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A growing body of evidence indicates that mito-
chondrial dysfunction may play an important role in
the pathogenesis of many neurodegenerative disor-
ders. Because mitochondrial metabolism is not only
the principal source of high energy intermediates,
but also of free radicals, it has been suggested that
inherited or acquired mitochondrial defects could be
the cause of neuronal degeneration as a conse-
quence of energy defects and oxidative damage.
Mitochondrial respiratory chain dysfunction has
been reported in association with primary mitochon-
drial DNA abnormalities, and also as a consequence
of mutations in nuclear genes directly involved in
mitochondrial functions, such as SURF1, frataxin,
and paraplegin.

Defects of oxidative phosphorylation and
increased free radical production have also been
observed in diseases that are not due to primary
mitochondrial abnormalities. In these cases, the
mitochondrial dysfunction is likely to be an epiphe-
nomenon, which, nevertheless, could be of impor-
tance in precipitating a cascade of events leading to
cell death. In either case, understanding the role of
mitochondria in the pathogenesis of neurodegener-
ative diseases could be important for the develop-
ment of therapeutic strategies in these disorders.

Introduction
Neurodegenerative diseases are a clinically heteroge-

neous group of disorders, which share in common a
selective loss of specific populations of neurons. The
genetic causes of some of these disorders have been
recently elucidated, as, for example, in the case of Hunt-
ington disease, Friedreich’s ataxia, some forms of famil-

ial amyotrophic lateral sclerosis, familial Parkinson’s
disease, and familial Alzheimer’s disease. Despite the
obvious differences in their primary etiologies, a role for
mitochondrial dysfunction has been postulated in the
pathogenesis of these diseases. 

Mitochondria are the “power house of the cell”, in
which metabolites are converted into ATP through
oxidative phosphorylation (OXPHOS). Therefore, mito-
chondrial dysfunction leads to decreased ATP produc-
tion in the first place, but it also causes other potentially
detrimental effects, such as impaired intracellular calci-
um buffering and the generation of reactive oxygen
species (ROS). Theoretically, all these factors can have
an important role in causing neuronal death. Mitochon-
dria are also essential in activating certain forms of
apoptosis (101). Although a decrease in mitochondrial
membrane potential (��m) has been observed in the
early phases of apoptosis (109), it is still not clear if
decreased ��m due to OXPHOS defects is sufficient
per se to induce apoptosis.

Mitochondria are under the control of two genomes.
They possess their own DNA (mtDNA), which is inher-
ited through the maternal line alone. The mtDNA
encodes for 13 polypeptides, all of which are compo-
nents of the respiratory chain, and for a complement of
rRNAs and tRNAs necessary for intra-organellar pro-
tein synthesis (98). Although most mitochondrial con-
stituents are encoded by nuclear DNA, mtDNA defects
can cause numerous diseases, many of which are asso-
ciated with neuronal degeneration.

In this review, we will summarize evidence support-
ing the involvement of mitochondrial impairment in the
pathogenesis of paradigmatic examples of neurodegen-
eration (Table 1). We will first analyze pathologies in
which genetic alterations of the mtDNA and ensuing
OXPHOS defects are primarily responsible for the dis-
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eases. We will also look at diseases where nuclear gene
defects are the direct cause of OXPHOS impairment and
neurodegeneration. We will then describe examples of
defects of nuclear-encoded mitochondrial proteins,
which cause neurodegeneration, but do not directly par-
ticipate in OXPHOS functions. Finally, we will summa-
rize the evidence for the involvement of mitochondrial
dysfunction and mtDNA alterations in the pathogenesis
of disorders, whose genetic causes are still unknown or
which are due to mutations in non-mitochondrial pro-
teins.

Neurodegeneration due to primary mtDNA mutations
One of the main clinical characteristics of disorders

due to mtDNA abnormalities is the great variability of
symptoms associated with any specific mutation. Most
of these disorders are multisystemic, affecting tissues
and organs differently depending on the metabolic
threshold for OXPHOS impairment and on the mutation
load. 

Among a large number of mtDNA alterations, which
are generally loosely associated with specific combina-
tions of symptoms, there are some examples of mtDNA
mutations that tend to cause rather selective neuronal

degeneration. This situation applies, for example, to
mutations in the mtDNA genes coding for ATPase 6 and
for complex I subunits.

NARP/Leigh’s syndrome. Mutations in the mtDNA
ATPase 6 gene have been associated with a syndrome
clinically characterized by neuropathy ataxia and retini-
tis pigmentosa (NARP). The first mutation reported was
a T→G transversion at nucleotide 8993 (46). It was later
demonstrated that, when the mutation reaches high lev-
els in the brain, the clinical presentation of the disease is
earlier and more severe, with a form of subacute necro-
tizing encephalopathy with clinical and pathological
features of Leigh’s syndrome (85, 102). The T8993G
mutation changes a highly conserved leucine for argi-
nine in the ATPase 6 subunit, presumably impairing the
proton flow from the cytosolic to the matrix side of the
inner mitochondrial membrane (7). Studies of the muta-
tion on cultured cells have demonstrated a defect of
mitochondrial ATP synthesis of variable degree accord-
ing to the cell type analyzed and the proportion of
mutant mtDNA harbored by the cells (66, 103, 108).
Other, more rare, pathogenic point mutations have been
identified in ATPase 6 in association with Leigh’s syn-
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Examples of neurodegeneration and mitochondrial  Mutated gene
dysfunction due to:

primary mtDNA mutations
Narp/Leigh’s syndrome MtDNA ATPase 6
LHON/Parkinson/dystonia MtDNA Complex I subunits

Nuclear gene mutations affecting OXPHOS
Leigh’s syndrome (with COX deficiency) Surf 1 (yeast SHY-1 homologue)
Leigh’s syndrome (with COX deficiency) Sco 2
X-linked Leigh’s syndrome (with PDH deficiecy) PDH
Leigh’s syndrome (with Complex II deficiency) SDH flavoprotein
Leigh’s syndrome (with Complex I deficiency) Complex I subunits

Nuclear gene mutations affecting mitochondrial
proteins
Hereditary spastic paraplegia Paraplegin
Friedreich’s ataxia Frataxin
Wilson’s disease ATP 7B
Mohr-Tranebjaerg syndrome DPPI (yeast tim8 homologue)

Mutations of non-mitochondrial proteins
Huntington’s disease Huntingtin
Amyotrophic lateral sclerosis SOD-1
Progressive supranuclear palsy Tau protein

Putative secondary mitochondrial involvement
Parkinson’s disease unknown
Sporadic Alzheimer’s disease unknown

Table 1. Neurodegenerative disorders with mitochondrial involvement.



drome and bilateral striatal necrosis, among which a
T→C transition at nucleotide 8993 (31, 85) and a T→C
transition at nucleotide 9176 (20).

Leber’s optic atrophy/Dystonia. Three primary point
mutations have been specifically associated with
Leber’s hereditary optic neuropathy (LHON), a suba-
cute degeneration of the optic nerve, that affects espe-
cially young males, causing bilateral visual failure and
leading to almost complete blindness. They are mis-
sense mutations in three complex I subunits, ND1
(nucleotide 3460 (47)), ND4 (nucleotide 11778 (110)),
and ND6 (nucleotide 14484 (51)). The G→A transition
at nucleotide 3460 causes a marked decrease in complex
I activity in cultured cells and in platelets of affected
patients (65). The 11778 G→A transition causes a much
milder complex I deficiency in patient’s platelets (91),
but a clear defect in complex I-driven cell respiration
has been demonstrated in transmitochondrial cybrids
(45). A mild reduction in complex I activity has also
been found in leucocytes from individuals harboring the
14484 T→C (78). Other mutations in complex I genes
are associated with a “LHON-plus” syndrome. A G→A
transition at nucleotide 14459 in ND6 has been identi-
fied in familial cases of LHON and dystonia, character-
ized pathologically by basal ganglia degeneration (52).
Another G→A transition at nucleotide 11696 in ND 4,
has been found in another family with LHON and dys-
tonia (32). In this family, however, an additional base
change, a homoplasmic T→A transition at nucleotide
14596, was also identified, suggesting that in some
cases the phenotypic effect of primary mutations could
be modulated by “secondary” ones. The 11778 G→A
transition has also been identified in a family with
maternally inherited, levodopa-responsive parkinsonism
(90). 

The prevalence of LHON in males is at least 7 to 8-
fold greater than in females (75). This has led to the idea
that an X-linked genetic defect could play a role in the
clinical expression of the disorder. This hypothesis
implies that a locus responsible for visual loss on the X
chromosome acts in synergism with the mtDNA muta-
tions. In this case, only females homozygous for the dis-
ease locus or with inappropriate X inactivation would
become affected (18). However, despite extensive
efforts, the search for the visual loss locus and for unbal-
anced X inactivation has thus far been fruitless. Envi-
ronmental factors, such as alcohol and tobacco, have
also been invoked to explain the apparent discrepancies
between genotype and phenotype in LHON families
(reviewed by Chalmers and Shapira (25)).

Nuclear gene mutations affecting OXPHOS

Leigh’s syndrome. Leigh syndrome (LS, MIM
256000) is a severe neurodegenerative condition patho-
logically characterized by subacute symmetrical necrot-
ic lesions in the subcortical regions of the central nerv-
ous system including basal ganglia, thalamus, brain-
stem, and spinal cord. Demyelination, vascular prolifer-
ation, and gliosis are also part of the pathologic picture.
Onset is most frequently in early infancy but may some-
times be in adult life. Symptoms include motor and
mental regression, ataxia, dystonia, and abnormal
breathing. Death generally occurs within two years after
onset.

LS is due to impaired mitochondrial energy metabo-
lism, which can derive from a variety of molecular
defects. In some cases, when the mutational load is high,
mtDNA mutations in the ATPase6 gene (see above) are
responsible for maternally inherited LS (MILS). Inheri-
tance of LS can also be X-linked or recessive. A study
of the genetic causes of LS in a large group of patients
showed that approximately 19% of cases were due to
mtDNA mutations, and 10% to X-linked pyruvate dehy-
drogenase complex (PDHC) defects. The remaining
71% were due to a variety of autosomal recessive muta-
tions in nuclear genes, which encode for respiratory
chain subunits or for proteins involved in respiratory
chain assembly (81). 

In most patients with PDHC deficiency and LS, the
enzymatic defect resides in the catalytic E1� subunit of
the complex (35). The biochemical defect in cultured
lymphoblastoid cells from one patient with LS and
PDHC deficiency could be fully corrected by high doses
of thiamin pyrophosphate (74), which could have poten-
tially important therapeutic implications.

Complex I deficiency is another important cause of
LS. Mutations in the nuclear encoded 23 kD NDUFS8
subunit (62), 18-kD AQDQ (107), NDUFS7 subunit
(106), and in the NDUFV1 subunit (88) have been
found in patients with LS and complex I defects. 

Administration of sodium dichloroacetate (DCA)
proved to be beneficial to patients with LS and complex
I deficiency, but without known mutations (53). DCA
reduces lactate concentration by stimulating the activity
of PDHC. DCA also reduces the turnover of subunit E1a
of PDHC in cultured fibroblasts (72). These observa-
tions suggest that DCA could be one of the most prom-
ising compounds for the treatment of mitochondrial
encephalopathies not limited to LS.

A more rare molecular defect associated with autoso-
mal recessive LS was identified in two siblings born to
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consanguineous parents, who harbored a mutation in the
gene coding for the flavoprotein of complex II (succi-
nate dehydrogenase, (13).

Cytochrome c oxidase (COX) deficiency is one of the
most common causes of autosomal recessive LS. In a
subset of LS patients, COX activity is reduced in all tis-
sues (63). Using microcell-mediated chromosome trans-
fer techniques and linkage analysis, Zhu and colleagues
(114) and Tiranti and colleagues (105) were able to map
the molecular defect in patients who belonged to a sin-
gle complementation group. In these individuals, the
genetic defect resides in a gene of unclear function,
SURF1, on chromosome 9q34. Surf1, similarly to its
yeast homologue SHY1 (69), is translocated to mito-
chondria, where its presequence is cleaved. Mature
SURF1 is localized to the inner mitochondrial mem-
brane, where it presumably participates in the assembly
of COX (104, 113). 

In a different form of LS and COX deficiency, clini-
cally characterized by encephalopathy and severe car-
diomyopathy, the gene defect was identified in another
COX assembly gene, a human homologue of two relat-
ed yeast genes, SCO1 and SCO2 (79). It has been pro-
posed that, at least in yeast, the SCO proteins might be
copper-binding proteins required for the insertion of
copper ions in COX subunit I and II (36).

Nuclear gene mutations affecting mitochondrial pro-
teins

Hereditary spastic paraplegia. Hereditary spastic
paraplegia is a progressive disorder resulting in para-
paresis with onset in childhood or in early adulthood.
Upper motorneurons are selectively involved, but ancil-
lary symptoms, such as ataxia and retinitis, are not
uncommon. Autosomal dominant, X-linked, and autoso-
mal recessive modalities of inheritance have been
described (41). In families with a recessive form of the
disease mapped to chromosome 16q24.3 (30), the dis-
ease gene, called paraplegin (SPG7), has been identified
and cloned (24). Paraplegin has a high degree of homol-
ogy with yeast ATP-dependent zinc metalloproteases
that are active in mitochondria, and may have a chaper-
one-like activity (61). Homozygous deletions or
frameshift mutations of the paraplegin gene cause
OXPHOS dysfunction with COX deficiency and mito-
chondrial proliferation (i.e. ragged red fibers) in muscle
(24), although the underlying pathogenic mechanism is
still unclear. 

Friedreich’s Ataxia. Friedreich’s ataxia (FRDA) is
the most common of hereditary ataxias. It is clinically
defined by the following criteria: autosomal recessive
inheritance, onset before age 25, progressive limb and
gait ataxia, absent tendon reflexes, signs of axonal sen-
sory neuropathy, and pyramidal signs (40). The FRDA
gene has been mapped to chromosome 9q13 (26, 71). In
most cases, the genetic alteration is a GAA expansion in
the first intron of a gene denominated frataxin (22).
Frataxin is differently expressed in tissues, and in the
central nervous system it is particularly abundant in the
cerebellum and in the spinal cord (22). Homozygous
GAA expansion in intron 1, or, more rarely, heterozy-
gous point mutations compounded with heterozygous
expansions, cause decreased frataxin expression (21).
Frataxin localizes to mitochondria, where the precursor
protein is cleaved by mitochondrial peptidases to the
mature form (58). A yeast homologue of human fratax-
in, named YFH1, has been identified (5). Knockout of
YFH1 causes intramitochondrial iron accumulation,
mitochondrial respiratory defect, and loss of mitochon-
drial DNA (58). Similarly, in affected human tissues
there is an increase in iron (84) and a decrease in the
activities of some key mitochondrial enzymes, such as
complexes I, II-III, and aconitase (14, 83), all of which
contain iron-sulfur groups. MtDNA levels are also
decreased in affected tissues. These observations indi-
cate that human frataxin may be involved in mitochon-
drial iron homeostasis and iron-sulfur clusters synthesis.
It has also been suggested that respiratory chain enzyme
dysfunction could cause increased oxygen reactive
species and further oxidative damage in a self–propa-
gating manner (14).

Wilson’s disease. Wilson’s disease is an autosomal
recessive disease characterized by movement disorders
such as dystonia and parkinsonism, psychiatric symp-
toms, and liver failure, with onset in childhood or ado-
lescence. There is a defect in copper homeostasis, which
results in copper accumulation in liver, the basal ganglia
of the brain, and kidney. The disease-associated gene
encodes for a copper-transport P-type ATPase, called
WND (19). The WND protein exists in two isoforms, a
160 kDa, which localizes to the trans-golgi network, and
a 140 kDa, which localizes to mitochondria (64).
Although the precise functions of the protein is not
known, the mitochondrial localization of the 140 kDa
WND suggests that this isoform might play a role in the
copper-dependent functions of mitochondrial enzymes.
Mitochondria in affected tissues have characteristic
morphological abnormalities (92), which are also
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observed in the mitochondria of Long-Evans cinnamon
rats, the animal model of the disease (93). Moreover,
increased levels of deleted forms of mtDNA have been
identified by PCR amplification in liver from patients
with Wilson’s disease (68). 

Mohr-Tranebjaerg syndrome. Mohr-Tranebjaerg
syndrome, or deafness-dystonia syndrome, is an X-
linked recessive disorder, characterized by progressive
sensorineural deafness, dystonia, cortical blindness, and
psychiatric illness. It results from deletions or trunca-
tions of a protein, DPP1 (50), homologous to yeast
Tim8, a member of the inner mitochondrial membrane
transport machinery located in the mitochondrial inter-
membrane space (55). However, as deletion of Tim8
alone does not affect cell survival in yeast, it remains to
be clarified how the loss DPP1 in humans causes mito-
chondrial dysfunction in the affected tissues. 

Other examples of defects in the mitochondrial pro-
tein import machinery import have been reported in
humans, such as a deficit of HSP60 (a mitochondrial
chaperonin) in patients with a severe multisystem disor-
der and multiple mitochondrial enzyme defect (2, 15).

Mutations of non-mitochondrial proteins

Huntington’s disease. Huntington’s disease (HD) is
a chronic autosomal dominant disease with full pene-
trance by mid-adult life. The illness is characterized by
choreoathetotic movements and by progressive emo-
tional and cognitive disturbances. Selective degenera-
tion of striatal neurons with marked atrophy of cauda-
tum and putamen are the main pathologic correlates.
Ultrastructurally, nuclear inclusions have been observed
in HD striatum and cortex. HD is caused by an expan-
sion of a CAG repeat in the IT15 gene on chromosome
4, which encodes for a protein of unknown function
named huntingtin (1). A defect in energy metabolism
has been proposed as one of the potential pathogenic
mechanisms underlying HD, based on evidence
obtained both in vivo and in post-mortem tissues. Lac-
tate increase has been found by MRI spectroscopy in
occipital cortex and basal ganglia of HD patients (49),
who also show a reduced Pcr/Pi ratio in muscle (57).
Using the respiratory chain complex II inhibitor mal-
onate, Beal and colleagues have produced pathologic
lesions in the striatum of experimental animals, that
closely resembled those of HD (9). These lesions could
be prevented by treating the animals with CoQ10 and
nicotinamide (10). Defects of complexes II, III, and
aconitase have been described in post-mortem HD

brains, particularly in the basal ganglia (17, 38, 99). Fur-
ther evidence for mitochondrial respiratory chain dys-
function and aconitase defect has been provided by
studies of transgenic mouse models of HD (100). These
mice also exhibited reduced levels of N-acetylaspartate
in brain, as demonstrated by MRI spectroscopy (8).
Because N-acetylaspartate is synthesized within mito-
chondria, its decrease might reflect mitochondrial dys-
function. Transmitochondrial cell lines, generated by
repopulating mtDNA-less cells with platelet mtDNA
from HD patients, failed to show any respiratory chain
defects, suggesting that, at least in platelets, mtDNA
does not harbor pathogenic mutations (95).

Despite the increasing evidence in favor of a mito-
chondrial involvement in the pathogenesis of HD, the
mechanisms through which huntingtin with expanded
polyglutamine repeats causes mitochondrial dysfunction
is not yet well understood. 

Amyotrophic lateral sclerosis. Amyotrophic lateral
sclerosis (ALS) is a neurodegenerative disease affecting
the anterior horn cells of the spinal cord and cortical
motor neurons. The disease generally starts in the fourth
and fifth decade and progresses over an average of three
years leading to paralysis and premature death. While
the majority of cases are sporadic and due to unknown
causes, about 15-20% are familial, and, of these, about
10 % are associated with mutations in the superoxide
dismutase 1 gene (82). Because superoxide dismutase 1
(SOD1) reduces the potentially harmful superoxide rad-
ical, it has been suggested that familial ALS (FALS) is a
consequence of disturbed free radical homeostasis and
resulting oxidative stress. It was shown that mouse mod-
els carrying these mutations develop severe motor neu-
ron disease (39). As these mutations do not decrease sig-
nificantly SOD1 activity, a toxic “gain of function” of
the mutated protein has been postulated. Among the
morphological alterations in motor neurons of mutant
SOD1 mice is the presence of massive mitochondrial
degeneration. In G93A mutant mice, the loss of muscle
strength is immediately preceded by a transient explo-
sive increase in vacuoles derived from degenerating
mitochondria in the motor neurons, with little motorneu-
ron death. These mice also exhibited abnormal respira-
tory chain function (16). These observations suggest
that mitochondrial alterations might represent a trigger-
ing factor in the onset of the disease (56). Similarly,
accumulations of abnormal mitochondrial were
observed in anterior horns of patients with sporadic ALS
not related to SOD1 mutations (86). Mitochondrial
depolarization, an indicator of respiratory chain dys-
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function, was observed in neuroblastoma cells transfect-
ed with the mutant form of SOD1. These cells also dis-
played impaired mitochondrial calcium buffering capac-
ity, leading to increased cytoplasmic calcium, a poten-
tial stimulus for apoptotic cell death (23).

A mtDNA frameshift mutation in the gene encoding
subunit I of COX, was found in one case of sporadic
ALS (27). COX deficiency was also identified in skele-
tal muscle from a series of unrelated sporadic ALS
patients (112). A pathophysiological role for mtDNA
mutations has been postulated based on biochemical
studies of cybrids obtained from mitochondria of spo-
radic ALS patients, which exhibited abnormal respirato-
ry chain, increased free radical scavenging enzymes,
and altered calcium homeostasis (96). Another indica-
tion of mitochondrial dysfunction in ALS comes from
the observation that supplementation with creatine,
which takes part in the mitochondrial energy buffering
and transfer system, improves motor performance and
extends survival in SOD1 mutant mice (54).

Taken together, these findings strongly suggest that
impairment of mitochondrial energy metabolism, possi-
bly caused by mtDNA abnormalities, might play a role
in the pathogenesis of ALS. 

Progressive supranuclear palsy. Progressive supra-
nuclear palsy (PSP) is a neurological disorder with rapid
progression, characterized clinically by cognitive
impairment, extrapyramidal symptoms, and palsy of
vertical gaze of supranuclear origin. The pathologic
hallmark of the disease is the presence in the subcortical
regions of the brain of neurofibrillary filaments with dif-
fuse neuronal degeneration and gliosis. Genetic studies
have established a significant association between an
extended tau haplotype (H1) and PSP (6, 28). The neu-
rofilaments that accumulate in PSP contain hyperphos-
phorylated tau (89). There are several pieces of evi-
dence that mitochondrial energy metabolism could be
affected in PSP. First, OXPHOS defects have been
reported in muscle from PSP (34). Furthermore, in post-
mortem PSP brains there was a reduction in the activity
of �-ketoglutarate dehydrogenase, a key enzyme of the
Kreb’s cycle, vis-a-vis with normal respiratory chain
activities (4). Increased content of malondialdehyde, a
marker of lipid peroxidation, was also reported in PSP
brains (3). It is conceivable that a combination of mito-
chondrial dysfunction and oxidative stress could gener-
ate a vicious cycle leading to further oxidative damage
and neuronal degeneration.

Putative secondary mitochondrial involvement

Parkinson’s disease. Parkinson’s disease (PD) is a
neurodegenerative disorder clinically characterized by
bradykinesia, rigidity and tremor. Pathologically, the
hallmark of the disease is the loss of dopaminergic neu-
rones in the substantia nigra. The causes of PD are
unknown in the majority of cases. A rare familial form
has been associated with mutations in the �-synuclein
gene (59, 80), although the mechanism by which these
mutations cause neuronal degeneration is not known. 

Numerous findings have contributed to identifying
possible mitochondrial involvement in the pathogenesis
of PD. First, it was shown that 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) toxicity, which pro-
duces parkinsonism in humans and laboratory animals,
is mediated by inhibition of respiratory chain complex I
(76). Second, complex I deficiency and oxidative dam-
age were demonstrated in the substantia nigra of PD
patients (11, 48, 67, 87), together with reduced
immunoreactivity for Complex I subunits (42). Because
complex I is the principal source of free radicals in the
cell (60), a dysfunctional complex I in the substantia
nigra could be responsible for the increased lipid perox-
idation and DNA damage (in the form of OH8dG) found
in PD brains (33). Cybrids containing mtDNA from PD
platelets also showed reduced complex I activity (37),
strongly suggesting that inherited and/or somatic
mtDNA mutations might be responsible for the bio-
chemical phenotype in PD. In rare cases, these muta-
tions might represent the primary cause of the disease,
as maternally inherited forms of PD or parkinsonism
with complex I deficiency have been reported (90, 97).
More frequently, however, mtDNA mutations, either
inherited or acquired, could contribute, together with
nuclear gene mutations and environmental factors, to
the pathogenesis of PD. 

Alzheimer’s disease. Alzheimer’s disease (AD) is the
most common form of dementia in the elderly. Approx-
imately 5% of AD cases are inherited with autosomal
dominant transmission. These cases are primarily due to
mutations in the amyloid precursor protein or presinilin
genes. Most patients with AD are sporadic cases without
a known genetic defect. The neuropathology of AD
patients is characterized by neuronal loss and by the
presence of neurofibrillary tangles and amyloid plaques.

Reduced COX activity has been found in AD brains
(73) and defects of COX have been identified in AD hip-
pocampus by immunostaining for specific subunits of
the complex (12). Reduced immunoreactivity for COX

467G. Manfredi and M. F. Beal: Mitochondria in Neurodegeneration



subunits, more markedly for the mtDNA encoded ones,
was also found in AD purkinje cells (77). Similar alter-
ations have been observed in brain following experi-
mental deafferentiation in monkeys (43). COX deficien-
cy has been described in platelets from AD (94). The
enzymatic defect could be transferred to cybrid cell
lines, suggesting the presence of pathogenic mtDNA
mutations (29). However, the mtDNA mutations initial-
ly identified in some of those patients were later demon-
strated to be only present in nuclear pseudogenes (44,
111). A number of different mtDNA changes have been
associated with AD, but none of these studies has been
able to conclusively prove the role of mtDNA mutations
in the pathogenesis of AD (reviewed by Bonilla and col-
leagues (12)). Indirect evidence suggesting a potential
role of mitochondrial dysfunction in AD comes from the
observation of increased oxidative damage in mtDNA
from AD brains compared to age-matched controls (70).

Conclusions
A growing body of evidence suggests that impair-

ment of mitochondrial energy metabolism could be
involved in the pathogenesis of several neurodegenera-
tive disorders. As reviewed above, some illnesses, such
as LS, LHON, and NARP, are caused by specific, pri-
mary mtDNA mutations. Others are caused by genetic
defects affecting proteins with as yet unknown functions
but with clear mitochondrial localization. Mutations in
mitochondrial proteins, such as frataxin and paraplegin,
cause mitochondrial dysfunction with impaired respira-
tory chain. The evidence in favor of a mitochondrial role
in the pathogenesis of PD, HD, ALS, and AD is more
circumstantial. In these cases, mitochondrial dysfunc-
tion could be secondary, but still relevant to the devel-
opment of the disease. It is particularly tempting to
hypothesize that an interaction between mitochondrial
dysfunction and oxidative damage could trigger a
vicious cycle, leading to neuronal degeneration and
death.

At this stage, we believe that it is important to devel-
op a better understanding of the role of mitochondrial
energy metabolism in neurodegenerative diseases,
because it may lead to the development of effective ther-
apeutic strategies, which specifically target mitochon-
dria. These include administration of free radical scav-
engers, antiapoptotic drugs which acts at the mitochon-
drial level, or energy buffering compounds, such as cre-
atine. 
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