Genetic polymorphisms, vitamin D binding protein and vitamin D deficiency in COVID-19 Aduragbemi A. Faniyi^{1,5}, Sebastian T. Lugg^{1,5}, Sian E. Faustini², Craig Webster³, Joanne E. Duffy³, Martin Hewison⁴, Adrian Shields ^{2,3}, Peter Nightingale³, Alex G. Richter^{2,3,6} and David R. Thickett^{1,3,6} **Affiliations**: ¹Birmingham Acute Care Research Group, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, UK. ²Clinical Immunology Service, Institute of Immunology and Immunotherapy, University of Birmingham, Birmingham, UK. ³University Hospitals Birmingham NHS Foundation Trust, Birmingham, UK. ⁴Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK. ⁵Joint first authors. ⁶Joint last authors. Correspondence: David R. Thickett, Institute of Inflammation and Ageing, University of Birmingham, Birmingham, B15 2TH, UK. E-mail: d.thickett@bham.ac.uk ## @ERSpublications This work outlines the potential importance of vitamin D binding protein and vitamin D in immune function and COVID-19 infection https://bit.ly/3byTaO5 Cite this article as: Faniyi AA, Lugg ST, Faustini SE, et al. Genetic polymorphisms, vitamin D binding protein and vitamin D deficiency in COVID-19. Eur Respir J 2021; 57: 2100653 [https://doi.org/10.1183/13993003.00653-2021]. This single-page version can be shared freely online. Reply to M.M. Speeckaert and co-workers: Copyright ©The authors 2021.. This version is distributed under the terms of the Creative Commons Attribution Non-Commercial Licence 4.0. For commercial reproduction rights and permissions contact permissions@ersnet.org