVM. Avaliação dos parâmetros de oferta mínimos para
30 31	410	os leitos SUS no Brasil, 2015. Planejamento e Políticas Públicas - PPP/Ipea 2020;In Press
32 33 34	411	27. Castro MC, Massuda A, Almeida G, et al. Brazil's unified health system: the first 30 years
35 36	412	and prospects for the future. Lancet 2019;394(10195):345-56. doi: 10.1016/s0140-
37 38	413	6736(19)31243-7 [published Online First: 2019/07/16]
39 40 41	414	28. Avelar e Silva RN, Russo G, Matijasevich A, et al. Covid-19 in Brazil has exposed socio-
42 43	415	economic inequalities and underfunding of its public health system. BMJ Opinion 2020; June
44 45 46 47 48 49 50	416	19
	417	29. Daumas RP, Silva GAe, Tasca R, et al. O papel da atenção primária na rede de atenção à
	418	saúde no Brasil: limites e possibilidades no enfrentamento da COVID-19. Cadernos de Saúde
51 52	419	<i>Pública</i> 2020;36
53 54		
55 56		
57 58		
59 60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

1 2		
3 4	420	30. Lotta G, Wenham C, Nunes J, et al. Community health workers reveal COVID-19 disaster in
5 6	421	Brazil. Lancet 2020 doi: 10.1016/s0140-6736(20)31521-x [published Online First:
7 8	422	2020/07/14]
9 10	423	
11 12		
13 14 15		
15 16 17		
19 18 19		
20 21		
22 23		
24 25		
26 27		
28 29		
30 31 32		
32 33 34		
35 36		
37 38		
39 40		
41 42		
43 44 45		
45 46 47		
48 49		
50 51		
52 53		
54 55		
56 57		
58 59		
60		For peer review only - http://bmjopen.bmj.com/site/about/guidelines.xhtml

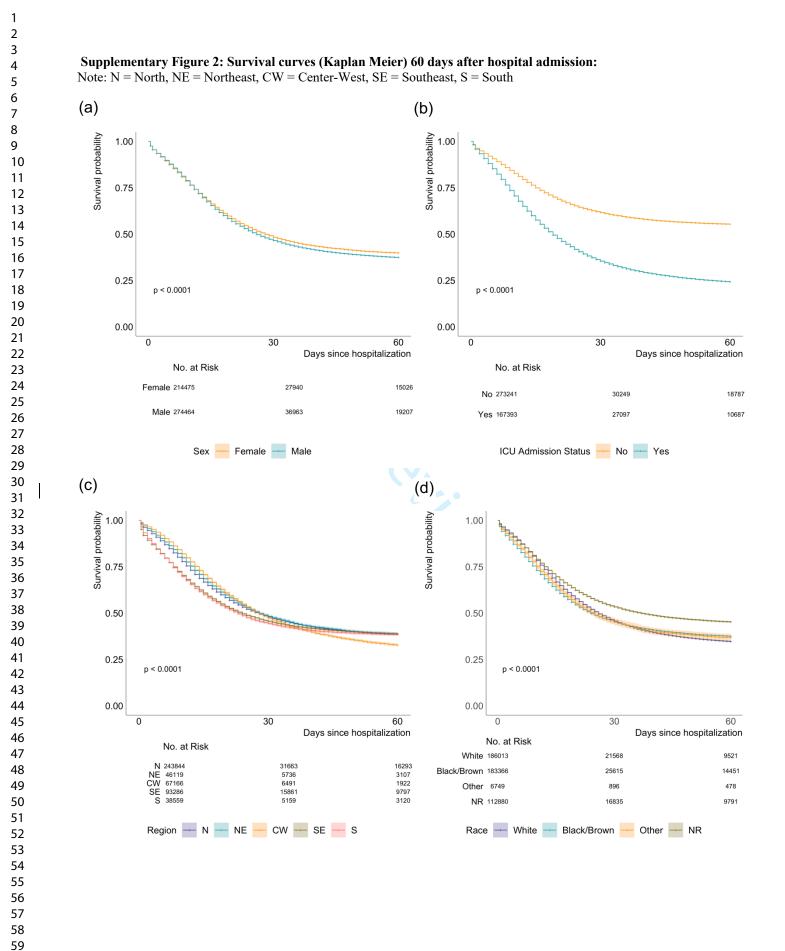
Supplementary material for "Characteristics, outcomes and risk factors for mortality of 522,167 patients hospitalized with COVID-19 in Brazil: a retrospective cohort study"

tor beer terien only

Supplementary Table 1: Data	completeness in the datase	et of hospitalized individuals wi	th confirmed COVID-19


from SIVEP-Gripe data (as of December 14, 2020)

Variable	Missing	Ν	% Complete
Hospitalization	0	522,167	100%
Final diagnosis of the case	0	522,167	100%
Age informed by patient	0	522,167	100%
Type of age (day, month, year)	0	522,167	100%
Sex	84	522,167	100%
Gestational age	26,081	299,513	91%
Puerperal ^a	133,695	299,513	55%
Ethnoracial self-classification	120,799	522,167	77%
Federal unit of residence	0	522,167	100%
Municipality of residence ^b	36	522,167	100%
Municipality of notification	0	522,167	100%
Comorbidities ^a			
Chronic cardiovascular disease	246,121	522,167	53%
Chronic hematologic diseases	314,925	522,167	40%
Chronic hepatic disease	315,473	522,167	40%
Asthma	311,743	522,167	40%
Diabetes	264,470	522,167	49%
Chronic neurological disease	309,103	522,167	41%
Chronic lung disease	309,631	522,167	41%
Immunodeficiency	312,874	522,167	40%
Chronic renal disease	309,780	522,167	41%
Obesity	306,964	522,167	41%
Other comorbidities	272,160	522,167	48%
Symptoms ^a	. ,	-)	
Fever	65,355	522,167	87%
Cough	56,324	522,167	89%
Sore throat	140,061	522,167	73%
Shortness of breath	56,843	522,167	89%
Respiratory distress syndrome	90,093	522,167	83%
Other symptoms descriptive	272,160	522,167	48%
Chest radiograph result	222,990	522,167	57%
Type of drug treatment ^a	434,008	522,167	17%
Mechanical ventilation	75,907	522,167	85%
ICU admission	56,310	522,167	89%
Date of ICU discharge ^c	46,919	522,167	91%
Date of hospital discharge of death ^c	31,755	522,167	94%
Date of onset of illness	0	522,167	100%
Date of treatment with drugs	6,993	93,688	93%
Date of hospitalization ^c	3,170	522,167	99%
Date of ICU admission ^c	3,580	172,473	98%
Date of case closed	8,457	468,664	98%
Clinical outcome (discharge, death, still in hospital)	11,126	522,167	98%


a. Unlike other fields (such as age and sex), comorbidities, symptoms, peruperal, and drugs response does not necessarily mean missing information, but absence of those conditions.

b. The 36 observations missing municipality of residence are foreigners.

c. Missingness in several date variables could be resolved by cross-checking with other variables. Doing so reduced missingness by 0.04-10.3 percentage points from the original missingness shown above.

BMJ Open

STROBE Statement-checklist of items that should be included in reports of observational studies

	Item No	Recommendation	Pag No
Title and abstract	1	(<i>a</i>) Indicate the study's design with a commonly used term in the title or the abstract	1
		(b) Provide in the abstract an informative and balanced summary of what was done and what was found	2
Introduction			
Background/rationale	2	Explain the scientific background and rationale for the investigation being reported	4
Objectives	3	State specific objectives, including any prespecified hypotheses	4
Methods			
Study design	4	Present key elements of study design early in the paper	5
Setting	5	Describe the setting, locations, and relevant dates, including periods of recruitment, exposure, follow-up, and data collection	4-5
Participants	6	 (a) Cohort study—Give the eligibility criteria, and the sources and methods of selection of participants. Describe methods of follow-up Case-control study—Give the eligibility criteria, and the sources and methods of case ascertainment and control selection. Give the rationale for the choice of cases and controls Cross-sectional study—Give the eligibility criteria, and the sources and methods of selection of participants (b) Cohort study—For matched studies, give matching criteria and number of exposed and unexposed Case-control study—For matched studies, give matching criteria and the number of controls per case 	5
Variables	7	Clearly define all outcomes, exposures, predictors, potential confounders, and effect modifiers. Give diagnostic criteria, if applicable	5-6
Data sources/ measurement	8*	For each variable of interest, give sources of data and details of methods of assessment (measurement). Describe comparability of assessment methods if there is more than one group	5
Bias	9	Describe any efforts to address potential sources of bias	6
Study size	10	Explain how the study size was arrived at	5
Quantitative variables	11	Explain how quantitative variables were handled in the analyses. If applicable, describe which groupings were chosen and why	6
Statistical methods	12	(<i>a</i>) Describe all statistical methods, including those used to control for confounding	5-6
		(b) Describe any methods used to examine subgroups and interactions	
		 (c) Explain how missing data were addressed (d) Cohort study—If applicable, explain how loss to follow-up was addressed Case-control study—If applicable, explain how matching of cases and controls was addressed Cross-sectional study—If applicable, describe analytical methods taking 	6
		cross-sectional study—If applicable, describe analytical methods taking account of sampling strategy (e) Describe any sensitivity analyses	

Continued on next page

Participants	13*	(a) Report numbers of individuals at each stage of study—eg numbers potentially	7
-		eligible, examined for eligibility, confirmed eligible, included in the study,	
		completing follow-up, and analysed	
		(b) Give reasons for non-participation at each stage	
		(c) Consider use of a flow diagram	
Descriptive	14*	(a) Give characteristics of study participants (eg demographic, clinical, social) and	7-
data		information on exposures and potential confounders	
		(b) Indicate number of participants with missing data for each variable of interest	7-
		(c) <i>Cohort study</i> —Summarise follow-up time (eg, average and total amount)	
Outcome data	15*	Cohort study-Report numbers of outcome events or summary measures over time	7-
		Case-control study—Report numbers in each exposure category, or summary	
		measures of exposure	
		Cross-sectional study—Report numbers of outcome events or summary measures	7-
Main results	16	(a) Give unadjusted estimates and, if applicable, confounder-adjusted estimates and	13
		their precision (eg, 95% confidence interval). Make clear which confounders were	14
		adjusted for and why they were included	
		(b) Report category boundaries when continuous variables were categorized	7-
		(c) If relevant, consider translating estimates of relative risk into absolute risk for a	
		meaningful time period	
Other analyses	17	Report other analyses done-eg analyses of subgroups and interactions, and	
		sensitivity analyses	
Discussion			
Key results	18	Summarise key results with reference to study objectives	14
			18
Limitations	19	Discuss limitations of the study, taking into account sources of potential bias or	17
		imprecision. Discuss both direction and magnitude of any potential bias	
Interpretation	20	Give a cautious overall interpretation of results considering objectives, limitations,	14
		multiplicity of analyses, results from similar studies, and other relevant evidence	18
Generalisability	21	Discuss the generalisability (external validity) of the study results	18
Other informati	on		
			10
Funding	22	Give the source of funding and the role of the funders for the present study and, if	18

*Give information separately for cases and controls in case-control studies and, if applicable, for exposed and unexposed groups in cohort and cross-sectional studies.

Note: An Explanation and Elaboration article discusses each checklist item and gives methodological background and published examples of transparent reporting. The STROBE checklist is best used in conjunction with this article (freely available on the Web sites of PLoS Medicine at http://www.plosmedicine.org/, Annals of Internal Medicine at http://www.annals.org/, and Epidemiology at http://www.epidem.com/). Information on the STROBE Initiative is available at www.strobe-statement.org.