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Numerous factors have been shown to govern
adenohypophysial cell proliferation. Human and ani-
mal models have documented that the hypothalamic
trophic hormone growth hormone-releasing hor-
mone stimulates cell proliferation, and prolonged
stimulation leads to tumor formation. Similarly, lack
of dopaminergic inhibition of lactotrophs and lack of
feedback suppression by adrenal, gonadal or thy-
roid hormones are implicated, perhaps through
hypothalamic stimulatory mechanisms, in pituitary
adenoma formation superimposed on hyperplasia.
However, most pituitary tumors are not associated
with underlying hyperplasia. Overexpression of
growth factors and their receptors, such as EGF,
TGF�, EGF-R and VEGF has been identified in pitu-
itary adenomas, and reduction of follistatin expres-
sion has been implicated in gonadotroph adenomas.
Aberrant expression of members of the FGF family,
an FGF antisense gene and FGF receptors have all
been described in pituitary adenomas. The clonal
composition of pituitary adenomas attests to the
molecular basis of pituitary tumorigenesis, however,
the evidence suggests that these various hypophys-
iotropic hormones and growth factors likely play a
role as promoters of tumor cell growth in genetical-
ly transformed cells. 

Introduction
Pituitary tumors are common neoplasms that exhibit

a highly variable biological course as evidenced by hor-
monal and proliferative activities. Progress in defining
the factors that govern cell differentiation in the pitu-
itary have led to a new classification of anterior pituitary
adenoma tumor cell types (9). Traditionally, there had
been an on-going controversy regarding the basis of

pituitary tumorigenesis. Two prevailing theories con-
fronted hormonal stimulation against an intrinsic pitu-
itary defect. Several animal models and unusual clinical
cases have provided support for the role of hormonal
stimulation in the development of these neoplasms and
there is evidence for intra-pituitary production of hypo-
thalamic hormones that may be responsible for excess
stimulation. In contrast, the clonal nature of pituitary
adenomas and the lack of associated hyperplasia accom-
panying pituitary adenomas strongly argue for an intrin-
sic somatic defect(s) as the principal etiology contribut-
ing to the genesis of these lesions. 

Hormonal influences
Evidence suggestive of a possible hormonal etiology

in pituitary tumorigenesis includes paradoxical pituitary
hormone responses to exogenous peptide stimulation,
the development of pituitary adenomas in situations of
excessive hypothalamic hormone stimulation or loss of
negative feedback inhibition by target gland hormones,
and evidence of hypothalamic hormone production
within the anterior pituitary.

Persuasive arguments against a hormonal etiology in
human pituitary tumorigenesis includes the rarity of
hyperplastic changes associated with pituitary adeno-
mas, the lack of true adenomatous changes in the pitu-
itary even after sustained exposure to hypothalamic hor-
mones, and the relatively low frequency of recurrence
following successful adenoma resection. 

Excess hormonal stimulation. Growth hormone-
releasing hormone (GHRH). GHRH can cause soma-
totroph proliferation (25) and somatotroph hyperplasia
is well documented as a consequence of chronic stimu-
lation in patients with endocrine carcinomas ectopically
secreting GHRH (127, 142). Intra-pituitary GHRH
expression is well documented (66, 85, 110) and GHRH
may be over-expressed in some aggressive tumors
(141). In vitro, human somatotroph adenomas respond
to GHRH stimulation (4, 5, 71, 90, 136, 150) consistent
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with functional GHRH receptors on these tumors. In
some instances, however, they may lose the down-regu-
lation characteristic of normal somatotrophs (71, 136).
Thus, it would appear that GHRH stimulation may play
a contributory role in the development of pituitary ade-
nomas. Moreover, older transgenic mice over-express-
ing GHRH develop pituitary adenomas (Figure 1) (13,
89). However, in situations of GHRH excess, GH-pro-
ducing adenomas are usually accompanied by soma-
totroph hyperplasia which is distinctly unusual in spo-
radic human pituitary GH adenomas (123). Moreover,
sustained exposure to ectopic GHRH does not always
lead to true adenoma formation (35).

Cloning of the GHRH receptor has permitted exami-
nation of the role of GHRH in somatotroph function.
Indeed, loss of GHRH receptor signaling is now recog-
nized as the genetic basis for the little (lit/lit) dwarf
mouse (49, 88). A truncated alternatively spliced form
of the GHRH receptor with limited signaling properties
has been identified in GH-producing pituitary adenomas
(58). The GHRH receptor expression does not appear to
be restricted to somatotroph-derived adenomas (58)
suggesting a potential non-GH specific role for this
receptor in the pituitary. Unlike the case with other
examples of endocrine hyperfunction where constitutive
activation of the relevant receptor has been described,
no intrinsic constitutively active forms of the GHRH
receptor have thus far been identified in pituitary adeno-
mas. 

Corticotropin-releasing hormone (CRH). The postu-
lated etiology of Cushing’s disease has shown tremen-
dous flux since Cushing’s original description of the dis-
ease (78). The documentation of adrenal hyper-respon-
siveness to ACTH and the presence of Crooke’s hyalin-
ization in the pituitary brought a primary adrenal etiolo-
gy to the fore. It has been recognized in the last few
decades that patients with Cushing’s disease may have
other associated neuroendocrine abnormalities. Reports
of therapeutic response to antiserotoninergic or anti-
dopaminergic agents reverted attention to the hypothal-
amus (77). Long term follow-up of patients who have
undergone trans-sphenoidal resection of microadeno-
mas has indicated recurrence of disease in some
patients. A few patients with pituitary Cushing’s disease
have corticotroph hyperplasia as the cause of the disor-
der in the absence of a discrete adenoma (75). These
findings have implicated CRH excess in the pathogene-
sis of Cushing’s disease (78). 

The characterization of CRH in 1981 permitted its
identification in a number of extra-pituitary tumors
associated with a clinical picture resembling Cushing’s

disease; some of these patients had corticotroph hyper-
plasia (27, 43). In one instance, a hypothalamic ganglio-
cytoma producing CRH was associated with corti-
cotroph hyperplasia and Cushing’s disease (14).
Continuous infusion of CRH leads to corticotroph
hyperplasia (11, 45, 97), but as of yet, has not been
shown to result in true adenoma formation.

CRH treatment of pituitary adenomas in vitro
induces POMC and ACTH mRNA gene expression
(138) which are inhibited by dexamethasone (139, 140).
Additionally, CRH receptor expression appears not only
intact in ACTH-producing pituitary adenomas but,
unlike in the rat pituitary, is up-regulated in response to
CRH treatment (124). There is currently no evidence of
constitutive activation of CRH receptors in corticotroph
adenomas. The closely related vasopressin V3 receptor
is also intact but may be over-expressed in some corti-
cotroph adenomas where it may play a role in tumor
development (30). 

Thyrotropin-releasing hormone (TRH). Primary
hypothyroidism is a well recognized cause of pituitary
thyrotroph and lactotroph hyperplasia. These patients
exhibit the spectrum of hyperplasia-to-neoplasia (46,
130), suggesting that continuous stimulation by TRH
may lead to thyrotroph adenoma (60). TRH has also
been shown to be expressed in the pituitary (83, 94, 110)
and by the different types of pituitary adenomas (80-82,
153). 

TRH signaling appears to be intact in pituitary ade-
nomas as evidenced by intact binding and release of
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Figure 1. Pituitary adenomas in mice transgenic for GH-releas-
ing hormone (GHRH). a) A transgenic mouse pituitary reveals
mammosomatotroph hyperplasia with prominence of large aci-
dophilic cells (top left) that surrounds an area of disrupted archi-
tecture. The tumor lacks acinar structures and is composed of
atypical cells with variable cytoplasmic acidophilia and occa-
sional binucleate forms. b) The Gordon-sweet silver stain con-
firms the presence of distended acini in the hyperplastic pitu-
itary (top left) and loss of the reticulin fiber network in the ade-
noma. 



TSH and PRL (82, 153). TRH receptor expression (152)
and structure is grossly unaltered even in thyrotroph
adenomas(31). Messenger RNA is, however, alterna-
tively spliced in some pituitary tumors (152). Deletion
of exon 3 results in a truncated product which does not
bind TRH nor is it activated by it. The relatively higher
levels of the truncated forms compared to the full length
form of the TRH receptor in lactotroph adenomas (152)
may explain some of the paradoxical in vivo responses
to TRH administration (34).

Gonadotrophin-releasing hormone (GnRH). The
occurrence of gonadotroph adenomas in patients with
hypogonadism has suggested that the chronic stimula-
tion resulting from primary gonadal failure may play a
role in the formation and growth of these adenomas
(107, 134). Nevertheless, the majority of gonadotroph
adenomas are not associated with underlying primary
hypogonadism nor is there evidence of chronic hypo-
thalamic stimulation in the adjacent nontumorous ade-
nohypophysis (123). 

Both GnRH (108, 126) and GnRH receptor expres-
sion have been documented in the different types of
pituitary adenomas (99, 137). Furthermore, pituitary
adenomas with truncated GnRH receptors have been
described that fail to respond to GnRH stimulation by
enhancing calcium transport and gonadotrophin release
in vitro (7). No activating mutations of the GnRH recep-
tor, including the exon 3 “hot spot,” have been identi-
fied. 

Other releasing factors. The pathogenesis of lac-
totroph adenomas may involve defects in inhibitory
hypothalamic factors or excessive stimulation by a puta-

tive PRL-releasing factor such as TRH or vasoactive
intestinal peptide (VIP) (103). The presence of lac-
totroph hyperplasia in the tissue surrounding lactotroph
adenomas in some cases (15, 123) would be consistent
with this theory. Moreover, lactotrophs normally prolif-
erate during pregnancy (15, 131) thereby implicating
estrogen as a candidate factor. Administration of oral
contraceptives was implicated in the rapid increase in
size and secretion of some lactotroph adenomas (55).
The current cumulative clinical experience, however,
has refuted this association with little evidence that low
doses of oral contraceptives play a significant role in
pituitary tumor development.

Loss of inhibitory hormones. Dopamine. The role of
diminished hypothalamic inhibition was first suggested
based on the observation of neovascularization in lac-
totroph adenomas. It was speculated that neovascular-
ization would allow lactotrophs to escape from tonic
dopaminergic inhibition (128). Dopamine signal trans-
duction is mediated through D1 receptors which stimu-
late adenylyl cyclase activity and D2 receptors (D2R)
which inhibit this enzyme. The family of dopamine
receptors is much more complex in terms of biochemi-
cal, physiological, and pharmacological diversity (132,
143, 151). Nevertheless, it appears that the predominant
anterior pituitary dopamine receptor is the D2R (74,
151). Activation of the D2R results in dysregulated
cAMP production, potassium and calcium channel flux-
es, phosphatidyl inositol turnover, and intracellular cal-
cium concentrations (132). Treatment with EGF or
TRH, which stimulates p44/42 MAP kinase, rescues
GH3 cells from dopamine-induced apoptosis, with con-
comitant inhibition of dopamine-induced p38 MAP
kinase activation (67). These findings are consistent
with the view that dopamine induces apoptosis through
p38 MAPK activation, and that the p44/42 MAP kinase
signaling through growth factors has an opposing effect
on p38 MAPK as well as on apoptosis.

Selective elimination of D2R activity in D2R knock-
out mice results in lactotroph hyperplasia (73) and, sub-
sequently, lactotroph adenoma formation (10) in female
D2R-deficient mice at 17 to 20 months of age (Figure
2). Interestingly, these lesions are monohormonal PRL-
immunoreactive neoplasms that display characteristic
juxtanuclear Golgi pattern of PRL staining and loss of
the reticulin fiber network. Several of these adenomas
have been noted to be much larger than normal glands
with marked suprasellar extension and invasion of brain
but no gross evidence of distant metastases. In contrast,
the formation of adenomas in male D2R-deficient mice
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Figure 2. Anterior pituitary hyperplasia in D2 Receptor-
Deficient Mice. a) The pituitary of a dopamine D2R deficient
mouse contains a lactotroph adenoma with striking peliosis and
nuclear atypia. b) A reticulin stain confirms total breakdown of
the reticulin fiber network, confirming the development of ade-
noma superimposed on the underlying lactotroph hyperplasia
that younger animals exhibit (not shown).



without pre-existing or concomitant hyperplasia (10)
suggests that prolonged loss of dopamine inhibition may
cause neoplastic transformation by a distinct cellular
mechanism than in female animals.

While some pituitary tumors have been shown to be
responsive to dopamine supression (41, 135), the
dopaminergic resistance that is found in some of these
tumors implicates diminished DR activity as a putative
etiological factor in pituitary tumorigenesis (24). Thus
far, however, investigation of the D2R gene has revealed
it to be structurally intact in human lactotroph adenomas
as well as in adenomas that secrete GH or TSH (44). 

Somatostatin. GH secretion is under opposing influ-
ence from hypothalamic stimuli including GH-releasing
hormone (GHRH), which stimulates, and somatostatin
(SS), which inhibits GH secretion. Specific receptors for
SS (SSTRs) are expressed on somatotroph adenomas.
Earlier studies suggested a relationship between the
density of SS receptors on GH tumors and the secretory
response to this analogue both in vitro and in vivo (72,
120). Binding sites for SS, however, have been identi-
fied by autoradiography in tumors resistant to the GH-
lowering effects of octreotide (23). These findings are
consistent with differential adenylyl cyclase coupling by
the five known subtypes of SSTRs and their heteroge-
nous expression in pituitary adenomas (98). Expression
of SS itself in large invasive GH tumors appears to be
diminished compared to that in the normal pituitary (66,
86, 110, 111). Taken together, these findings suggest
multiple paracrine, autocrine, as well as endocrine
mechanisms for SS-mediated control of somatotroph
function and proliferation. 

Glucocorticoid hormones. As with other pituitary
axes, primary adrenal insufficiency, with prolonged glu-
cocorticoid deficit leads to corticotroph hyperplasia and
rarely early adenoma formation (129). A role for CRH in
mediating this cell proliferation cannot be excluded. 

Lack of suppressibility of corticotroph adenomas by
glucocorticoids had been suggested as a possible mech-
anism involved in the pathological ACTH secretion in
Cushing’s disease and Nelson’s syndrome (91). The
human glucocorticoid receptor (GCR) pre-mRNA is
alternatively spliced to generate a GCR � isoform and
the N-terminally closely related � isoform (18). The �
isoform, however, differs in its 50 amino acid C-termi-
nus which contains a unique 15-amino acid sequence
that hinders glucocorticoid binding and gene transacti-
vation (18). The functional inter-relationship between
the two GCR isoforms in the pituitary and pituitary ade-
nomas will undoubtedly be the focus of future studies.
Nevertheless, a molecular basis for glucocorticoid

insensitivity has already been described in association
with generalized or selective loss of function (18).
Specific point mutations resulting in diminished ligand
binding in the glucocorticoid hormone-binding domain
are now known in cases of familial glucocorticoid
resistance (61). Additionally, a novel germ line mutation
has been reported to result in pituitary Cushing’s disease
(68). Similarly, rare reports of somatic mutations in the
GCR with diminished glucocorticoid inhibition were
noted in Nelson’s syndrome (69) and as predicted in
cases of ectopic Cushing’s syndrome (119). 

Thyroid hormones. The development of pituitary thy-
rotroph adenomas in patients with prolonged primary
hypothyroidism has provided further evidence support-
ing the hypothalamic role in pituitary tumorigenesis (60,
130). 

Thyroid hormones mediate their actions via nuclear
thyroid hormone receptors (TRs) that bind to specific
regulatory hormone response elements (47, 144). There
are two major classes of TRs, designated as � and �,
each of which undergoes alternative splicing to generate
�1 and �2 and �1 and �2 isoforms (47, 144). With the
exception of the �2 form, which is predominantly
expressed in the hypothalamic-pituitary system, these
receptor isoforms are ubiquitously expressed. Of inter-
est in the pituitary, the �1 and �2 isoforms appear to be
expressed to a lesser extent in endocrinologically-inac-
tive adenomas compared with the normal gland (47,
144). Screening TR� mRNA identified three novel mis-
sense mutations, two in the common TR� region and
another that was �2 specific. TR� response elements
failed to show any differences from published
sequences (96). 

In contrast, mice with targeted disruption of the
entire TR-� locus exhibit elevated thyroid hormone lev-
els as a result of abnormal central regulation of thy-
rotropin but do not develop pituitary tumors (3). Thus,
the putative differential hormone regulatory and mito-
genic effects of the different THR isoforms in the pitu-
itary remains largely understood.

Gonadal steroids. The development of pituitary
gonadotroph adenomas in patients with prolonged pri-
mary hypogonadism suggests that the lack of hormone
negative feedback may facilitate pituitary tumor forma-
tion (107, 134). Again, however, the role of GnRH stim-
ulation cannot be easily distinguished from that of
gonadal hormone inhibition in the development of these
adenomas.

Growth factors and receptors. 
Growth factors are polypeptides of several major

359S. Ezzat: Pathogenetic Mechanisms of Pituitary Tumors



families that regulate cell replication and functional dif-
ferentiation by directly altering the expression of specif-
ic genes (121). They are considered to play an important
role in the multistep pathway of tumorigenesis. A num-
ber of oncogene products are homologous to growth
factors, their receptors, or enzymes that participate in
the mitogenic process. In several systems, growth fac-
tors have been shown to interact with specific mem-
brane receptors in regulating cell growth and gene
expression in an autocrine or paracrine manner. Some
are known to affect hormone production and some are,
in turn, modulated by hormones (36). A few have been
identified in the hypothalamus and are considered to
play a physiological role in pituitary regulation (12). 

The pituitary is a site of both synthesis and action of
growth factors (36, 145). A number of growth factors
have been identified in adenohypophysial cells, includ-
ing insulin-like growth factors-I and -II (IGF-I, IGF-II),
epidermal growth factor (EGF), nerve growth factor
(NGF) (109), transforming growth factor-� (TGF-�),
transforming growth factor-� (TGF-�), and basic
fibroblast growth factor (bFGF). Several partially char-
acterized pituitary-derived growth factors have also
been described (36, 145), including thyroid hormone-
inducible growth factor, mammary cell growth factor
(106), adrenal growth factor (125), chondrocyte growth
factor (65, 70), and adipocyte growth factor. Growing
evidence suggests that human pituitary tumor cells pro-
duce multiple peptides which stimulate rat adenohy-

pophysial cell replication in vitro (146). The relative sig-
nificance of these different growth factors in human
pituitary adenomas remains to be established, however,
several have been implicated in the pathogenesis of
these tumors. 

The epidermal growth factor family. The EGF fam-
ily of ligands includes EGF, TGF-�, amphiregulin,
heparin-binding EGF-like growth factor (HB-EGF), and
betacellulin (BTC) (22). An additional family of EGF-
related agonists include neuregulins which include glial
growth factors (GGFs), neu differentiation factors
(NDFs)/heregulins, ligands for erbB-3 and erbB-4 (22).
Of interest, GGFs were purified from the bovine pitu-
itary (92). It is currently not known, however, which
specific subsets of erbB receptors become activated in
response to each of these ligands.

Transforming growth factor-�. Transforming growth
factor-� is expressed as a membrane-anchored protein
by human adenohypophysial cells and tumors (38).
TGF-� may alter pituitary production of GH, PRL, TSH
as well as cell proliferation (42). Estrogen stimulation
has been implicated in pituitary tumorigenesis (76) and
TGF-� appears to mediate some estrogenic effects
(105). Targeted overexpression of TGF-� under the con-
trol of the PRL promoter results in lactotroph adenomas
(95) providing compelling evidence for the significance
of this growth factor in pituitary tumorigenesis. 

Epidermal growth factor and receptor (EGF; EGF-
R). EGF is detectable by immunohistochemistry in most
adenohypophysial cells and its mRNA is expressed with
marked variation in all types of functional and non-
functional adenomas (84). EGF potently stimulates PRL
(104, 118, 149) and ACTH secretion (28, 115) and has
been reported to stimulate (62) and inhibit (36) GH
secretion by nontumorous rat pituitary cells in vitro. The
selective expression and specific effects of EGF suggest
that the pituitary is an important target site for this
growth factor’s action. 

The common receptor of EGF and TGF-�, EGF-R, is
a 170-kD plasma membrane tyrosine kinase product of
the protooncogene v-erbB. EGF-R is overexpressed in
several types of human cancers and in most instances
this overexpression is accompanied by TGF-� expres-
sion; expression of this receptor appear to correlate with
tumor aggressiveness. EGF-R is expressed by pituitary
adenomas with the highest levels detected in recurrent
somatotroph adenomas and aggressive silent subtype 3
adenomas, suggesting a selective mechanism for the
EGF/EGF-R family in the growth of aggressive soma-
totroph tumors (84). The importance of the EGF-R in
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Figure 3. Lack of expression of human follistatin mRNA by
gonadotroph adenomas. Follistatin is localized in pituitary
gonadotrophs of the nontumorous adenohypophysis (left). In
contrast, a gonadotroph adenoma (right) is totally devoid of fol-
listatin mmunoreactivity. A few trapped nontumorous cells with-
in the capsule of the adenoma are positive.



the somatotroph has been further addressed recently in
transgenic mice using expressing a dominant negative
EGF-R mutant lacking the intracellular protein kinase
domain (EGFR-tr). Directed EGFR-tr expression to
GH- and PRL- producing cells resulted in dwarf mice
with hypoplasia of these cell populations (122). When
EGF-R-tr over-expression was delayed to the postnatal
period, however, no specific phenotype was observed.
These findings point to EGF-R as an integral component
in the differentiation of the somatotroph.

The EGF-R is one of four highly homologous tyro-
sine kinase receptors which include erbB2/HER2/
neu/p185, erbB-3 (HER3), and erbB-4 (HER4) (114).
Growing evidence in support of functional cross-talk
between the different members of this receptor family is
now well recognized (117). Ligand-induced stimulation
can result in transphosphorylation of neu via EGF-R
(32, 117). Over-expression of a wild type EGF-R and
heterocomplex formation with neu dramatically increas-
es receptor autophosphorylation and binding of EGF
(50, 117). Cytoplasmic positivity for neu can be identi-
fied in nontumorous pituitary cells using an antibody to
the intracytoplasmic domain of neu. No membrane
staining is found using an antibody to the extracellular
domain; the latter is said to reflect gene amplification
(39). Neu mRNA expression has been described in the
normal and tumorous pituitary. No differences in
degrees of mRNA expression, however, have been noted
between the different adenoma types and normal human
pituitary tissue as examined by competitive PCR (39).
As neu can be activated to an oncogene by a point muta-
tion in the transmembrane region, nucleotide substitu-
tions in this domain were investigated. Direct sequenc-
ing of codon 659 revealed no point mutations in any of
the tumors. Moreover, since amplification of neu has
been noted in a number of human malignancies, DNA
from these pituitary adenomas was examined by differ-
ential PCR. No detectable differences were noted
between the neu gene and the single-copy reference
gene INF-�. These findings indicated that the neu gene
is expressed in a homogenous pattern in pituitary cells
and their adenomas but that this expression is not asso-
ciated with gene amplification or activating mutations to
suggest a direct role in pituitary tumorigenesis. 

The transforming growth factor-� family.
Transforming growth factor (TGF)-� has been implicat-
ed in the regulation of normal and neoplastic cell func-
tion. TGF-beta regulates the expression of various pro-
teins, including p27Kip1 (p27), a cell cycle inhibitory
protein. TGF-beta 1/2/3 isoforms and the TGF-beta-

receptor are expressed in normal and adenomatous pitu-
itaries (64). Dispersed pituitary adenomas cells show a
biphasic response to TGF-� with changes in FSH secre-
tion. The TGF-� family, however, is represented in at
least three different forms in the pituitary. Inhibins and
activins consist of two homo- or heterodimeric polypep-
tide subunits derived from a common precursor (156);
inhibin A (�-�A) and inhibin B (�-�B) selectively
inhibit the release of FSH from pituitary gonadotroph
cells whereas activin (�A-�B), activin A (�A-�A) and
activin B (�B-�B) stimulate its release. Inhibin subunits
are expressed by pituitary gonadotroph adenomas (8,
56) and activin is known to stimulate hormone secretion
by these tumors (6). Activin effects are mediated by two
kinds of binding proteins, activin receptors and follis-
tatin (156); the former are required for activin binding,
but follistatin binds the protein resulting in decreased
activity. Activin receptors are expressed in gonadotroph
adenomas and follistatin expression is reduced or absent
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Figure 4. The FGF antisense gene GFG. a) Gene structure and
regions of complimentarity between the mammalian sense FGF
and antisense GFG genes are depicted. b) By immunohisto-
chemistry, nontumorous pituitary (N, lower right) exhibits cyto-
plasmic GFG protein (brown); an infiltrative pituitary tumor (T,
upper left) exhibits reduced cytoplasmic staining for GFG.



in some (Figure 3) (112), suggesting the possibility of
enhanced activin stimulation as a pathogenetic mecha-
nism in the development of these common pituitary
tumors. In contrast, activin treatment inhibited cell pro-
liferation in some non-functioning primary human
tumors with diminished follistatin mRNA expression
(29). These findings suggest a functional but heteroge-
nous role for the activin/follistatin balance in modulat-
ing pituitary tumor cell replication.

Vascular endothelial growth factor. Vascular
endothelial growth factor (VEGF) also known as vascu-

lar permeability factor (VPG) was also one of the
growth factors first isolated from the pituitary (53).
VEGF exists in a number of isoforms in human and
rodent tissues including VEGF206h/205r, VEGF189h/
188r, VEGF165h/164r, VEGF145h/144r and VEGF121)
that differ in their molecular masses and biological
activities. The VEGF isoforms bind with two tyrosine-
kinase receptors, KDR/flk-1 and flt-1. In addition,
VEGF165 binds with co-receptor, neuropilin-1, which is
expressed in human endothelial cells and several types
of non-endothelial cells including solid tumors. Recent
studies on the role of estrogen in the regulation of tumor
angiogenesis demonstrated that this steroid induces neo-
vascularization in parallel with early induction of VEGF
and the VEGFR2- (flk-1/KDR) protein expression in
both blood vessels and non-endothelial cells (19).
Moreover, estrogen-induced rat pituitary tumors in
Fisher 344 rats express higher VEGF164 and neu-
ropilin-1 levels compared to control untreated rat pitu-
itaries (20). These findings suggest that over-expression
of VEGF and its receptor (VEGFR-2) may play an
important role in the early phases of estrogen induced
tumor angiogenesis in the rat pituitary.

Fibroblast growth factors and receptors. Fibroblast
growth factors (FGFs). Basic fibroblast growth factor
(bFGF, also known as FGF-2) is one of an ever-expand-
ing family of FGFs several of which possess mitogenic,
angiogenic, and hormone regulatory functions (93).
bFGF immunoreactivity was described originally in the
non-hormone producing bovine pituitary folliculo-stel-
late cells (54); since bFGF has been shown to regulate
GH, PRL and TSH secretion by the rodent pituitary (17,
79), it was implicated in paracrine regulation within the
pituitary. In the human pituitary, in contrast, bFGF is
produced by adenohypophysial cells that comprise pitu-
itary adenomas (37, 63, 87). Pituitary-derived bFGF
stimulates replication of PRL-secreting cells (116).
Elevated circulating bFGF-like immunoreactivity is
noted in patients with multiple endocrine neoplasia
(MEN)-1 (157) and in patients with sporadic pituitary
adenomas (37). 

The FGF-related hst has been found in transforming
DNA of human PRL-secreting tumors (51) and trans-
fection studies have shown that hst facilitates lactotroph
proliferation in vivo and in vitro (133). Moreover, in one
mouse model, estrogen-induced pituitary tumorigenesis
was associated with parallel increases in the expression
of a pituitary tumor transforming gene (PTTG) as well
as FGF-2 (59). Transgenic mice expressing FGF-2
under the control of the GH and the �-subunit promot-
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Figure 5. Characterization of ptd-FGFR4 protein in the human
pituitary. a) Full length FGFR4 is composed of a signal peptide
(SP), three extracellular Ig-like domains (I1, I2 and I3) with an
acid box (AB) between I1 and I2, a transmembrane domain
(TM), a split kinase (K1 and K2) and a C terminal tail (C). In
contrast, ptd-FGFR4 initiates transcription in exon 5, thereby
lacking a signal peptide and the first 2 Ig-like domains. This
results in cytoplasmic localization of this N-terminally truncated
receptor. b) Immunohistochemistry localizes C-terminal FGFR4
immunoreactivity in the cytoplasm of human pituitary tumor (T,
bottom right) but not in normal pituitary cells (N, top left). c)
Transgenic mice expressing ptd-FGFR4 under the control of
the mouse prolactin promoter develop pituitary lactotroph ade-
nomas that contain cytoplasmic immunoreactivity for C-terminal
FGFR4, similar to human tumors. 



ers developed hyperplasia of several adenohypophysial
cell types but not frank adenomatous changes (147). 

In Xenopus laevis oocytes, a 1.5 kb FGF-2 antisense
(GFG) RNA complementary to the third exon and
3’UTR of FGF-2 mRNA has been implicated in FGF-2
mRNA regulation. The human homolog has been local-
ized to the same chromosomal site as FGF-2 (chromo-
some 4, JO4513 adjacent to D4S430), confirming this as
a human endogenous anti-sense gene (16). This GFG
anti-sense gene also encodes a 35 Kd protein, which is
highly homologous with the MutT family of antimutator
NTPases. Pituitary tumors have been shown to express
FGF-2 and GFG while the normal human pituitary
expresses GFG but not FGF-2; GFG protein levels are
higher in the normal gland than in most tumors (Figure
4). Aggressive pituitary adenomas appear to express
more FGF-2 than GFG mRNA. Expression of GFG in
transfected GH4 mammosomatotroph cells results in
enhanced PRL gene expression and protein translation
(16). Moreover, despite the fact that GFG expression
does not down regulate pituitary FGF-2 mRNA expres-
sion, GFG expression inhibits pituitary cell prolifera-
tion. Taken together, these recent findings suggest that
the GFG-encoded protein may represent a novel mech-
anism involved in restraining pituitary tumor cell
growth while promoting hormonal activity. 

Fibroblast growth factor receptors (FGFRs). There
are 4 mammalian FGFR genes encoding a complex fam-
ily of transmembrane receptor tyrosine kinases (RTKs)
(48). Each prototypic receptor is composed of 3
immunoglobulin (Ig)-like extracellular domains, 2 of
which are involved in ligand binding, a single trans-
membrane domain, a split tyrosine kinase, and a
COOH-terminal tail with multiple autophosphorylation
sites (48). Multiple forms of cell-bound or secreted
receptors are produced by the same gene. Tissue-specif-
ic alternative splicing, variable polyadenylation sites
and alternative initiation of translation result in truncat-
ed receptor forms (113, 155). The first two extracellular
loops of FGFR1 can be secreted as soluble circulating
FGF binding proteins (57), but their physiological
importance remains to be established. Different FGFRs
can dimerize, so that truncated forms of FGFR1 block
signalling through FGFR1, 2, and 3 (148). 

Structural alterations of FGFRs may play a role in
human tumorigenesis. For example, FGFR1 is highly
expressed in the brain (52) but the shorter (2 Ig-domain)
form of FGFR1 is more abundant in some CNS
glioblastomas (33). Anti-sense targeted interruption of
FGFR1 reduces malignant melanoma cell proliferation
and differentiation (21). FGFR2 exon switching has

been observed to accompany prostate cell transforma-
tion (154). The normal pituitary expresses mRNAs for
FGFR 1, 2 and 3. An interesting finding was the docu-
mentation of novel truncated mRNAs for the first and
second Ig-like loops of FGFR4 in the nontumorous pitu-
itary and a kinase-containing variant of FGFR4 with an
alternative transcription initiation site in pituitary ade-
nomas (Figure 5) (1, 2). This tumor-derived kinase con-
taining FGFR4 isoform is transforming in vitro and in
vivo and has been recently shown to result in lactotroph
adenomas in transgenic mice (40). 

Taken together, these data suggest that dysregulated
FGF/FGFR function plays a role in pituitary tumorigen-
esis and that FGFR4 is a candidate tumor-specific
kinase.

The nerve growth factor family. NGF overexpres-
sion targeted to lactotrophs results in dramatic hyperpla-
sia of those cells, however, tumor formation has not
been demonstrated (26). Further, treatment of human
prolactinoma cells with NGF results in decreased prolif-
eration in vitro, reduced capacity to form colonies in soft
agar, and loss of tumorigenic activity in nude mice
(100). NGF appears to induce D2 receptor expression in
human prolactinomas(100)and directs differentiation of
bihormonal GH3 cells into mature lactotrophs with D2
receptor expression (101). Moreover, gp140trk and
gp75 components of of the NGF receptor are expressed
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Figure 6. Proposed model of pituitary tumorigenesis. An inte-
grated approach considers hypothalamic influence of stimula-
tion or loss of negative feedback inhibition contributing to an
intrinsic pituitary defect in cell cycle regulation. Animal models
and patients with hypophysiotrophic hormone excess, suppres-
sive hormone insufficiency, or growth factor excess develop
hyperplasia (left pathway); the increased proliferative activity
predisposes to genomic instability (cells with dark nuclei) and
subsequent adenoma formation. Most human pituitary adeno-
mas are unassociated with hyperplasia and likely result from a
rapid early progressive genetic event which alters cell cycle
control (dark nucleus) rendering these cells targets for further
stimulation by hormonal and/or growth factor signals (right).



in responder prolactinoma cell lines. NGF anti-sense
treatment results in loss of expression of D2 receptors
and an increase cell proliferation (102). Aberrant
expression of NGF may, therefore, contribute to unre-
strained cell proliferation and/or diminished responsive-
ness to dopamine agonist treatment. 

Conclusions
Pituitary adenomas are common neoplasms that

exhibit a wide range of biologic behavior. Numerous
factors have been shown to govern pituitary cell prolif-
eration; these various hypophysiotropic hormones and
growth factors likely play a role as promoters of tumor
cell growth in genetically transformed cells (Figure 6).
In some instances, abnormal forms of growth factor
receptors maybe important in the early stages of cell
transformation consistent with the clonal composition of
pituitary adenomas.
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