
Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

This manuscript describes a new method for protein structure prediction using deep learning. The 

major difference from existing methods lies in that this manuscript does not use the classical Potts 

model (or Markov Random Fields) to model an MSA(multiple sequence alignment). Instead the 

authors propose to use convolutional neural networks to model each sequence in an MSA, which 

seems to be a good idea. The authors tested their method using the CASP13 targets and reported 

better results in both contact prediction and 3D modeling accuracy than existing methods. 

 

Strengths: 

1) a new idea to deal with MSAs that may work better than traditional methods. 

2) the reported results seem to be very good. 

 

Major weaknesses: 

1) The authors used Fig. 1 to illustrate the weakness of current covariance-matrix-based methods 

(e.g., PSICOV) in dealing with MSAs. However, the authors did not test their hypothesis illustrated in 

this Figure. Instead the authors only compared their results with CCMpred, which is not based upon 

the covariance matrix. Maybe the authors shall compared their method with the same 2D ResNet 

trained from the covariance matrix. By the way, does CCMpred also suffer from the same issue 

illustrated in Fig. 1 ? 

 

2) The comparison with CCMpred is not very fair. CCMpred is an unsupervised method but the 

authors' method is supervised even if 2D ResNet is not used. To do a fair comparison, the authors 

shall train their 2D ResNet using the CCMpred output (e.g., the full L*L*21*21 matrix ) as input to see 

how much better the authors' method is. 

 

3) The results in Supplementary Tables 1 and 2 are inconsistent. For example, in Table 1, the authors 

showed that on the 12 CASP13 FM/TBM targets, the authors' contact precision is 4-7% higher than 

trRosetta, but in Table 2, the authors' 3D modeling accuracy is more than 0.11 higher than trRosetta. 

Since the authors used a similar method as trRosetta to build 3D models from predicted inter-residue 

distance, it is hard to believe that 4-7% higher contact precision may result in 0.11 higher modeling 

accuracy. I suggest the authors carefully examine their method in calculating contact precision and 3D 

modeling accuracy. 

 

 

Other minor concerns: 

 

1) When predicting contacts and 3D models for CASP13 targets, are the whole-target sequences or 

the official domain sequences used to construct MSAs? 

 

2) Why the reported contact precision for RaptorX in Supplementary Table 1 is inconsistent with the 

CASP13 web site? 

 

3) The reported contact precision for trRosetta in Supplementary Table 1 is lower than what's reported 

by the trRosetta developers. The authors did not explain why. Is it possible due to different strategy of 

selecting MSAs ? The trRosetta authors tried many different MSAs and then chose the best one, but 

the authors used their own MSAs as the input of trRosetta. 

 

4) No code or data is found at the provided URL. Is the web server updated to include the method 

described in this manuscript ? 

 

Questions: 



1) What's the largest MSAs in the training data? Does a GPU have enough memory to handle very 

large MSAs in training? 

 

 

 

Reviewer #2: 

Remarks to the Author: 

The manuscript by Ju et al. is dedicated to developing a new pipeline for protein structure prediction 

which relies on deep learning techniques. During the last several years we have witnessed how the 

use of deep learning considerably advanced protein structure prediction with methods like with 

RaptorX, AlphaFold and trRosetta, among others. Such methods generally follow a similar workflow 

which consists in taking a multiple sequence alignment for a protein family as input, and predicting 

inter-residue contacts and/or distances from coevolutionary coupling patterns extracted from the 

alignment either using pseudolikelihoods, or by covariance matrix inversion, or by making use of plain 

covariates. Despite all of the above approaches to coevolutionary analysis have proven to provide 

informative features for the downstream structure prediction networks, they have their inherent 

limitations of being pairwise, hand-crafted, having limited ability of being fine-tuned in an end-to-end 

fashion during network training, etc. With the CopulaNet network the authors of the manuscript make 

a major step forward and show that the above conventional coevolutionary feature extractors can be 

successfully replaced with a machine-learned one. In the approach suggested by Ju at al. this is done 

by introducing a multiple sequence encoder and a coevolutionary aggregator which are both inherent 

parts of the structure prediction network and are learned as a part of it in an end-to-end manner. 

Inter-residue distance distributions predicted by CopulaNet are then converted to smooth pair 

restraints and used to reconstruct the 3D structure model by constrained minimization followed by 

structure relaxation -- pyRosetta was used for both. The full pipeline named ProFOLD was tested on 

CASP13-derived dataset and shows solid improvement over state-of-the art methods used in the field. 

Importance of different constituents of the network were also tested through disabling them 

individually and comparing to the full ProFOLD pipeline. Overall, this is a high-profile and timely 

manuscript, which should be of great interest to anyone working on protein structure prediction. Here 

are a few comments and suggestions how it can be further improved: 

 

1) The main results of the manuscript on the superior performance of the machine-learned 

coevolutionary extractor are grounded on comparing CopulaNet with the other three deep learning 

based approaches (RaptorX,AlphaFold,trRosetta) which were all trained on an earlier date, and even 

despite that, likely relied on somewhat different training sets compared to what was used for 

CopulaNet. As a result, some of the differences in performance between these methods one could 

attribute to the differences in the training setups. To address such ambiguities, the authors could train 

a variant of their network where the MSA encoder and coevolutionary aggregator are replaced with a 

more traditional coevolutionary extractor (like the MSA covariance matrix or the precision matrix) and 

use such network as the baseline. 

 

2) From the “Benchmark dataset” section and “MSA generation and representation” section it is not 

clear which snapshots (release dates) of the PDB and sequence database(s) were used to construct 

the training set. The authors should clearly indicate the potential overlap between training and test 

sets both sequence- and structure-wise. 

 

3) More details on the network training setup are worth providing. How many sequences in the MSAs 

are there? Were full MSAs used for training or were they subsampled? Was any cropping used during 

training? If it was, at what stage - before or after the MSA encoder? What was the crop size? 

 

4) Is there any evidence for referring to the features which come out of the coevolution aggregator as 

‘residue co-evolutions’ or ‘residue co-mutations’ vs plain abstract features (p.3)? Are they actually 

correlated with any couplings which can be obtained from more traditional DCA approaches? 

 



5) There is the entire section on “approximating the conditional joint-residue distribution using 

CopulaNet” in the Methods, however not much on this topic is reflected in the main text. Is this 

section needed at all? 

 

6) Low Meff CASP13 targets T0953s2-D3, T0981-D2, T0991-D1, and T0998-D1 mentioned on p.4 all 

come from bacteriophages. Is it just the low number of homologs in the MSA which affects 

performance or the type of the organism type also plays the role? 

 

7) I would suggest using ‘direct couplings’ instead of ‘direct correlations’ throughout the manuscript. 



 

COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 

We were pleased that Reviewer #1 approves overall the idea and presentation of our 

ProFOLD approach and sees it as ‘a good idea’. The reviewer also appreciates that our 

goal of modelling MSA directly using CopulaNet rather than the classical Potts model (or 

Markov Random Fields). However, this reviewer raised concerns about the model and 

comparison with other approaches which we address below. 

 

This manuscript describes a new method for protein structure prediction using deep 

learning. The major difference from existing methods lies in that this manuscript does not 

use the classical Potts model (or Markov Random Fields) to model an MSA(multiple 

sequence alignment). Instead the authors propose to use convolutional neural networks to 

model each sequence in an MSA, which seems to be a good idea. The authors tested their 

method using the CASP13 targets and reported better results in both contact prediction 

and 3D modeling accuracy than existing methods. 

 

Strengths: 

1) a new idea to deal with MSAs that may work better than traditional methods. 

2) the reported results seem to be very good. 

 

We thank this reviewer for his/her overall approval of our work and presentation, and the 

comments/suggestions to improve the manuscript.  

 

Major weaknesses: 

1) The authors used Fig. 1 to illustrate the weakness of current covariance-matrix-based 

methods (e.g., PSICOV) in dealing with MSAs. However, the authors did not test their 

hypothesis illustrated in this Figure. Instead the authors only compared their results with 

CCMpred, which is not based upon the covariance matrix. Maybe the authors shall 

compared their method with the same 2D ResNet trained from the covariance matrix. By 



the way, does CCMpred also suffer from the same issue illustrated in Fig. 1? 

 

We thank the reviewer for pointing out the incomplete test of our hypothesis. We also 

appreciate the reviewer’s suggestion to compare our ProFOLD approach with ‘the same 

2D ResNet trained from the covariance matrix’. Following this suggestion, we have 

implemented a new baseline model (denoted as “Covariance matrix+2DResNet”) that 

uses a 2D ResNet trained from the covariance matrix. We have now inserted a new table 

(Supplementary Table 2) to show the performance of this baseline model and the 

comparison with ProFOLD.  

 

As illustrated by this new table, on the 31 CASP13 FM targets, ProFOLD achieved higher 

precision for long-range contact prediction than the baseline model “Covariance 

matrix+2DResNet” (0.567 vs. 0.449, 0.713 vs. 0.591, 0.840 vs. 0.713 for the most probable 

L, L/2, L/5 contacts, respectively). The superiority of ProFOLD over the baseline model is 

also observed on the validation set that contains 1820 domains. These results clearly 

demonstrated that the combination of MSA encoder and coevolution aggregator is 

more effective than covariance matrix.  

 

We consider these results are very good and we are pleased to insert these results as a 

new table (Supplementary Table 2) and a short description (Page 4, Line 106-115, in 

blue).  

 

In Figure 1, we show two proteins with different MSAs to illustrate the weakness of 

current covariance-matrix-based methods in distinguishing them. In fact, for these two 

MSAs, any statistic of a single residue, or pairwise statistics of two residues, cannot 

distinguish them. 

 

CCMpred attempts to maximize the pseudolikelihood of an L2-regularized Markov 

random field. It represents columns in an MSA as vertices with single-residue emission 

potentials and represents covariation between columns as edges with pairwise emission 



potentials. Like covariance matrix-based approaches, CCMpred considers statistics of a 

single residue and pairwise statistics of two residues only, thus also suffering from the 

limitation illustrated in Figure 1.  

 

2) The comparison with CCMpred is not very fair. CCMpred is an unsupervised method but 

the authors' method is supervised even if 2D ResNet is not used. To do a fair comparison, 

the authors shall train their 2D ResNet using the CCMpred output (e.g., the full L*L*21*21 

matrix ) as input to see how much better the authors' method is. 

 

We understanded the reviewer’s concern that ‘the comparison with CCMpred is not very 

fair’ since ‘CCMpred is an unsupervised method but the authors' method is supervised even 

if 2D ResNet is not used’. We also appreciate the reviewer for the suggestion of fair 

comparison. Following this suggestion, we have implemented another baseline model 

(denoted as “CCMPred+2DResNet”) that trains our ‘2D ResNet using the CCMpred output 

(the full L*L*21*21 matrix)’. The performance of this baseline model, together with that of 

the “Covariance matrix+2DResNet” baseline model, are listed in the newly-added 

Supplementary Table 2.  

 

As shown in this new table, on the 31 CASP13 FM targets, ProFOLD achieved higher 

precision for long-range contact prediction than the baseline model 

“CCMPred+2DResNet” (0.567 vs. 0.466, 0.713 vs. 0.603, and 0.840 vs. 0.738 for the most 

probable L, L/2 and L/5 contacts, respectively). Similar observation can be obtained on 

the validation set.   

 

The comparison of ProFOLD with the baseline models clearly suggested that the main 

contribution to the estimation of inter-residue distances comes from the learnable 

“encoder and aggregator" framework.  

 

We have now expanded the description to illustrate this point (Page 4, Line 106-115).  



 

3) The results in Supplementary Tables 1 and 2 are inconsistent. For example, in Table 1, 

the authors showed that on the 12 CASP13 FM/TBM targets, the authors' contact precision 

is 4-7% higher than trRosetta, but in Table 2, the authors' 3D modeling accuracy is more 

than 0.11 higher than trRosetta. Since the authors used a similar method as trRosetta to 

build 3D models from predicted inter-residue distance, it is hard to believe that 4-7% 

higher contact precision may result in 0.11 higher modeling accuracy. I suggest the authors 

carefully examine their method in calculating contact precision and 3D modeling accuracy. 

 

We completely understand the reviewer’s concern on the inconsistency between the 

improvement of contact precision and that of the 3D modelling accuracy.  

 

Following the reviewer’s suggestion, we have carefully examined our `method in 

calculating contact precision and 3D modelling accuracy’. In the previous submission of 

our manuscript, we used the script in RaptorX suite (released on 2019.8, downloaded 

from github https://github.com/j3xugit/RaptorX-Contact) to calculate contact precision 

and used DeepAlign to calculate 3D modelling accuracy. In the revised manuscript, to 

match the CASP13 assessment, we adopt the CASP13 evaluation metric to calculate 

contact precision (see the response to minor concern #2 for details). There is a slight 

difference (~2% for FM targets) between the precisions calculated using these two types 

of evaluation criteria; however, this does not change the essence of the study.   

 

Now, for the contact predictions by RaptorX and A7D, the calculated contact precision 

(Supplementary Table 1) and 3D modelling accuracy (Supplementary Table 2 in the 

previous version, now Table 3 in the revised version) perfectly approximate the official 

CASP13 assessment, which clearly demonstrates the correctness of calculating contact 

precision and 3D modelling accuracy.  

 

We think the main reason for the difference between the improvement of contact 

precision and that of the 3D modelling accuracy might be the small sample size of 



FM/TBM targets. Although contact precision strongly correlates with 3D model accuracy, 

the small sample size (only 12 FM/TBM targets) might lead to considerable perturbation.  

 

For the sake of convenience, we have now uploaded all material, including benchmark 

datasets, evaluation scripts and evaluation results, onto 

http://protein.ict.ac.cn/ProFOLD/ProFOLD.benchmark.tar.gz for public access.  

 

Other minor concerns: 

1) When predicting contacts and 3D models for CASP13 targets, are the whole-target 

sequences or the official domain sequences used to construct MSAs? 

 

In the first submission of our manuscript, we evaluated our approach using only domain 

sequences to construct MSAs. For more thorough investigations, we have repeated the 

entire evaluation using the MSA constructed from the whole-target sequences. We have 

now expanded Supplementary Table 3 to include these new results.  

 

Generally speaking, when using the MSA constructed from the domain sequence, both 

trRosetta and ProFOLD predict better protein structures than using the MSA constructed 

from the whole-target sequences (0.668 vs. 0.620 for trRosetta, and 0.743 vs. 0.719 for 

ProFOLD). However, when considering the 31 FM target proteins only, ProFOLD performs 

slightly better with the MSA constructed from whole-target sequences.  

 

We have now added further description to illustrate this point (Page 6, Line 161-166).  

 

2) Why the reported contact precision for RaptorX in Supplementary Table 1 is inconsistent 

with the CASP13 web site? 

 

We thank the reviewer for pointing out the inconsistency between Supplementary Table 

1 and CASP13 website for RaptorX.  

 



The reason of this inconsistency is as follows: In the first submission of our manuscript, 

we listed in Supplementary Table 1 the contact precision calculated using the script in 

RaptorX suite. The author of the script, Jinbo Xu, has pointed out that this script usually 

reports contact precision slightly lower than the official CASP13 assessment as it adopts 

different definition of protein sequence length (as per personal communications).  

 

To remove the inconsistency and potential misunderstanding, we slightly changed the 

evaluation procedure:  

i) We re-calculated contact prediction by following the CASP13 official metric 

rather than running the RaptorX script.  

ii) Following the CASP13 official metric, we also excluded the FM target T0953s1 

from evaluation as it has no long-range contacts.  

 

Now, the new evaluation results (listed in the updated Supplementary Table 1) are 

consistent with the CASP13 official assessment (except for T0953s2, whose domain 

definition has been changed but the evaluation results have not been changed 

accordingly). Compared with the results provided in the first submission of this 

manuscript, the contact precision increased slightly (say, ~2% for FM targets) for all 

prediction approaches. It should be noted that this slight increase does not change the 

essence and main conclusion of our manuscript.  

 

In the revised manuscript, we have now updated Supplementary Table 1 and Figure 3. 

 

The original Supplementary Table 1 listed in the first submission and the updated 

Supplementary Table 1 are shown below for the sake of quick reference.  

The original Supplementary Table 1:  

 



The updated Supplementary Table 1:  

 

 

3) The reported contact precision for trRosetta in Supplementary Table 1 is lower than 

what's reported by the trRosetta developers. The authors did not explain why. Is it possible 

due to different strategy of selecting MSAs? The trRosetta authors tried many different 

MSAs and then chose the best one, but the authors used their own MSAs as the input of 

trRosetta. 

 

We thank the reviewer for pointing out that `the reported contact precision for trRosetta 
in Supplementary Table 1 is lower than what's reported by the trRosetta developers’.   
 
The source of the difference between our evaluation results and those reported by the 
trRosetta developers might be as follows:  
 

i) Difference in MSAs:  We completely agreed with the reviewer in the point of MSA 
selection strategy. The trRosetta authors tried multiple MSAs and selected the 
best one. In contrast, we constructed only one MSA, which was used to evaluate 
both trRosetta and ProFOLD.  
 

ii) Difference in target list: trRosetta developers performed evaluation on 32 CASP13 
target proteins (server group). In contrast, we performed evaluation on 31 
CASP13 target proteins (human group) with a server-only target protein excluded.  
 

iii) Difference in evaluation criteria: trRosetta follows CASP13 metric for evaluation. In 
contrast, we used the RaptorX script for evaluation in the first submission of the 
manuscript.  
 

As mentioned in the response to minor concern #2, we have now adopted the CASP13 
metric instead of RaptorX script for evaluation. As shown in the updated Supplementary 
Table 1, the precision of long-range contacts prediction for trRosetta increased from 
0.466 to 0.489 (top L contacts for FM targets), thus narrowing down the difference with 



the precision reported by the trRosetta authors to nearly 2%. This small gap might be 
due to the difference in MSA selection strategy and the difference in target list as well.  
 

4) No code or data is found at the provided URL. Is the web server updated to include the 

method described in this manuscript? 

 

In the first submission of the manuscript, we have uploaded code and data onto the 
Nature Communication manuscript center. We did not upload code and data onto the 
provided URL to avoid potential conflicts with Nature Communication’s policy.  
 
We have now updated the web server (http://protein.ict.ac.cn/ProFOLD/) to include the 
method described in this manuscript. We have also uploaded all material, including 
benchmark datasets, evaluation scripts and evaluation results, onto 
http://protein.ict.ac.cn/ProFOLD/ProFOLD.benchmark.tar.gz for the sake of convenience. 
We are now developing an automated prediction server using ProFOLD for free access 
by academic community.  
 

Questions: 

1) What's the largest MSAs in the training data? Does a GPU have enough memory to 

handle very large MSAs in training? 

 

The largest MSA in the training data consists of 64,780 homologous proteins (for protein 

3qhpA). Processing such large MSAs requires large memory that exceeds the capacity of 

GPU used in the study. To suit the GPU capacity, as a form of data augmentation, we 

randomly extracted at most 1000 homologous proteins as representatives to construct 

an MSA with appropriate size. We also performed distance matrix cropping for reducing 

memory requirement and improving prediction robustness.  

 

We have now inserted a new subsection “Network training setup” to provide more details 

of network training, including MSA sampling and distance matrix cropping (page 9, line 

286-296).    



Reviewer #2 (Remarks to the Author): 

 

We were pleased that reviewer #2 approves the idea and presentation of our ProFOLD 

approach and sees it as ‘a major step forward’. The reviewer also appreciates that our 

goal of modelling MSA directly using CopulaNet towards protein structure prediction ‘in 

an end-to-end manner’. This reviewer also raised several fundamental concerns about the 

model and evaluations which we address below. 

 

The manuscript by Ju et al. is dedicated to developing a new pipeline for protein structure 

prediction which relies on deep learning techniques. During the last several years we have 

witnessed how the use of deep learning considerably advanced protein structure prediction 

with methods like with RaptorX, AlphaFold and trRosetta, among others. Such methods 

generally follow a similar workflow which consists in taking a multiple sequence alignment 

for a protein family as input, and predicting inter-residue contacts and/or distances from 

coevolutionary coupling patterns extracted from the alignment either using 

pseudolikelihoods, or by covariance matrix inversion, or by making use of plain covariates. 

Despite all of the above approaches to coevolutionary analysis have proven to provide 

informative features for the downstream structure prediction networks, they have their 

inherent limitations of being pairwise, hand-crafted, having limited ability of being fine-

tuned in an end-to-end fashion during network training, etc. With the CopulaNet network 

the authors of the manuscript make a major step forward and show that the above 

conventional coevolutionary feature extractors can be successfully replaced with a 

machine-learned one. In the approach suggested by Ju at al. this is done by introducing a 

multiple sequence encoder and a coevolutionary aggregator which are both inherent parts 

of the structure prediction network and are learned as a part of it in an end-to-end manner. 

Inter-residue distance distributions predicted by CopulaNet are then converted to smooth 

pair restraints and used to reconstruct the 3D structure model by constrained minimization 

followed by structure relaxation -- pyRosetta was used for both. The full pipeline named 

ProFOLD was tested on CASP13-derived dataset and shows solid improvement over state-

of-the art methods used in the field. Importance of different constituents of the network 



were also tested through disabling them individually 

and comparing to the full ProFOLD pipeline. Overall, this is a high-profile and timely 

manuscript, which should be of great interest to anyone working on protein structure 

prediction. Here are a few comments and suggestions how it can be further improved: 

 

We appreciate this reviewer for his/her invaluable comments/suggestions to improve the 

manuscript. 

 

1) The main results of the manuscript on the superior performance of the machine-learned 

coevolutionary extractor are grounded on comparing CopulaNet with the other three deep 

learning based approaches (RaptorX,AlphaFold,trRosetta) which were all trained on an 

earlier date, and even despite that, likely relied on somewhat different training sets 

compared to what was used for CopulaNet. As a result, some of the differences in 

performance between these methods one could attribute to the differences in the training 

setups. To address such ambiguities, the authors could train a variant of their network 

where the MSA encoder and coevolutionary aggregator are replaced with a more 

traditional coevolutionary extractor (like the MSA covariance matrix or the precision matrix) 

and use such network as the baseline. 

 

We thank the reviewer for pointing out the ambiguities caused by insufficient 

comparison. We also appreciate the reviewer for the suggestions to train a variant of our 

network ‘where the MSA encoder and coevolutionary aggregator are replaced with a more 

traditional coevolutionary extractor (like the MSA covariance matrix or the precision 

matrix)’. Following this suggestion, we have implemented two baseline models:  

i) Baseline model “Covariance matrix+2DResNet”: In this baseline model, we 

replaced the MSA encoder and coevolutionary aggregator with covariance 

matrix, i.e., training our 2D ResNet from the covariance matrix.  

ii) Baseline model “CCMPred+2DResNet”:  In this baseline model, we replaced 

the MSA encoder and coevolutionary aggregator with CCMpred, i.e., 



training our 2D ResNet using the CCMPred output (the full L*L*21*21 

matrix).  

 

We have now inserted a new table (Supplementary Table 2) to show the performance of 

these baseline models and the comparison with ProFOLD.  

 

As shown in this new table, on the 31 CASP13 FM targets, ProFOLD achieved higher 

precision for long-range contact prediction than the baseline model 

“CCMPred+2DResNet” (0.567 vs. 0.466, 0.713 vs. 0.603, and 0.840 vs. 0.738 for the most 

probable L, L/2 and L/5 contacts, respectively) and the baseline model “Covariance 

matrix+2DResNet” (0.567 vs. 0.449, 0.713 vs. 0.591, 0.840 vs. 0.713 for the most probable 

L, L/2, L/5 contacts, respectively). The superiority of ProFOLD over these baseline models 

is also observed on the validation set that contains 1820 domains.  

 

Taken together, the comparison of ProFOLD with these two baseline models clearly 

demonstrated that the main contribution to the estimation of inter-residue distances 

comes from the learnable “encoder and aggregator" framework.  

 

We consider these results are very good and we are pleased to insert these results as a 

new table (Supplementary Table 2) and a short description (Page 4, Line 106-115, in 

blue).  

 

2) From the “Benchmark dataset” section and “MSA generation and representation” section 

it is not clear which snapshots (release dates) of the PDB and sequence database(s) were 

used to construct the training set. The authors should clearly indicate the potential overlap 

between training and test sets both sequence- and structure-wise. 

 

In the study, for the sake of fair comparison, we used the benchmark dataset identical to 

AlphaFold. Briefly speaking, the benchmark dataset was constructed through utilizing the 

CATH 35% sequence similarity cluster representatives. It contains a total of 31,247 non-



redundant domains, which was further partitioned into training and validation sets 

(containing 29,247 and 1,820 proteins, respectively). To avoid potential overlap, during 

the data partitioning process, all domains from the same homologous superfamily were 

kept in the same partition.  

 

For proteins in both training and test set, we adopt the same pipeline to construct MSA, 

i.e., running DeepMSA (with default parameters) against sequence databases Uniclust30 

(as of Oct., 2017), UniRef90 (as of Mar., 2018) and Metaclust50 (as of Jan., 2018). All these 

sequence databases were released before independent test sets and thus there is no 

overlap between sequence databases and test set. 

We have now revised the description to clearly show the release dates of PDB, CATH, 

and sequence databases (page 8, line 260-274). We have also expanded the description 

to indicate the efforts to reduce the overlap between training and test sets (page 8, line 

260-265).   

 

3) More details on the network training setup are worth providing. How many sequences in 

the MSAs are there? Were full MSAs used for training or were they subsampled? Was any 

cropping used during training? If it was, at what stage - before or after the MSA encoder? 

What was the crop size? 

 

We thank the reviewer for pointing out this issue. We realized that we did not provide 

sufficient details about network training setup. We have now inserted a new subsection 

“Network training setup” to provide the details of network training, including MSA 

sampling and distance matrix cropping.  

 

Briefly speaking, the largest MSA in the training data consists of 64,780 homologous 

proteins (for protein 3qhpA).  Processing such large MSAs requires large memory, which 

exceeds the capacity of GPU used in the study. To suit the GPU capacity, and as a form of 

data augmentation, we randomly sampled 1000 homologous proteins as representatives 

to construct an MSA with appropriate size. In addition, as performed by AlphaFold, we 



also split the distance matrix of a target protein into 128x128 crops, each of which 

contains pairwise distances between a group of 128 consecutive residues and another 

group of 128 consecutive residues.  

 

In the study, we performed cropping before MSA encoder. We appreciate the reviewer 

for pointing out the possibility of cropping after MSA encoder. We will investigate this 

operation in future study.  

 

Using MSA sampling and distance matrix cropping in training process, we could 

effectively constrain memory usage and avoid potential overfitting as well. In addition, all 

the training parameters in the proposed neural network are independent of the size of 

target proteins. Hence, the neural network can handle target proteins and MSAs with 

arbitrary size during inference. 

 

4) Is there any evidence for referring to the features which come out of the coevolution 

aggregator as ‘residue co-evolutions’ or ‘residue co-mutations’ vs plain abstract features 

(p.3)? Are they actually correlated with any couplings which can be obtained from more 

traditional DCA approaches? 

 

We appreciate the reviewer for raising the point on interpreting the network, especially 

the coevolution aggregator’s output. Our analysis suggests the following points:  

i) Consider the case that MSA encoder is disabled first. In this case, 

according to equation (3), g(i, j) calculates the frequency of co-mutation 

between residue i and j. Thus, theoretically, the features come out of the 

coevolution aggregator carry information of residue co-mutations.  

ii) The traditional DCA approaches extract co-mutations between residue 

pairs; thus, in principle, the features come out of the coevolution 

aggregator are correlated with the output of DCA approaches. However, 

our approach utilizes MSA encoder to extract context-specific information 



related to residue i and j, thus carry more information than the traditional 

DCA approaches.   

 

5) There is the entire section on “approximating the conditional joint-residue distribution 

using CopulaNet” in the Methods, however not much on this topic is reflected in the main 

text. Is this section needed at all? 

 

We thank the reviewer for pointing out the weak connection of this section to the main 

text. In the first submission of the manuscript, the section was added to describe a 

possible interpretation of outer production operations. We realized that the connection 

of this section to the main text is weak.  

 

Following the reviewer’s suggestion, we have now removed this section from the main 

text of the manuscript and put it in Supplementary material with simplification.  

 

6) Low Meff CASP13 targets T0953s2-D3, T0981-D2, T0991-D1, and T0998-D1 mentioned 

on p.4 all come from bacteriophages. Is it just the low number of homologs in the MSA 

which affects performance or the type of the organism type also plays the role? 

 

In the first submission of our manuscript, we constructed MSAs for these four targets 

through running DeepMSA. The constructed MSAs have low Meff for these targets 

(T0953s2-D3, T0981-D2, T0991-D1, and T0998-D1, respectively), leading to low-quality 

predictions by our approach.  

 

In-depth examination illustrated that this failure can be partly due to the inappropriate 

filtering criteria (default setting: e-value=0.001) used by DeepMSA. By manually 

increasing e-value to be 1, we could identify more homologous proteins. In the case of 

target T0981-D2, the quality of the final predicted structure increased from 0.257 to 

0.586.  

 



These results clearly demonstrated that when sufficient homologous proteins are 

provided, our approach could make accurate predictions for the proteins from 

bacteriophages. Searching against larger meta-genome sequence databases would help 

to improve MSAs for the proteins from bacteriophages. 

 

7) I would suggest using ‘direct couplings’ instead of ‘direct correlations’ throughout the 

manuscript. 

 

This has been changed as suggested.  

 

 

 



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

I appreciate that the authors did more experiments to support their claims in the manuscript. 

However, I am afraid that the authors did not do the baseline experiments in an effective way. The 

accuracy of the two baseline methods “CCMPred+2DResNet" and "Covariance matrix+2DResNet" 

(especially CCMpred+2DResNet) obtained by the authors is kind of low compared to what's reported in 

the literature. This makes it hard to judge the real advantage of the proposed method over existing 

methods. 

 

 

 

Reviewer #2: 

Remarks to the Author: 

I thank the authors for clearly addressing all my comments. 



COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 

We were pleased that Reviewer #1 approves the further experiments in the revised 

manuscript. However, this reviewer raised concerns about the performance of the baseline 

which we address below. 

 

I appreciate that the authors did more experiments to support their claims in the manuscript. 

However, I am afraid that the authors did not do the baseline experiments in an effective way. 

The accuracy of the two baseline methods “CCMPred+2DResNet" and "Covariance 

matrix+2DResNet" (especially CCMpred+2DResNet) obtained by the authors is kind of low 

compared to what's reported in the literature. This makes it hard to judge the real advantage 

of the proposed method over existing methods. 

 
We understand the reviewer’s concern on performing ‘the baseline experiments in an 

effective way’. The reviewer also pointed out that ‘the accuracy of the two baseline methods’ 

is ‘kind of low compared with what’s reported in the literature’. We realized that in the 

previous submission, the comparison with the existing methods in literature is not elaborate, 

making ‘it hard to judge the real advantage of the proposed method over existing methods’.  

 

To address this issue, we performed elaborate literature search, and summarized the 

existing methods in literature as follows.  

 

The above table suggests the following points.  



(1) Comparison of “CCMpred+2DResNet” with A7D and RaptorX:  

First, no matter for RaptorX or A7D, our in-house evaluation results perfectly 

approximate the performance reported in literature. The difference, which is less 

than 2%, comes from the different evaluation metrics used by the studies.  This 

result clearly demonstrates the correctness of calculating contact precision.  

Second, on the CASP13 FM targets, the baseline model “CCMpred+2DResNet” 

shows contact prediction precision comparable with A7D and higher than 

RaptorX. For example, “CCMpred+2DResNet”, A7D and RaptorX show precision 

of 0.466, 0.470 and 0.439, respectively, for the most probable L long-range 

contacts.  

Third, we also noticed that the precision of “CCMpred+2DResNet” on CASP13 

FM targets is lower than that of RaptorX on CASP11 targets (0.466 vs. 0.550, 0.603 

vs. 0.680, 0.738 vs. 0.770 for the most probable L, L/2, L/5 contacts, respectively). 

The authors of RaptorX themselves also reported that the performance of 

RaptorX on CASP13 FM targets (in Ref. Xu2020) is lower than that on CASP11 

targets (in Ref. Wang2017); thus, this performance difference should come from 

the different protein targets in the two test sets rather than the prediction 

approaches.  

 

(2) Comparison of “Covariance matrix+2DResNet” with trRosetta:  

On the CASP13 FM targets, the baseline model “Covariance matrix+2DResNet” 

showed prediction precision lower than trRosetta (0.449 vs. 0.489, 0.591 vs. 0.627, 

0.713 vs. 0.750 for the most probable L, L/2, L/5 contacts, respectively). This 

performance difference comes from the fact that the baseline model “Covariance 

matrix+2DResNet” uses “covariance” of residues derived from query MSA, 

whereas trRosetta uses the precision matrix, i.e., the inverse of the covariance 

matrix. The recent study ResPRE (Ref. Li2020) has reported similar observations.  

 



We also realized that the implementation of the two baseline models was not 

elaborately described in the previous submission. In this revision, we have now added a new 

section (Section 4 in Supplementary text) to describe the implementation of baseline 

models, including features, datasets, and neural network architecture.  

 

In summary, the comparison of ProFOLD and the two baseline models clearly 

demonstrated that the advantages of ProFOLD come from its “end-to-end” framework: 

using this framework, ProFOLD could learn inter-residue distances directly from MSA and 

thus avoids the drawbacks of the hand-crafted features.   

 

Besides comparing ProFOLD with baseline models, we carried out an extra 

experiment to investigate the effects of hyperparameters of 2DResNet. Specifically, we 

tested three variants of the 2DResNet used by ProFOLD (with 72 residual blocks, 96 

channels), including “shallow” 2DResNet with only 36 residual blocks, “deeper” 2DResNet 

with 96 residual blocks, and “wide” 2DResNet with 128 channels.   

As shown in the newly-added Supplementary Table 4, the “shallow ProFOLD” shows 

precision lower than the standard ProFOLD (“shallow ProFOLD”: 0.544 vs.  ProFOLD: 0.567 

for the most L probable contacts). Similar observations could be achieved for the two 

baseline models (extended Supplementary Table 2). However, when using more channels, 

the “shallow but wide ProFOLD” shows roughly the same precision as “shallow ProFOLD”. 

These results demonstrated that the performance of ProFOLD is more sensitive to the 

number of residual blocks than the number of channels. We also observed that when further 

increasing the number of residual blocks, the precision is roughly fixed (“deeper ProFOLD”: 

0.570 vs. ProFOLD: 0.567 for the most L probable contacts) but the number of parameters 

increases sharply.  

To balance performance and model size, we used a 2DResNet with 72 residual blocks 

and 96 channels in the study.  

 



We consider these results are meaningful and we are pleased to insert these results 

as a new table (Supplementary tables 4), an extended table (Supplementary Table 2), and a 

new subsection in Methods (page 8-9, line 269-280).  

The extended Supplementary Table 2, the newly-added Supplementary Table 4, and 

references are listed below for the convenience of reference.  
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Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

I appreciate that the authors did more experiments. I am fine with the response, but it is still unclear 

to me how much improvement can be obtained by the new component of CopulaNet, i.e., the 1D 

convolutional network for MSA processing. 

It is important to understand this because this is the only new idea introduced by this manuscript. 

 

To do a fair comparison, in addition to using the same 2D ResNet (i.e., the same number of 2D Conv 

Layers and a similar number of filters/layer) and the same MSAs, the baseline methods shall not 

ignore sequence profile, mutual information and the full CCMpred co-evolution matrix (of dimension 

21L*21L) since the 1D conv network used by the authors may automatically learn these information. 

That is, I would like to understand how much extra information may be learned by the authors' 1D 

conv network from MSAs over all manually-engineered features derived from MSAs. 

 

In the letter, the authors said "The authors of RaptorX themselves also reported that the performance 

of 

RaptorX on CASP13 FM targets (in Ref. Xu2020) is lower than that on CASP11 targets (in Ref. 

Wang2017)". What does this mean? First, it is not very meaningful to compare the performance of one 

method on two different test sets. Second, RaptorX's performance on the CASP13 FM targets reported 

in Xu2020 indeed is higher than RaptorX's performance on the whole CASP11 target set reported in 

Wang2017. By the way, the authors mentioned Xu2020, but did not cite the most recent results 

reported in this reference. 



 
COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 

I appreciate that the authors did more experiments. I am fine with the response, but it is still 

unclear to me how much improvement can be obtained by the new component of CopulaNet, 

i.e., the 1D convolutional network for MSA processing. It is important to understand this 

because this is the only new idea introduced by this manuscript. 

 

To do a fair comparison, in addition to using the same 2D ResNet (i.e., the same number of 2D 

Conv Layers and a similar number of filters/layer) and the same MSAs, the baseline methods 

shall not ignore sequence profile, mutual information and the full CCMpred co-evolution 

matrix (of dimension 21L*21L) since the 1D conv network used by the authors may 

automatically learn these information. That is, I would like to understand how much extra 

information may be learned by the authors' 1D conv network from MSAs over all manually-

engineered features derived from MSAs. 

 

We understand the reviewer’s concern on ‘how much improvement can be obtained by the 

new component of CopulaNet’. We also greatly appreciate the reviewer for his/her detailed 

suggestion on implementing an effective baseline model. Following this suggestion, we have 

implemented a new baseline model (denoted as “baseline-CF”) that uses ‘all manually-engineered 

features’, including:   

● 1D features: one-hot amino acid type, sequence profile, and secondary structure 

(predicted by PSIPRED). 

● 2D features: mutual information, covariance matrix (of dimension 21L*21L), and full 

CCMpred co-evolution matrix (of dimension 21L*21L).  

We have extended Supplementary Table 2 to include the performance of baseline-CF 

together with these of the previous baseline models, i.e., baseline-CCM that uses CCMpred output 

(of dimension 21L*21L) and sequence profile as input features, and baseline-Cov that uses 

covariance matrix (of dimension 21L*21L) and sequence profile as input features.  



 

As shown in the table, on the 31 CASP13 FM targets, ProFOLD achieved higher precision 

for long-range contact prediction than the baseline model baseline-CF (0.567 vs. 0.481, 0.713 vs. 

0.621, and 0.840 vs. 0.749 for the most probable L, L/2, and L/5 contacts, respectively). Similar 

observations can be obtained on the validation set. These results clearly show the advantage of 

machine-learned features over all manually-engineered features derived from MSAs.  

 

We considered these results are meaningful and we were pleased to insert these results as an 

extended table (Supplementary Table 2). We also extended description in main text (Page 4, Line 

114-128) and Supplementary Material. 

 

In the letter, the authors said "The authors of RaptorX themselves also reported that the 

performance of RaptorX on CASP13 FM targets (in Ref. Xu2020) is lower than that on 

CASP11 targets (in Ref. Wang2017)". What does this mean? First, it is not very meaningful to 

compare the performance of one method on two different test sets. Second, RaptorX's 

performance on the CASP13 FM targets reported in Xu2020 indeed is higher than RaptorX's 

performance on the whole CASP11 target set reported in Wang2017. By the way, the authors 

mentioned Xu2020, but did not cite the most recent results reported in this reference. 

 

We completely agree with the reviewer on the issue that “it is not very meaningful to 

compare the performance of one method on two different test sets”. When preparing the second 



revision, we misunderstood the phrase “what’s reported in the literature” and thus simply listed the 

performance reported in the literature.  

We have also downloaded the released model of Xu2020 

(https://github.com/j3xugit/RaptorX-3DModeling) and evaluated it using identical MSA to 

ProFOLD. The results are summarized as follows. 

 

 As shown in the above table, ProFOLD achieved higher precision for long-range contact 

prediction than Xu2020. (The difference between our evaluation and that reported by the original 

paper can be attributed to the different metrics used by our evaluation approach and RaptorX)  

As the manuscript Xu2020 was submitted to bioRxiv after the submission of this manuscript 

and it is still under review, we did not include these comparison results in the main text.  

 



Reviewers' Comments: 

 

Reviewer #1: 

Remarks to the Author: 

I appreciate the more experimental results provided by the authors, which now show some advantage 

of the proposed 1d convolutional network for feature learning. However, I don't understand why the 

authors did not include the comparison with the updated RaptorX results into the main text. To my 

understanding, this comparison may reflect the real advantage of the learned features over manually-

curated features since both RaptorX and ProFold are well-developed by their respective authors, not to 

mention that ProFold used 72 residual blocks while RaptorX used only 50 residual blocks. 

 

P.S. Although not very important, I am a little puzzled by the fact that ProFold has a larger advantage 

over RaptorX on easier CASP13 targets than on harder targets. Nevertheless, on the CASP14 easier 

targets (i.e., TBM/FM targets) ProFold is less than 1% better than RaptorX in terms of contact 

precision. 



COMMENTS 
 
Reviewer #1 (Remarks to the Author): 
 

I appreciate the more experimental results provided by the authors, which now show 

some advantage of the proposed 1d convolutional network for feature learning. 

However, I don't understand why the authors did not include the comparison with the 

updated RaptorX results into the main text. To my understanding, this comparison may 

reflect the real advantage of the learned features over manually-curated features since 

both RaptorX and ProFold are well-developed by their respective authors, not to 

mention that ProFold used 72 residual blocks while RaptorX used only 50 residual blocks.  

We were pleased that the Reviewer #1 approved the experiments for showing the 

advantages of CopulaNet on feature learning. Following the reviewer’s suggestion, we have 

now inserted the results as an extended table (Supplementary Table 1) and also expanded 

the description in Supplementary text. 

The extended Supplementary Table 1 is shown below for the sake of quick reference.  

 
 

P.S. Although not very important, I am a little puzzled by the fact that ProFold has a 

larger advantage over RaptorX on easier CASP13 targets than on harder targets. 

Nevertheless, on the CASP14 easier targets (i.e., TBM/FM targets) ProFold is less than 1% 

better than RaptorX in terms of contact precision. 

 

We understand the reviewer’s concerns on the performance difference over easier 

targets and hard targets. As shown in the new Supplementary Table 1, when using 



AlphaFold (A7D) as reference, Xu2020 performed better over hard targets (FM domains) but 

worse over easier targets (61 TBM domains and 12 FM/TBM domains). Similar results could 

be also observed for trRosetta’s performance. One plausible explanation might be that both 

Xu2020 and trRosetta focused on hard targets and were finely-tuned to make their 

prediction results much more accurate over hard targets than easy targets. 

We also compared our method with Xu2020 over CASP14 targets. In particular, we 

downloaded the released models by Xu2020 (https://github.com/j3xugit/RaptorX-

3DModeling) and evaluated them using identical MSA to ProFOLD. The performance of 

Xu2020 and ProFOLD are summarized as follows. 

 

 The table suggested that both Xu2020 and ProFOLD performed not very well when 

using the MSA generated by running DeepMSA (with default parameters) over a combined 

sequence database containing UniClust30, UniRef90 and Metaclust. In contrast, when 

replacing UniClust30 with a larger sequence databases BFD30, both Xu2020 and ProFOLD 

achieved significant performance improvement. In this case, ProFOLD is about 11% better 

than Xu2020 in terms of contact prediction precision (ProFOLD: 0.623 vs. Xu2020: 0.507 for 

the most L/5 probable contacts over 22 FM domains, and ProFOLD: 0.880 vs. Xu2020: 0.777 

for the most L/5 probable contacts over 14 FM/TBM domains). These results clearly 

demonstrated the relative advantages of ProFOLD and the importance of generating high-

quality MSAs. We are still working on improving MSA using more effective techniques and 

larger sequence databases (e.g. MGnify and JGI). 


