

Fig. S1. Plasmid constructions.

A: pKO403-TPCTcon, used for the *CAT* assay in a previous study [1]. B: pBCMAT-P_{xxx}-T_{dppA2}, used for testing promoter activities with the *CAT* gene. C: pBIFGLOW-P_{xxx}-T_{dppA2}, used for testing promoter activities with the *cAT* gene. D: pBCMAT-P_{gap}-T_{xxx}, used for testing terminator activities with the *CAT* gene. *Sp^r*: a resistance gene of spectinomycin. *ColE1 ori*: a replication origin for *Escherichia coli*. *pTB6 ori*: a replication origin for *Bifidobacterium* species. *CAT*: a gene-coding region of chloramphenicol acetyltransferase. *evoglow-Bs2*: a gene-coding region of evoglow-Bs2. *ori Ts*: temperature-sensitive replication origin.

Fig. S2. Strategies of modification of promoters and terminators.

A, B: Improvement of promoters and T_{rps0} based on pBCMAT-P_{xxx}-T_{dppA2} and pBCMAT-P_{gap}-T_{rps0}, respectively. To replace several sequences, 5'-phosphate (P)-labeled primers were used for PCR, and the products were ligated by self-ligation. Red characters represent the sequences replaced by the primers. C: The 5'-UTRs and their upstream regions, including the promoter core (-10 and -35 boxes) for the four promoters. D: Chimeric promoters using different promoter core regions and 5'-UTRs. The sequence background colors correspond to C. Red characters in "TGT" and "ATG" in C and D were used as joint tags in performing Golden Gate ligation.

Table S1. Bacterial strains and plasmids.

Туре	Name	Properties
Bacterial strains Bifidobacterium longum NCC2705		Transformation host
	Bifidobacterium breve JCM 1192	Transformation host
	Bifidobacterium adolescentis ATCC 15703	Transformation host
	Escherichia coli TOP10	Transformation host
Plasmids	pBCMAT-P _{gap} -T _{dppA2}	<i>Sp</i> ^r , <i>Cm</i> ^r , P _{gap} , T _{dppA2} , Template for PCR
	pBCMAT-P _{rpmB} -T _{dppA2}	Sp ^r , Cm ^r , P _{rpmB} , T _{dppA2} , Template for PCR
	pBCMAT-P _{groES} -T _{dppA2}	Sp ^r , Cm ^r , P _{groES} , T _{dppA2} , Template for PCR
	pBCMAT-P _{rpmH} -T _{dppA2}	Sp ^r , Cm ^r , P _{rpmH} , T _{dppA2} , Template for PCR
	pBCMAT-P _{BLt43} -T _{dppA2}	Sp ^r , Cm ^r , P _{BLt43} , T _{dppA2} , Template for PCR
	pBCMAT-P _{rplU} -T _{dppA2}	Sp ^r , Cm ^r , P _{rpIU} , T _{dppA2} , Template for PCR
	pBCMAT-P _{tuf} -T _{dppA2}	Sp ^r , Cm ^r , P _{tuf} , T _{dppA2}
	pBCMAT-P _{rpIM} -T _{dppA2}	<i>Sp</i> ^r , <i>Cm</i> ^r , P _{rpIM} , T _{dppA2} , Template for PCR
	pBCMAT-P _{hup} -T _{dppA2}	Sp ^r , Cm ^r , P _{hup} , T _{dppA2}
	pBCMAT-P _{BL1230} -T _{dppA2}	Sp ^r , Cm ^r , P _{BL1230} , T _{dppA2} , Template for PCR
	pBCMAT-P _{BL1769} -T _{dppA2}	<i>Sp</i> ^r , <i>Cm</i> ^r , P _{BL1769} , T _{dppA2}
	pBCMAT-P _{gap-imp} -T _{dppA2}	<i>Sp</i> ^r , <i>Cm</i> ^r , P _{gap-imp} , T _{dppA2}
	pBCMAT-P _{groES-imp} -T _{dppA2}	<i>Sp</i> ^r , <i>Cm</i> ^r , P _{groES-imp} , T _{dppA2}
	pBCMAT-P _{rpmH-imp} -T _{dppA2}	Spr, Cmr, P _{rpmH-imp} , T _{dppA2}
	pBCMAT-P _{BLt43-imp} -T _{dppA2}	Sp ^r , Cm ^r , P _{BLt43-imp} , T _{dppA2}
	pBCMAT-P _{rplU-imp} -T _{dppA2}	<i>Sp</i> ^r , <i>Cm</i> ^r , P _{rplU-imp} , T _{dppA2}
	pBCMAT-P _{rpIM-imp} -T _{dppA2}	<i>Sp</i> ^r , <i>Cm</i> ^r , P _{rpIM-imp} , T _{dppA2}
	pBCMAT-P _{BL1230-imp} -T _{dppA2}	<i>Sp</i> ^r , <i>Cm</i> ^r , P _{BL1230-imp} , T _{dppA2}
	pBCMAT-P _{gap-rpmB} -T _{dppA2}	<i>Sp</i> ^r , <i>Cm</i> ^r , P _{gap-rpmB} (Chimeric), T _{dppA2}
	pBCMAT-P _{gap-rpIM} -T _{dppA2}	<i>Sp</i> ^r , <i>Cm</i> ^r , P _{gap-rpIM} (Chimeric), T _{dppA2}
	pBCMAT-P _{gap-rpIU} -T _{dppA2}	<i>Sp</i> ^r , <i>Cm</i> ^r , P _{gap-rplU} (Chimeric), T _{dppA2}
	pBCMAT-P _{rpmB-gap} -T _{dppA2}	Sp^r , Cm^r , $P_{rpmB-gap}$ (Chimeric), T_{dppA2}
	pBCMAT-P _{rpIM-gap} -T _{dppA2}	Sp^{r} , Cm^{r} , $P_{rplM-gap}$ (Chimeric), T_{dppA2}
	pBCMAT-P _{gap} -T _{rpIQ}	Sp ^r , Cm ^r , P _{gap} , T _{rpIQ}
	pBCMAT-P _{gap} -T _{rplL}	Sp ^r , Cm ^r , P _{gap} , T _{rplL}
	pBCMAT-P _{gap} -T _{BL0593}	<i>Sp</i> ^r , <i>Cm</i> ^r , P _{gap} , T _{BL0593}
	pBCMAT-P _{gap} -T _{tuf}	Sp^r , Cm^r , P_{gap} , T_{tuf}
	pBCMAT-P _{gap} -T _{tal}	Sp ^r , Cm ^r , P _{gap} , T _{tal}
	pBCMAT-P _{gap} -T _{rpsO}	Sp ^r , Cm ^r , P _{gap} , T _{rpsO}
	pBCMAT-P _{gap} -T _{BL0618}	<i>Sp</i> ^r , <i>Cm</i> ^r , P _{gap} , T _{BL0618}
	pBCMAT-P _{gap} -T _{gap}	$Sp^r, Cm^r, P_{gap}, T_{gap}$
	pBCMAT-P _{gap} -T _{ahpC}	Sp^r , Cm^r , P_{gap} , T_{ahpC}
	pBCMAT-P _{gap} -T _{BL0725}	<i>Sp</i> ^r , <i>Cm</i> ^r , P _{gap} , T _{BL0725}
	pBCMAT-P _{gap} -T _{nhaA}	Sp ^r , Cm ^r , P _{gap} , T _{nhaA}
	pBCMAT-P _{gap} -T _{rpsO-imp}	$Sp', Cm', P_{gap}, T_{rpsO-imp}$
	pBIFGLOW-P _{gap} -T _{dppA2}	Sp ^r , evoglow-Bs2, P _{gap} , T _{dppA2}
	pBIFGLOW-P _{rpmB} -T _{dppA2}	Sp ^r , evoglow-Bs2, P _{rpmB} , T _{dppA2}
	рККТ427	Template for PCR, [2]
	pGLOW-Bs2	Template for PCR, [3]
	pKO403-TPCTcon	Template for PCR, [1]

Table S2. Primers for cloning of promoters and terminators.

Name	Sequences $(5' \rightarrow 3')$
tufpF	ccagctcttcgACACGCGCCACTGCATGAA
tufpR	ccagctcttcgCATCTGGACGTCTCGTGAGTTT
gappF	ccagctcttcgACATTCGCTGACTTGCATGCC
gappR	ccagctcttcgCATTGTAGGGTGGCCTTGGC
huppF	ccagctcttcgACACGTCTATTTTCATACCCCCT
huppR	ccagctcttcgCATGTCAGGGGACAAGCACTT
BL1230pF	ccagctcttcgACACCTTACCTCTTCGGGAAA
BL1230pR	ccagctcttcgCATAAAAATTACTGACAATTA
rpmHpF	ccagctcttcgACATGGCGAAATACGTACAAC
rpmHpR	ccagctcttcgCATCTATTCGGCAACGCTTC
BLt43pF	ccagctcttcgACAGAAGAGTCGCGTGCCAC
BLt43pR	ccagctcttcgCATCCACCTCGGCATGC
aroESpE	ccagctcttcgACAGCGTTGCGATTCGACGAT
aroESpR	
romBoF	ccagetettegACATCGGGTAAACGCTATGA
romBoR	
roll InF	
roll InR	
BI 1769nF	ccanctettenACATATTGCAGCGTTTATCAG
BI 1769pR	
rolMoE	
rplMpP	
taltE	
taltP	
tuftE	
tuit	
aontE	
gaptP	
gapir	
IPILIF	
rpiQtF	
dppA2tR	ccagctettegTTCCGATGGCGTGAGCAAG
BL0593tF	ccagctcttcgTGAGTTCCGGCTCGTTGCG
BL0593tR	ccagctcttcg11CAACAGGC1AAGGCACG
BL0618tF	ccagctcttcgTGAGTAAAAGCAGTATTCC
BL0618tR	ccagctcttcgTTCAGACTCTCTATTTCAC
nhaAtF	ccagctcttcgTGATGGCTTAGACGGTCCC
nhaAtR	ccagctcttcgTTCAAGGCCTCATCTCGTG
ahpCtF	ccagctcttcgTGATCGACACTGAATAGGC
ahpCtR	ccagctcttcgTTCCCCTTACATACACTGG
rpsOtF	ccagctcttcgTGATTGAAGACTTCCGCCC
rpsOtR	ccagctcttcgTCATTGTTGCCGTTGGCTG
BL0725tF	ccagctcttcgTGATGACCGGGTGCGGCAC
BL0725tR	ccagctcttcgTTCCTTATTGCGCGTACCG
huptF	ccagctcttcgCTTCCTTCTGCTCGTAGCGATT
huptR	ccagctcttcgTGTTGGAAGCGCTGAACTAGTC
CAT+RBS-F	ccagctcttcgATGCCCTGACCCAAGGAGAACATC
CAT-R	ccagctcttcgTCATAAAAGCCAGTCATTAGGC
evoglow-F	ccagctcttcgATGGCGTCGTTCCAGTCG
evoglow-R	ccagctcttcgTCACTCGAGCAGCTTTTCATATT
vector-F	ccagctcttcgGAAGCCACCGTCGCCAAGG
Spectinomycin_r-R	ccagctcttcgAAGGGTCGATTTTCGTTCGTGAATAC
RBS+ATGcodon-R	ccagctcttcgCATGATGTTCTCCTTGGGTCA

 Table S3. Primers for modification of promoters and terminators.

Name	Sequences (5' \rightarrow 3')
gap-im-F	CAGAGTCGGCAT TATAAT AGCAAC
gap-im-R	TACACATGGCAACGTTTC
rplU-im-F	TATAATCGAAACTCGGTGTCT
rpIU-im-R	CACCACCATGCGGACTAAA
BLt43-im-F	T <u>TATAAT</u> AACGACTTGGCGG
BLt43-im-R	CGGCTCCGGTGGATTAT
rpmH-im-F	TAAT GGTATAGCTTGACTCACG
rpmH-im-R	TACTCTCACCCCTACCC
groES-im-F	TAATGTGTCCTAGCGCAA
groES-im-R	TAGCGCGATTATTAGCACT
BL1230-im-F	CAT <u>TATAAT</u> CATAATTGTCAG
BL1230-im-R	AATGATAATTTGAATCACAAT
rpIM-im-F	A <u>TATAAT</u> AGTGGATTGTTGTGT
rpIM-im-R	CGCCGGGCTTGACATA
rpsO_ter-im-F	GTACCTAGGATGGTGCTC
rpsO_ter-im-R	TCGGGCGT <u>TTTT</u> CTTCAATC
rpIU-chi-F	ccagctcttcgTGTCTGACCGCAAGCTC
rpmB-chi-F	ccagctcttcgTGTGTTCGGCATGTCGG
rpIM-chi-F	ccagctcttcgTGTGTTTCCCTAAGGGGTC
gap-chi-F	ccagctcttcgTGTTGGTAAACAATGGCCCG
rpmB-chi-R	ccagctcttcgACACAACTTCACAAATATATAGC
rpIM-chi-R	ccagctcttcgACAACAATCCACTAGTATATCGC
gap-chi-R	ccagctcttcgACAGTTGCTACTGTAATGCCGA
gappR	ccagctcttcgCATTGTAGGGTGGCCTTGGC
rplUpR	ccagctcttcgCATGTTTTGGAAAGCTACCTTG
rpmBpR	ccagctcttcgCATGTGTCAAGTCTTTCACG
rpIMpR	ccagctcttcgCATGCTGCTTGGTGTGGCTTG
RBS-F	ccagctcttcgATGCCCTGACCCAAGGAGAACAT

Table S4. Reporter genes for *Bifidobacterium*.

Gene	Length	References
β-glucuronidase	1.8 kbp	[4]
α-galactosidase	2.3 kbp	[5]
arabinofuranosidase	1.7 kbp	[6]
β-glucosidase	1.4 kbp	[7]
luciferase	5.6 kbp	[8]
Chloramphenicol acetyltransferase	0.65 kbp	This study

References

1. Kozakai T, Izumi A, Horigome A, Odamaki T, Xiao JZ, Nomura I, Suzuki T. 2020. Structure of a Core Promoter in *Bifidobacterium longum* NCC2705. J Bacteriol 202:e00540-19.

2. Yasui K, Kano Y, Tanaka K, Watanabe K, Shimizu-Kadota M, Yoshikawa H, Suzuki T. 2009. Improvement of bacterial transformation efficiency using plasmid artificial modification. Nucleic Acids Res 37:e3–e3.

Drepper T, Eggert T, Circolone F, Heck A, Krauß U, Guterl JK, Wendorff M, Losi A, Gärtner W,
 Jaeger KE. 2007. Reporter proteins for *in vivo* fluorescence without oxygen. Nat Biotechnol 25:443–445.

4. Klijn A, Moine D, Delley M, Mercenier A, Arigoni F, Pridmore RD. 2006. Construction of a reporter vector for the analysis of *Bifidobacterium longum* promoters. Appl Environ Microbiol 72:7401–7405.

5. Sakanaka M, Tamai S, Hirayama Y, Onodera A, Koguchi H, Kano Y, Yokota A, Fukiya S. 2014. Functional analysis of bifidobacterial promoters in *Bifidobacterium longum* and *Escherichia coli* using the α-galactosidase gene as a reporter. J Biosci Bioeng 118:489–495.

 Ruiz L, Álvarez-Martín P, Mayo B, de los Reyes-Gavilán CG, Gueimonde M, Margolles A. 2012.
 Controlled gene expression in bifidobacteria by use of a bile-responsive element. Appl Environ Microbiol 78:581–585.

7. Wang Y, Kim JY, Park MS, Ji GE. 2012. Novel *Bifidobacterium* promoters selected through microarray analysis lead to constitutive high-level gene expression. J Microbiol 50:638–643.

8. Cronin M, Sleator RD, Hill C, Fitzgerald GF, Van Sinderen D. 2008. Development of a luciferasebased reporter system to monitor *Bifidobacterium breve* UCC2003 persistence in mice. BMC Microbiol 8:161.