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REVIEW ARTICLE 1 
The Role of Macrophages in Wallerian Degeneration 

Wolfgang Bruck, M.D. 

Department of Neuropathology, University of Gottingen, 
Germany 

The present review focuses on macrophage 
properties in Wallerian degeneration. The identifica- 
tion of hematogenous phagocytes, the involvement 
of cell surface receptors and soluble factors, the 
state of activation during myelin removal and the 
signals and factors leading to macrophage recruit- 
ment into degenerating peripheral nerves after 
nerve transection are reviewed. The main effector 
cells in Wallerian degeneration are hematogenous 
phagocytes. Resident macrophages and Schwann 
cells play a minor role in myelin removal. The 
macrophage complement receptor type 3 is the 
main surface receptor involved in myelin recogni- 
tion and uptake. The signals leading to macrophage 
recruitment are heterogenous and not yet defined 
in detail. Degenerating myelin and axons are sug- 
gested to participate. The relevance of these find- 
ings for immune-mediated demyelination are dis- 
cussed since the definition of the role of 
macrophages might lead to a better understanding 
of the pathogenesis of demyelination. 

Introduction 

The macrophage represents the most differentiat- 
ed cell of the mononuclear phagocyte system. This 
system includes monoblasts and promonocytes in 
the bone marrow, peripheral blood monocytes, as 
well as tissue macrophages, all of which derive from 
a myeloid stem cell in the bone marrow where they 
differentiate to monocytes upon the effects of differ- 
ent growth factors (3,115). Monocytes leave the bone 
marrow into the peripheral blood where they circu- 
late for 60 to 70 hours representing approximately 5- 
20% of the circulating leukocytes. They are the 
largest cells of the peripheral blood with a diameter 
of 15-20 pm. As a reaction to different stimuli, 
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monocytes migrate into various organs or tissue sys- 
tems and finally differentiate to resident tissue 
macrophages. The resident macrophage population 
does not represent a constant population, but rather 
is permanently exchanged by newly recruited blood 
monocytes, except microglial cells, which form a sta- 
ble cell population in the central nervous system 
(61). Only a minor proportion of the tissue 
macrophages regenerates by cell division. 

The central function of mononuclear phagocytes 
is the stimulation and regulation of immunoreac- 
tions as well as cytotoxic activity (81). Their most 
evident function is phagocytosis (31). Macrophages 
possess a range of different surface receptors which 
allow them to interact with numerous partners (46). 
Furthermore, they possess an extensive secretory 
activity including the secretion of toxic oxygen radi- 
cals, cytokines, enzymes and arachidonic acid 
metabolites (90). Another central function of these 
cells is the presentation of antigens. They also serve 
as immunosuppressive cells and stimulate regenera- 
tion and repair in the nervous system by the induc- 
tion of trophic factors (e.g., nerve growth factor 
[NGFI) (16,931. 

Wallerian degeneration is one of the most ele- 
mentary and common reactions of the nervous sys- 
tem which occurs when the continuity of a nerve 
fiber is interrupted through baumatic, toxic, degen- 
erative, ischemic or metabolic events (Table 1). The 
phenomena occurring after transection of a nerve 
fiber were first described by Augustus Waller (123). 
Wallerian degeneration concerns the axon, the 
myelin sheath and the rnyelin-forming cell, e.g., the 
Schwann cell in the peripheral nervous system (51). 
Axonal structures break down, and the nerve fiber 
loses its capacity to conduct action potentials. The 
Schwann cells proliferate as early as the first week 
after nerve transection and form the so-called 
Bungner bands which induce regeneration by con- 
necting the dissected nerve stumps (51). The myelin 
sheaths break down into the characteristic myelin 
ovoids (Fig. l a  and b). The Schwann cell actively 
retracts the cytoplasm from the myelin sheath 
(10,51) and downregulates the mRNA synthesis for 
myelin proteins (112). 

The identification of the myelin-removing cell 
during Walleriari degeneration has long been a mat- 
ter of debate. Many different cell types have been 
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Sequence of Cellular Events in Peripheral 
Wallerian Degeneration 

Disconnection of the axon through traumatic, toxic, degenerative, 
ischemic or metabolic damage 

I 
Calcium-dependent axonal degeneration with granular disintegration 

Loss of action potentials 
Retraction of Schwann cell cytoplasm from myelin sheath 
Downregulation of myelin mRNA synthesis by Schwann cells 
Formation of myelin ovoids 

of the cytoskeleton 

+ 
Intense Schwann cell proliferation 
Recruitment of hematogenous phagocytes 
Opsonization of degenerating myelin by activated complement 
without formation of membrane attack complex 

Removal of degeneration myelin by hematogenous or resident 
macrophages and Schwann cells 

I 
Formation of Bungner bands and regeneration of nerves 

0-24 h 

24-96 h 

3-8 days  

10-20 days 
and later 

Table 1. 

suggested to be responsible for myelin removal in 
this process: Schwann cells, resident or hematoge- 
nous macrophages, endoneurial fibroblasts or mes- 
enchymal cells (103). Different experimental 
approaches have been undertaken to clarify this 
question. Using Millipore diffusion chambers Beuche 
and Friede (10) identified non-resident cells of the 
mononuclear phagocyte system as the main effector 
cells in myelin phagocytosis during Wallerian degen- 
eration. This hypothesis was confirmed in a series of 
follow-up experiments. Immunocytochemistry iden- 
tified the myelin-removing cells as Mac-1- and Fc- 
receptor positive (12,101,102). The establishment of 
a cell culture model allowed a detailed investigation 
of the signals and events which lead to macrophage 

invasion into degenerating nerve as well as of the 
macrophage properties during myelin removal 
(32,54) (Figs. l c  and d). Schwann cells were also 
shown to possess myelin phagocytosing capacities 
(13,36,86,107). 

The present study aims at reviewing experiments 
which have been performed to identify cellular 
and soluble factors involved in myelin removal to 
define the various activation and differentiation 
properties of macrophages during myelin digestion 
as well as to describe the different chemotactic sig- 
nals that are involved in Wallerian degeneration. The 
knowledge of these processes may lead to better 
understanding of the pathogenesis of segmental 
demyelination in the peripheral and central nervous 
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system in which mononuclear phagocytes are also 
essentially involved. 

The Identification of the Myelin-Removing Cell 
during Wallerian Degeneration 

The role of hematogenous cells during Wallerian 
degeneration in vivo has been studied using different 
experimental approaches. The best indication for an 
involvement of this cell type is probably provided by 
the mouse mutant C57B1/01a. In this mouse strain 
there is a very sparse and retarded macrophage inva- 
sion after nerve transection without any indication 
of myelin removal (84) (Fig. le)  compared to wild 
type mice in which numerous myelin-removing 
phagocytes are identified (Figs. l b  and d). Antibodies 
to the macrophage complement receptor type 3 
(CR3) as well as a non-specific depletion of 
macrophages by silica dust also caused a reduction of 
myelin removal which was due to a decreased cell 
invasion (12,84,8Y). 

These in vivo experiments were hampered by the 
fact that the circulating monocyte population could 
not be selectively eliminated. The intravenous injec- 
tion of dichlormethylene diphosphonate (C12MDP)- 
containing liposomes allows a selective and tempo- 
rary eIimination of macrophages from the spleen and 
liver as well as of monocytes from the systemic circu- 
lation (65,116,117,118). This selective monocyte 
depletion technique was used to clarify the role of 
hematogenous cells during Wallerian degeneration 
(24). The depletion of macrophages from the periph- 
eral blood by C12MDP-containing liposomes caused a 
significantly retarded myelin removal (Figs. l b  and f )  
which was due to a significantly decreased cell inva- 
sion into the degenerating nerve stumps (24). 
Compared to untreated control animals, monocyte- 
depleted mice showed a certain degree of myelin 
digestion which suggests that a resident cell popula- 
tion within the peripheral nerves is also involved in 
myelin uptake. A delayed injection of C12MDP-con- 
taining liposomes one or two days after nerve tran- 
section was significantly less effective in reducing 
macrophage influx. l h i s  means that the main part of 
the hematogenous cells invade the degenerating 
nerves during the first 24-48 hours after transection 
and that the already invaded cell population is not 
affected by the treatment. Injected liposomes do not 
seem to pass the blood-nerve barrier. 

These investigations confirmed early in vivo 
experiments which suggested an important role of 
hematogenous cells during myelin removal (12,84). 
Similar observations were made during a radiation- 
induced macrophage reduction (96). In these experi- 
ments, two different phases of myelin removal 
were suggested, the first of which depends on 
Schwann cell activity and the second in  which 
macrophages are involved. Earlier studies already 
implied that the macrophage population which 

participates in myelin removal is composed of rcsi- 
dent and hematogenous cells (1 7) .  The resident 
macrophage population in the peripheral nerve com- 
promises approximately 2-YOh of all endoneurial 
cells, and this cell population undergoes a significant 
and rapid turnover (49,120). 

Schwann cells are also involved i n  myelin 
removal (36,107). They were shown to proliferate 
intensively after nerve transection and to digest 
myelin ovoids (30,71,80). Schwann cells w e n  
express antigens during Wallerian degeneration 
which are usually almost exclusively found i n  
tissue macrophages (5). They also seem to adapt a 
macrophage phenotype during Wallerian degenera- 
tion (98). In conclusion, newly recruited hematoge- 
nous macrophages play an essential role in myelin 
uptake during Wallerian degeneration forming 
the main myelin-removing cell population while 
under normal conditions the contribution of the res- 
ident cells is minor. 

The Role of Macrophage Receptors and Soluble 
Components 

Recognition and uptake of particles are important 
functions of macrophages. A range of different recep- 
tors are expressed on the macrophage cell surface 
(46). In phagocytosis two different basic mechanisms 
have to be distinguished. The opsonin-dependent 
phagocytosis is mediated via the Fc receptor or com- 
plement receptors of the macrophage. Opsonin-inde- 
pendent phagocytosis can be mediated by carbohy- 
drate receptors (105). 

The established in vitro model of Wallerian degen- 
eration was used to investigate the role of carbohy- 
drate-specific cell membrane receptors during the 
recognition and uptake of myelin (21). .A range of 
different simple OT complex carbohydrates as well as 
carbohydrate-splitting enzymes were tested for their 
capacity to interfere with myelin uptake by 
macrophages. Many of the investigated carbohy- 
drates impaired the migration of macrophages into 
the degenerating nerve segments. A dramatic effect 
was seen when the cultures were exposed to the 
enzyme L-fucosidase. The myelin-removing capacity 
of macrophages was completely abolished whereas 
their capacity to phagocytose carbon or latex parti- 
cles was unimpaired. Cell migration in these experi- 
ments was not disturbed (21). 

The myelin sheath of the peripheral nerves pos- 
sesses a high carbohydrate content within the myelin 
glycoproteins with which the I.-fucosidase treatment 
could interfere. A competitive blockade of fucose 
receptors using fucose did not impair myelin 
removal. I t  thus remains unresolved whether the 
effect of L-fucosidase can be attributed to the block- 
ade of a carbohydrate-dependent opsonin-indepen- 
dent myelin removal (21). Another possibility might 
be that I.-fucosidase impairs other recognition 
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Summary of Macrophage Functions in Waf ferian Degeneration 

Invasion Expression of adhesion molecules (Mac-1, LFA-1 12,101) (migration is 

Interaction with ICAM-1 expressed on endothelial cells27 
Reaction to chemotactic stimuli arising from degenerating axonal and 

blocked by the 5C6 antibody directed to the macrophage CR384) 

myelin structures or from serum complement (fails in C57BVOla mice or 
in the absence of serum ~omp lemen t l9 ,~3~5~ ,53 ,~~)  

Receptor-mediated phagocytosis of opsonized myelin via the macrophage 
CR317,22,23,25 (phagocytosis is blocked by anti-CR3 antibody and in the 
absence of complement) 
Participation in opsonization by synthesis of complement components23 
(immunocytochemical evidence) 
No involvement of the macrophage Fc receptor (depletion of 
immunoglobulins or anti-FcR antibody does not affect myelin remova122-55) 

~- - -__ 

Phagocytosis 

___ -_ 

Secretion Interleukin-6g7 
Phospholipase A92 
Apolipoprotein E44,*9 
Lysozyml21 

No induction of a respiratory burst20 

Induction of trophic factors (e.g., NGF16~93) (impaired regeneration in 

TNF-a’Og 

_ _ _ _ - ~  -~ ~ 

Regeneration 
C57BVOla mice with disturbed macrophage recruitment) 

Table 2. 

mechanisms. There is a fucose-containing surface 
glycoprotein which regulates the function of the 
macrophage complement receptor (48). The lym- 
phokine which activates the macrophage comple- 
ment receptor type 3 (CR3) for phagocytosis binds 
to  a fucose-containing glycoprotein. Pretreatment 
of macrophages with L-fucosidase prevented the 
CR3-dependent phagocytosis. The selective blockade 
of myelin uptake by L-fucosidase may be due to 
a specific interaction of this enzyme with a cell 
membrane receptor. 

Further experiments elucidated the essential role 
of CR3 in myelin removal. The macrophage Fc recep- 
tor does not seem to play a role in myelin removal 
since Wallerian degeneration was not impaired in the 
absence of immunoglobulins (55). The macrophage 
CR3 is built of two non-covalently linked subunits 
with moIecular weights of the a chain of 160 kDa 
and the 13 chain of 95 kDa (78). The a subunit is also 
designated as CDllb,  the 13 subunit as CD18. The 
antibody Mac-1 recognizes selectively the a chain 
(CDllb)  of CR3 from humans and mice (9). The 
main function of the CR3 is the uptake of particles 
which are opsonized by complement components, 
especially by the component C3 (75). 

Cocultures of macrophages and degenerating 
nerve segments were treated with the antibody 
Mac-1. Numerous macrophages invaded the degener- 
ating nerves in these experiments (Fig. lg).  These 
cells revealed many fat droplets in their cytoplasm, 
uptake of myelin, however, was not observed (22). 
Further experiments proved that these cells are non- 
resident and invaded the nerves. Similar results were 
obtained when cobra venom factor was used to scav- 
enge the complement components within the medi- 
um or when the nerves and macrophages were cul- 
tured in C3-deficient serum (23) (Fig. lh). 

In vivo experiments confirmed the important role 
of the CR3 in myelin removal (23). The application 
of the antibody Mac-1 after nerve transection caused 
a significant reduction of myelin phagocytosis. The 
5C6 antibody which recognizes a different epitope of 
the macrophage CR3 caused a significant inhibition 
of cell migration in Wallerian degeneration (84). The 
complement component C3 was detected at the 
surface of degenerating myelin sheaths by immuno- 
electronmicroscopy, indicating that myelin is 
opsonized by complement during Wallerian degener- 
ation. Comparable results were obtained when the 
translation of the a or 13 chain of the CR3 was 



blocked by antisense oligonucleotides (25). Myelin 
removal by macrophages was significantly impaired 
in these experiments. 

The question arises as to how complement is acti- 
vated under these circumstances. Different experi- 
ments showed that isolated myelin initiates an activa- 
tion of the alternative as well as the classic pathway 
of complement (73,74119). Anti-myelin antibodies 
were also shown to cause complement activation 
(72). Besides the complement component C3 anti- 
bodies to myelin proteins and normal serum are capa- 
ble of opsonizing myelin and thus facilitate uptake by 
macrophages (43,113). In conclusion, complement 
components play an important role in the opsoniza- 
tion of myelin and the macrophage CR3 is essentially 
involved in myelin uptake. The functional role of 
antibodies during myelin opsonization and comple- 
ment activation is not yet clarified in detail. 

Macrophages possess a range of different 
immunological functions besides phagocytosis. 
These include the secretion of proteins, enzymes and 
cytokines (90). A series of experiments aimed at clari- 
fying the effects of two important macrophage- 
derived cytokines, tumor necrosis factor CL (TNF-a) 
and interleukin-I (17). The treatment of macro- 
phages and degenerating myelin sheaths with TNF-a 
caused a significant reduction of myelin uptake. 
This effect was reversible by utilizing anti-TNF-a 
antibodies. Immunofluorescence studies revealed a 
significant reduction of CR3 expression by macro- 
phages which was probably the cause of the reduced 
myelin phagocytosis. 

The described effects of TNF-a are highly variable. 
A known property is the modulation of surface 
molecules as observed in the present experiments 
(28,63). Immunocytochemically, TNF production by 
macrophages in the in vitro experiments was not 
detectable whereas in the in vivo situation TNF-posi- 
tive macrophages were recognized (109). An effect on 
Schwann cells by TK'F-a was not observed as has 
already been described by others (87). This is in con- 
trast to the central nervous system in which TNF-a 
leads to selective oligodendrocyte damage (104). In 
summary, a modulation of surface receptors may 
affect the process of myelin removal. 

Macrophage Activation 

Macrophages possess a range of different func- 
tions during immunoregulation which include the 
secretion of many mediators. Macrophages them- 
selves are targets of such mediators and are able to 
perform different effector functions after stimulation, 
one of these being the secretion of oxygen radicals. 
One of the most potent activators of macrophages is 
interferon-y which activates a broad spectrum of 
macrophage functions (100) and also has the greatest 
potency to stimulate oxygen radical production com- 
pared to other cytokines (88,91). 

In a series of experiments the effect. o f  recombi- 
nant interferon-y on oxygen radical production, 
macrophage migration and myelin removal was ana- 
lyzed (20). The oxygen radicals produced were mea- 
sured by luminol-dependent chernoluminescence (1). 
The experiments showed that cultivated 
macrophages can be activated to produce oxygen 
radicals at any time of the culture period. When 
macrophages were activated with interferon--( a t  the 
start of the experiments, a complete inhibition 
of macrophage migration was observed. The applica- 
tion of interferon-y at the later stage of the experi- 
ments had no effect on myelin removal although 
oxygen radical production Ivas induced. Myelin 
phagocytosis itself did not induce cheniolumines- 
cence. These experiments show that myelin removal 
by macrophages occurs independent of oxygen radi- 
cal production and that a macrophage activation by 
interferon-y does not lead to an increased myelin 
uptake. This observation is of high significance 
since the uptake of particles via the macrophage 
CR3 is known to happen independent of an osygen 
radical production, thus supporting the hypothesis 
of an important role of the macrophage CR3 in 
myelin removal (124). 

Oxygen radicals do not seem to be involved in 
myelin removal during Wallerian degeneration. 
There are, however, other substances which are pro- 
duced by macrophages under these conditions. These 
include in t e rl eu ki n- 6 ,  p h o s p hol i p a s e A, a p o 1 i po- 
protein E and lysozym, which is recognized as  a 
marker for active phagocytosis (41,89,92,97,121). 
Furthermore, macrophages show an increased expres- 
sion of their scavenger receptor (8). 

Macrophage Recruitment 

The mechanisms and signals Ieading to migration 
of non-resident cells into degenerating nerves have 
not yet been clarified in detail. Concerning these 
phenomena, the mouse mutant C57R1/01a or 
CS7Bl/WLD is of extraordinary interest. ?'his mouse 
strain shows a very sparse and retarded macrophage 
invasion after nerve transection which is independent 
of age (33,82,84,94). Axons remain intact in the distal 
nerve stumps and the myelin sheaths do not show 
any signs of degeneration (Fig. le). The time course of 
Wallerian degeneration in wild-type C57B1 mice has 
been characterized in a range of experiments 
(10,20,22,23) (Figs. l a  and b). A comparative analysis 
of the behavior of degenerating C57R1 and C57B1/01a 
nerves in the presence or absence of non-resident 
cells aimed at identifying chemotactic signals which 
induce macrophage recruitment (19). Peripheral 
nerves of C57B1101a mice did not show any signs of 
axonal or myelin degeneration after nerve transection 
in vivo and macrophage invasion was very sparse 
compared to CS7B1 nerves (Figs. I b  and e).  The char- 
acteristic proliferation of Schwann cells seen in wild 
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type mice after transection was lacking in C57B1/01a 
nerves. Surprisingly, the obvious differences between 
both mice strains were not evident under cell culture 
conditions (19). The properties of both nerves could 
not be distinguished. Axonal as well as myelin degen- 
eration combined with a massive macrophage inva- 
sion was observed when culturing nerves and 
macrophages of both mice strains. 

A range of mediators such as Schwann cells, 
myelin or serum components were suggested to have 
chemotactic properties during Wallerian degenera- 
tion. The lack of macrophage recruitment in 
C57B1/01a mice is due to an intrinsic property of the 
nerves and not due to a defect of circulating 
macrophages (95). The gene responsible for the 
delayed Wallerian degeneration in these mice was 
recently localized on mouse chromosome 4 (85). 
Serum components are involved in macrophage 
recruitment. In the absence of the serum comple- 
ment component C3 no macrophages invaded 
degenerating nerves (23). Antibodies to the 
macrophage CR3 reduced cell recruitment as well as 
myelin uptake by macrophages (23,84). The expres- 
sion of adhesion molecules on macrophages as well 
as on endoneurial or perineurial endothelial cells 
also seems to be involved in the process of 
macrophage invasion (own observations). Recent 
observations demonstrate an upregulation of 
ICAM-1 and VCAM-1 expression on endothelial 
cells in the distal transected nerve stump (27). 
Degenerating myelin is another factor which partici- 
pates in  the induction of macrophage migration 
into degenerating nerves (SO). Its role in cell recruit- 
ment was suggested to succeed that of axoplasmic 
degeneration because non-myelinated nerve fibers 
show a reduced cell infiltration compared to myeli- 
nated nerve fibers. This hypothesis is supported by 
experiments in C57B1/01a nerves in which a 
demyelination was induced by the injection of 
lysophosphatidylcholine. In these experiments a 
massive macrophage recruitment was observed while 
the axons remained intact (53). 

The most remarkable observation in our experi- 
ments was the axonal and myelin degeneration of 
cultured C57BUOla nerves in the in vitro model of 
Wallerian degeneration. This is in contrast to earlier 
in vitro experiments in which axonal degeneration 
was shown to be absent in these nerves (95). Axonal 
degeneration was even detectable in the absence of 
non-resident macrophages. This means that the dis- 
integration of axonal structures is not induced by 
invading cells. This hypothesis was confirmed in 
recent experiments in which axonal degeneration 
was shown to be a calcium-dependent intrinsic 
axonal process (42). The sequence of events after 
axotomy involves a calcium influx into the axon 
followed by an activation of calcium-dependent 
effector molecules which degrade the axonal 

cytoskeleton (39). This observation is of striking 
importance since the role of macrophage invasion 
and axonal degeneration for nerve regeneration are 
still a matter of debate (14,15,16,29). An efficient 
degeneration seems to be a prerequisite for a success- 
ful regeneration (1 11). 

Earlier experiments suggested that the lack of cell 
recruitment in C57B1/01a mice contributes to the 
delayed axonal degeneration (84). Recent experi- 
ments in contrast confirmed that the delayed axonal 
degeneration is an intrinsic property of the axon and 
does not depend on Schwann cells or invading 
phagocytes (41). In summary, the stable Schwann 
cell-myelin-axon unit does not seem to release 
chemotactic signals for macrophages. A disturbance 
in one or more components of this unit is sufficient 
to induce macrophage recruitment into the peripher- 
al nervous system. Soluble factors participate in the 
induction of hematogenous cell invasion into degen- 
erating nerves. In contrast to the peripheral nervous 
system, Wallerian degeneration in the central nervous 
system occurs significantly slower (40,SO). There is a 
profound difference in the macrophage response 
between the peripheral and central nervous systems 
(4). The reasons for these differences have not yet 
been clarified. Resident factors within the injured 
central nervous system seem to inhibit macrophage 
migration (62). The lack of adhesion molecule expres- 
sion on CNS endothelial cells may also contribute to 
the delayed macrophage invasion (27). There is no 
doubt that hematogenous macrophages form the cell 
pool which is responsible for myelin removal in the 
central nervous system (1 10). 

Relevance for Immune-Mediated Demyelination 
Mononuclear cells of the monocyte/macrophage 

system are also essentially involved in the effector 
phase of inflammatory demyelinating diseases of 
the central and peripheral nervous systems 
(7,26,34,52,108). Depletion experiments using 
C12MDP-containing liposomes have been clarifymg 
their role in experimental allergic neuritis and 
experimental allergic encephalomyelitis, which 
are animal models for Guillain-Barr6 syndrome and 
multiple sclerosis (66,68). 

The macrophage CR3 plays an extraordinary role 
in the adhesion and the recruitment of inflammatory 
cells. An anti-CR3 antibody was shown to inhibit 
cell migration during inflammatory reactions 
(99). Complement components, as well as CR3, are 
also important in myelin uptake during immune- 
mediated demyelination. Depletion of complement 
during experimental allergic neuritis led to a signifi- 
cant reduction of cell invasion as well as demyelina- 
tion and suppressed the development of clinical 
symptoms (35,122). 

Complement components are also essentially 
involved in experimental allergic encephalomyelitis. 



Complement depletion by cobra venom factor 
reduced demyelination (79). Antibodies to different 
epitopes of the rat CR3 were also capable of suppress- 
ing the development of experimental allergic 
encephalomyelitis (45,64). The complement compo- 
nent C3 was detected in multiple sclerosis plaques 
as  well as in peripheral neuropathies (60,83). All 
these investigations confirm the role of complement 
component and of the macrophage CR3 during 
myelin removal. 

There is an intense interaction of macrophages 
and T-lymphocytes in immune-mediated demyelina- 
tion resulting in completely different patterns of 
macrophage activation when compared to Wallerian 
degeneration (59). Cytokines, such as TNF-a, oxygen 
radicals or arachidonic acid metabolites, are impor- 
tant factors involved in the pathogenesis of these dis- 
eases (56,57,58,108,109). 

The interaction of lymphocytes, soluble cytokines 
and macrophages was studied in an in vibo model of 
xenogeneic peripheral nerve rejection [ 18). There 
was a massive tissue rejection observed when 
degenerating rat nerve segments were cocultivated 
with a mouse macrophage population which has 
been sensitized to rat peripheral nerve. The tissue 
rejection was clearly distinguishable from the 
basic myelin phagocytosis during Wallerian degener- 
ation. The sensitized population was composed of T- 
cells and macrophages. Depletion experiments 
revealed a dependence of the rejection from the pres- 
ence of T-lymphocytes in the culture medium. 
Antibodies against a range of cytokines including IL- 
2, IL-3, IL-4, 1L.-6 and interferon-y identified these 
cytokines as the main effector molecules during 
rejection. Antibodies to the macrophage CR3 and to 
class I1 major histocompatibility antigens also 
blocked the tissue rejection. 

These investigations confirmed previous experi- 
ments which showed that mouse peritoneal 
macrophages do not induce allogenic nerve rejection 
in the absence of the lymphocytes (11). The in vitro 
model used in the experiments allowed a detailed 
analysis of the interactions between T-lymphocytes 
and macrophages. Different in vivo models also 
revealed lymphocytes and macrophages as the main 
components of the inflammatory infiltrate during 
the rejection of transplanted peripheral or central 
nervous tissue (2,37,38). Macrophages are the main 
effector cells during rejection (77). Their effector 
functions are induced by a range of mediators (69). 
The cytokines which have been shown to be essential 
in the in viko model have also been identified as 
important mediators during acute graft-versus-host 
reaction as well as during autoimmune demyelina- 
tion (6,67,70,106,114). 

The interaction between macrophages and T-lym- 
phocytes is regulated by a network of cytokines 
which induce different effector functions of 

macrophages. These mediators m a y  indiicc a n  
increased function of the macrophage CK3 which is 
essentially involved in tissue rejection (47). There are 
similarities to immune-mediated demyelination 
because in both models there is an intense interac- 
tion between T-lymphocytes and macrophages which 
is regulated through a panel of mediators (56,59). A 
permanent antigen presentation is necessary to sup- 
port the immunological effector phase during tissue 
rejection and during autoimmune demyelination 
(76). This model allows detailed analysis of the inter- 
action between T-cells and macrophages in a defined 
in vitro system. 

Conclusions 
Mononuclear cells of the monocyte/macrophage 

system are the main effector cells in myeliri removal 
during Wallerian degeneration (Table 2). A range of 
different factors participates in this complex process. 
Intrinsic properties of the peripheral nerve as well as 
systemic factors are involved. The role of hematoge- 
nous monocytes could clearly be demonstrated by 
using the liposome depletion technique. Myelin 
recognition and uptake is dependent on the 
macrophage complement receptor type 3 as well as 
on serum complement components. The process of 
Wallerian degeneration can he modulated by differ- 
ent factors such as cytokines. In more complex 
immunological situations such as tissue rejection, 
there is an intense interaction between macrophages 
and lymphocytes which is regulated by a range of 
soluble factors. Knowledge of macrophage properties 
in Wallerian degeneration may provide insights into 
the pathogenesis of demyelinating disease processes 
in which these cells are massively engaged. 
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