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S1 Effect of assumptions on galloping dynamics

We ignored the pitching movement of the whole body in our model (Fig. 2) because the center of mass
vertical and spine joint movements are more important for determining galloping dynamics, compared
with pitching movements. This assumption induced simultaneous foot contact between the fore and
hind legs. We investigated this dynamical effect based on a model which incorporates € as the pitch
angle of the whole body, as shown in Fig. S1. In this case, the foot contact does not necessarily occur
simultaneously between the fore and hind legs.

The motion of this model is governed by the equations of motion of the vertical position of the COM

of the whole body Y, whole body pitch angle 6, and spine joint angle ¢, which are given by
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Fy and Fy are the vertical reaction forces of the fore and hind legs, respectively (F; > 0 for the stance

Fig. S1 Model that incorporates the pitch angle 6 of the whole body. Foot contacts do not
necessarily occur simultaneously between the fore and hind legs.



phase, F; = 0 for the swing phase). The relationship between the states immediately prior to and

immediately following the foot contact is given by
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where P, and P» are the impulses of the fore and hind legs, respectively (P; > 0 for the foot contact of
the fore leg, P, > 0 for the foot contact of the hind leg; otherwise P; = 0), and can be determined to
satisfy the energy conservation.

We assumed that |6 < 1, |¢| < 1, |§] < 1, and |¢| < 1. The linearization of the equations of motion
(S1) and relationship between the states immediately prior to and immediately following the foot contact

(S2) gives
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y = Y/H, 7 = t/\/H]g, j = J)(MH?), k = K/(MgH), d = D/H, | = L/H, f; = F;/Mg, p; =
Pi\/H/g/(MH) (i = 1,2), and # indicates the derivative of variable * with respect to 7. We obtained
three equations, each of which included only one of y, 8, or ¢. While f; and f> (p1 and ps) have different
effects (opposite signs) on the equation of 6, they have the same effect on each equation of y and ¢ (same
sign). Therefore, the following three cases fi = fo = f (p1 =p2 =p), f1 = 2f and fo =0 (p1 = 2p and
pe =0), and f1 =0 and fo = 2f (p1 =0 and ps = 2p) have the same dynamic effect on y and ¢.

When 6 = 0, the motions of the fore and hind parts of the model are symmetrical, resulting in
simultaneous foot contact between the fore and hind legs and f1 = fo = f (p1 = p2 = p). This effect
on y and ¢ is identical to that of individual foot contact between fore and hind legs with f; = 2f and
fo=0(p1 =2p and po =0) and f; =0 and fo = 2f (p1 = 0 and p; = 2p). Therefore, even when we

ignore the pitching movement (6 = 0), y and ¢ have no significant effect.



S2 Constants of periodic solution

To obtain the periodic solution, we have to determine a;, b;, ¢;, ©;, and 7; (i = 1,2). We obtained
a1,a9,b1,ba, 2,19, 71, and 75 from the foot-contact conditions (9) and (10), foot-contact relationship

(11), periodic conditions (12), and the symmetry assumption (13), as functions of 11 and ¢; as follows:
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1 and ¢; satisfy I'(¢1,¢1) = 0. These functions have physical parameters j, d, and k (this appears as

w=/2k/j).

S3 Parameter dependence of solutions

Here, we show how the types of solutions depend on the impulse position d and the moment of inertia j.

S3.1 Whend < —/j
When the first flight is gathered, 0 < ¢y < 7 is obtained from (1) because <ZA>(0) < 0. The substitution of

(1) into the fourth row of (11) gives
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This indicates that the second flight is also gathered. Therefore, periodic solutions of type GE never
exist. From (1) and (S6), 0 < (1)1, ¢1) < 7 is obtained and (S5) gives
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In contrast, (1) gives
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periodic solutions of types G and GG can exist.

When the first flight is extended, —7 < 11 < 0 is obtained from (1) because $(0) > 0. The substitution
of (1) into the fourth row of (11) gives

Because I'()1, ¢1) = (11), T(¢1, ¢1) = 0 can be satisfied when ¢+ (1) > 0. Therefore,
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Because the first and second terms of the right-hand side are positive and negative, respectively, the sign
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or when —7/2 < ¢y < 0 and 1y(th1,¢1) = 0, ¢ (1) > 0 is satisfied and the second flight is extended.

However, —m < 15(11, ¢1) < 0 is obtained from (1). The substitution of (1) into (S5) gives

Because I'(11,¢1) = 0 is not satisfied, solutions of type EG never exist. When
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and 1) = —71/2, ¢T(r1) = 0 is satisfied. In this case, cy(¢1,¢1) = 0 is obtained from (S5). Therefore,

the second flight is neither extended nor gathered (Fig. S2a). However, the substitution of ot (r1)=0

Because I'(1)1, ¢1) = 0is not satisfied, solutions of types E and EE never exist. When
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Fig. S2 Periodic solutions whose second flight is neither extended nor gathered. (a) Y1 = —7/2. (b) ¢1 = w/2.
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and (1) into (S5) gives
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Because I'(11, ¢1) = 0 is not satisfied, solutions like Fig. S2a never exist.

Therefore, only solutions of types G and GG can exist when d < —/7.

S3.2 When —/j <d <0

When the first flight is gathered, 0 < ¢; < 7 is obtained from (1) because é(O) < 0. The substitution of
(1) into the fourth row of (11) gives
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Because the first and second terms of the right-hand side are negative and positive, respectively, the
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Because I'(¢1,¢1) = _ane) 4t (1), T(¢1,¢1) = 0 can be satisfied when g () > 0. Therefore,
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/2 <y <, (2*(7'1) < 0 is satisfied and the second flight is gathered. 0 < 19(¢1,¢1) < 7 is obtained
from (1) because ¢ (1) < 0. The substitution of (1) into (S5) gives
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Because I'(¢1,¢1) = — (1), T(¥1, ¢1) = 0 can be satisfied when 7t (1) > 0. Therefore,
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is satisfied. In this case, ca(11,c1) = 0 is obtained from (S5). Therefore, the second flight is neither
extended nor gathered (Fig. $2b). However, the substitution of ¢* (1) = 0, ¢2(1h1,¢1) = 0, and (1) into
(S5) gives

periodic solutions of types G and GG can exist. When
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(41, c1) = 0 is satisfied only when —\/ﬁ < d < 0. Therefore, periodic solutions like Fig. 2b exist only
when —\/jﬁ <d<0.

When the first flight is extended, —m < 1)1 < 0 is obtained from (1) because g?)(O) > 0. The substitution
of (1) into the fourth row of (11) gives
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This indicates that the second flight is gathered. Therefore, periodic solutions of types E and EE never
exist. From (1) and (S19), 0 < ¢2(¢1,¢1) < 7 is obtained. The substitution of (1) into (S5) gives
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Because T'(1)1,¢1) = %@}1’61) — 4t (11), T(¥1,¢1) = 0 can be satisfied when §*(r) > 0. From

g (1) > 0, we obtain
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From the substitution of (S22) into (S5), we obtain
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Because we assumed ¢; > cg, solutions of type EG never exist.

Therefore, only the solutions of types G, GG, and GE, and solutions like Fig. S2b exist when d < —/j.

S3.3 Whend=0

From (1), az(¢1,c1) = a1(¢1), ca(¥1,c1) = ¢1, and 2(¢h1, 1) = 1 are obtained. When the first flight
is extended, —7 < t; < 0 is obtained from (1) because $(0) > 0. The substitution of (1) into the fourth

row of (11) gives

¢+(71) = —wCq sin 1/}1 > 0. (824)

This indicates that the second flight is gathered. Therefore, solutions of types E and EE never exist.
The substitution of (1) into (S5) gives

L(¥1,c1) = d +w21/)1. (S25)

[(11,c1) = 0 is satisfied when ¢ = —7 /2. Therefore, solutions of type EG exist.

When the first flight is gathered, 0 < ¢, < 7 is obtained from (1) because gZ;(O) < 0. The substitution
of (1) into the fourth row of (11) gives

& (1) = —wer sin gy < 0. (526)

This indicates that the second flight is extended. Therefore, solutions of types G and GG never exist.
The substitution of (1) into (S5) gives
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(41, c1) = 0 is satisfied when ¢; = 7/2. Therefore, solutions of type GE exist.

Therefore, only solutions of types GE or EG exist (they are identical because ¢; = ¢3).



S3.4 When 0 <d<+/j

Only solutions of types E, EE and EG can exist, in the same way as S3.2.

S3.5 When /j <d

Only solutions of types E and EE can exist, in the same way as S3.1.

S4  Foot contact dynamics

Here, we derive the relationship (8) between the states immediately prior to and immediately following
foot contact in the model. We assumed elastic collision for foot contact, which involves no position
change and conserves energy. We define Ap as the impulse at foot contact from the ground in the
vertical direction. Ap, is the change in the angular momentum caused by the impulse. The relationship
of the translational and angular momentum between immediately prior to and following the foot contact

gives

Ap=MY*T-Y") (S28a)
Ap, =J(¢" —¢7) = ApDcos¢ (S28b)

From energy conservation, we obtain
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From (S28) and (529), we obtain (8).

S5 Role of symmetry condition in solution

Here, we show the mechanism by which the symmetry condition (13) forces the third and fourth rows in

(12) to be satisfied. The substitution of (13) into the first row of (11) gives
9 (1) = 9(0). (S30)
By substituting (1) into (S30), we obtain

(1) = —5(0). (S31)



By substituting the first and second rows of (12) into (10), we obtain

7(0) —do(0) — 1 =0. (S32)

In contrast, by substituting (S30) into (9), we obtain

9(0) —d¢™ (1) —1=0. (S33)

(S32) and (S33) give

™ (m1) = 9(0). (834)
Because we assumed 71 < 27/w, the substitution of (1) into (S34) gives

¢~ (1) = —¢(0). (S35)

Therefore, from (S30), (S31), (S34), and (S35), the relationship between the states at the beginning of
the first flight phase (7 = 0) and immediately prior to the first foot contact (7 = 1) is given by

¢ (m) = Fq(0), (S36)
where
1 0 O 0
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F =
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By substituting (S34) into the second row of (11), we obtain

¢ (m1) = $(0). (S37)

The first and second rows of (12), (13), and (S37) give

§(n+m)=9"(n), (S38a)
¢ (1 +72) =" (1) (S38b)
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Because we assume 72 < 27/w, the substitution of (1) into (S38) gives

G (1 +12) = -y (1), (S39a)

5’(71 +712) = ¢t (). (S39b)

Therefore, from (S38) and (S39), the relationship between the states immediately following to the first

foot contact (7 = 71) and immediately prior to the second foot contact (7 = 7 + 72) is also given by
G (1 + 1) =F§t(n). (540)
From (11), (S36), and (S40), we obtain
B¢~ (m1 + m2) = BFBF§(0). (541)

Because BFBF = I, where [ is an identity matrix, ¢(0) = B§~ (71 + 72) is satisfied. This is equal to
(12). Therefore, the third and fourth rows of (12) are satisfied when the symmetry condition (13) is

given.
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