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1 The mathematical model

We used a compartmental age-structured model, developed to simulate the spread of SARS-CoV-2
within ten regions of the UK (seven regions in England: East of England, London, Midlands, North
East & Yorkshire, North West, South East and South West; and the devolved nations: Northern
Ireland, Scotland and Wales) [1], with parameters inferred to generate a good match to deaths, hospi-
talisations, hospital occupancy and serological testing [2]. The model population is stratified by age,
with force of infection determined by the use of an age-dependent (who acquires infection from whom)
social contact matrix for the UK [3, 4]. Additionally, we allow susceptibility and the probabilities
of becoming symptomatic, being hospitalised and the risk of dying to be age dependent; these are
matched to UK outbreak data. Finally, we account for the role of household isolation, by separating
primary and secondary infections within a household (more details may be found in [1]). This allows us
to capture household isolation by preventing secondary infections from playing a further role in onward
transmission. Model parameters were inferred on a regional basis using regional time series of recorded
daily hospitalisation numbers, hospital bed occupancy, ICU occupancy and daily deaths [2].

Model description

We first show the underlying system of equations that account for the transmission dynamics, including
symptomatic and asymptomatic transmission, household saturation of transmission and household
quarantining. The population is stratified into multiple compartments: individuals may be susceptible
(S), exposed (E), infectious with symptoms (I), or infectious and either asymptomatic or with very
mild symptoms (A). Asymptomatic infections are assumed to transmit infection at a reduced rate
given by τ . To some extent, the separation into symptomatic (I) and asymptomatic (A) within
the model is somewhat artificial as there are a wide spectrum of symptom severities that can be
experienced.

We let superscripts denote the first infection in a household (F ), a subsequent infection from a symp-
tomatic household member (SI) and a subsequent infection from an asymptomatic household member
(SA). A fraction (H) of the first detected cases (necessarily symptomatic) in a household are quaran-
tined (QF ), as are all their subsequent household infections (QS) - we ignore the impact of household
quarantining on the susceptible population as the number in quarantine is assumed small compared
with the rest of the population. The recovered class is not explicitly modelled, although it may be-
come important once we have a better understanding of the duration of immunity. We omitted natural
demography and disease-induced mortality in the formulation of the epidemiological dynamics. We
then extended the model formulation to capture a range of vaccination scenarios.
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The full equations are given by

dSa,v1
dt

= −
(
λFa,v1 + λSIa,v1 + λSAa,v1 + λQa,v1

) Sa,v1
Na

,
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Na

−MεEF1,a,
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= λSIa,v1
Sa,v1
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−MεESI1,a,
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dt

= λSAa,v1
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dEXm,a
dt

= MεEXm−1,a −MεEm,a, X ∈ {F, SI, SA,Q}

dIFa
dt

= da,v2(1−H)MεEFM,a − γIFa ,

dISDa
dt

= da,v2MεESIM,a − γISIa ,

dISUa
dt

= da,v2(1−H)MεESAM,a − γISAa ,

dIQFa
dt

= da,v2HMεEFM,a − γIQFa ,

dIQSa
dt

= da,v2HMεESAM,a + da,v2εE
Q
a − γIQSa ,

dAFa
dt

= (1− da,v2)MεEFM,a − γAFa ,

dASa
dt

= (1− da,v2)Mε(ESIM,a + ESAM,a)− γASa ,

dAQa
dt

= (1− da,v2)MεEQM,a − γA
Q
a ,

Here we have included M latent classes, giving rise to an Erlang distribution for the latent period,
while the infectious period was exponentially distributed. Throughout we have taken M = 3.

The forces of infection which govern the non-linear transmission of infection obey:

λFa,v1 = σa,v1
∑
b

(
IFb + ISIb + ISAb + τ(AFb +ASb )

)
βNba,

λSIa,v1 = σa,v1
∑
b

IFb β
H
ba,

λSAa,v1 = σa,v1τ
∑
b

AFa β
H
ba,

λQa,v1 = σa,v1
∑
b

DQF
b βHba,

where βH represents household transmission and βN = βS+βW +βO represents all other transmission
locations, comprising school-based transmission (βS), work-place transmission (βW ) and transmission
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in all other locations (βO). These matrices are taken from Prem et al. [4] to allow easily translation
to other geographic settings, although other sources such as POLYMOD [3] could be used.

Two key parameters, together with the transmission matrix, govern the age-structured dynamics:
σa corresponds to the age-dependent susceptibility of individuals to infection; da the age-dependent
probability of displaying symptoms (and hence potentially progressing to more severe disease). Both of
these are also modified by the vaccine status, such that those that have received a dose of vaccine have a
lower risk of infection and a lower risk of developing symptoms. The action of vaccine on the parameter
σ captures the transmission blocking aspect of the vaccine, while the action on d captures the efficacy
against disease. We also define τ as the reduced transmission from asymptomatic infections compared
to symptomatic infections; given the probability of displaying symptoms is less in the younger age
groups, this parameter shapes the role of younger ages in onward transmission.

We assume that all within household transmission originates from the first infected individual within
the household (denoted with a superscript F , or QF if they become quarantined). This allows us to
assume that secondary infections within a household in isolation (denoted with a superscript QS or Q)
play no further role in any of the transmission dynamics. As a consequence, high levels of household
isolation can drive the epidemic extinct, even if within household transmission is high – an effect not
achievable with the standard SEIR-type modelling approach. This improved methodology also helps
to capture to some degree household depletion of susceptibles (or saturation of infection), as secondary
infections in the household are incapable of generating additional household infections.

Amendments to within-household transmission

We require our model to capture both individual level quarantining of infected individuals and isolation
of households containing identified cases. In a standard ODE framework this level of household
structure is only achievable at large computational expense [5, 6]. Thus, we instead made a relatively
parsimonious approximation to achieve a comparable effect.

Given the novelty of the additional household structure that is included in this model, we clarify
in more detail here the action of this formulation. We give a simpler set of equations (based on a
standard SIR model) that contains a similar household structure; in particular, we take the standard
SIR model and split the infected class into those first infected within a household (IF ) and subsequent
infections (IS):

dS

dt
= −βHSIF − βOS(IF + IS)

dIF
dt

= βOS(IF + IS)− γIFS

dIS
dt

= βHSIF − γIS
dR

dt
= γ(IF + IS)

where the transmission rate is also split into within household transmission βH and all other trans-
mission βO (i.e out-of-household transmission). Again, we make the assumption that only the first
infection in any household generates infections within the household. We compare this to the SIR
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model without this additional structure:

dS

dt
= −β̂HSI − β̂OSI

dI

dt
= β̂HSI + β̂OSI − γI

dR

dt
= γI

where we retain the split in transmission type.

The early growth rate of the two models are r̂ = β̂H + β̂O − γ for the simple SIR model, and r =

1
2

[
βO − 2γ +

√
βO2 + 4βOβH

]
for the household structured version. From this simple comparison,

it is clear that for the simple model the growth rate can remain positive even when control measures
substantially reduce transmission outside the home (β̂O gets reduced), whereas in contrast for the
structured version there is always a threshold level of transmission outside the household (βOc =
γ2/(βH + γ)) that is needed to maintain positive growth.

For both the simple model given here and the full COVID-19 model, the inclusion of this addi-
tional household structure reduces the amount of within-household transmission compared to a model
without this structure — as only the initial infection in each household (IF ) generates secondary
within-household cases. It is therefore necessary to rescale the household transmission rate βH to
obtain the appropriate average within-household attack rate. For the full COVID-19 model, we find
that a simple multiplicative scaling to the household transmission (βH → zβH , z ≈ 1.3) generates a
comparable match between the new model and a model without this household structure – even when
age structure is included.

Relationship between age-dependent susceptibility and detectability

We interlink age-dependent susceptibility, σa, and detectability, da, by a quantity Qa. Qa can be
viewed as the scaling between force of infection and symptomatic infection. Taking a next-generation
approach, the early dynamics would be specified by:

R0Da = daσaβ
N
ba (Da + τUa) /γ R0Ua = (1− da)σaβNba (Da + τUa) /γ

where Da measures those with detectable infections, which mirrors the early recorded age distribution

of symptomatic cases. Explicitly, we let da = 1
κQ

(1−α)
a and σa = 1

kQ
α
a . As a consequence, Qa = κkdaσa;

where the parameters κ and k are determined such that the oldest age groups have a 90% probability
of being symptomatic (d>90 = 0.90) and such that the basic reproductive ratio from these calculations
gives R0 = 2.7.
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2 Public Health Measurable Quantities

The main model equations focus on the epidemiological dynamics, allowing us to compute the number
of symptomatic and asymptomatic infectious individuals over time. However, these quantities are
not directly measured - and even the number of confirmed cases (the closest measure to symptomatic
infections) is highly biased by the testing protocols at any given point in time. It is therefore necessary
to convert infection estimates into quantities of interest that can be compared to data. We considered
seven such quantities which we calculated from the number of new symptomatic infections on a given
day Ida .

1. Hospital Admissions: An age-dependent fraction of symptomatic individuals are assumed to
need hospital treatment, with a distributed lag between infection and hospitalisation.

2. ICU Admissions: Similarly, an age-dependent fraction of symptomatic individuals are assumed
to need treatment in an Intensive Care Unit. This is not a quantity that is generally reported,
and therefore we cannot match our model predictions to this data source.

3. Hospital Beds Occupied: By convolving hospital admissions with the distributions of lengths
of stay, we can estimate the number of hospital beds occupied.

4. ICU Beds Occupied: A similar process generates the number of occupied ICU beds.

5. Number of Deaths: Mortality is assumed to occur to a fraction of hospitalised individuals,
with the probability of mortality dependent upon age, and occuring after a distributed lag.

6. Proportion of Pillar 2 positives: Given that the raw number of detected cases in any region
is substantially influenced by the number of tests conducted, we consider the proportion of
pillar 2 tests that are positive as a less biased figure. We assume that those symptomatically
infected with COVID-19 compete with individuals suffering symptoms for other infections for
the available testing capacity. This leads to proportion of pillar 2 tests that are positive being a
saturating function of the number of symptomatic infections, with a single scaling parameter.

We compared these model predictions to the data by assuming that the true numbers are drawn from
a negative binomial distribution with the model value as the mean, while the true proportions (Pillar
2 positives) are from a beta-binomial.
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3 Parameter Inference

As with any model of this complexity, there are multiple parameters that determine the dynamics.
Some of these are global parameters and apply for all geographical regions, with others used to capture
the regional dynamics. Some of these parameters are matched to the early outbreak data (including
the resultant age-distribution of infection), however the majority are inferred by an MCMC process
(Table 1).

Table A: Key model parameters and their source

Parameter Description Source
β Age-dependent transmission, split into household,

school, work and other
Matrices from Prem et al. [4]

γ Recovery rate, changes with τ , the relative level of
transmission from undetected asymptomatics com-
pared to detected symptomatics

Fitted from early age-stratified UK
case data to match growth rate
and R0

da,v2 Age-dependent and type 2 vaccine status dependent
probability of displaying symptoms (and hence being
detected), changes with α and τ

Fitted from early age-stratified UK
case data to capture the age profile
of infection.

σa,v1 Age-dependent and type 1 vaccine status dependent
susceptibility, changes with α and τ

Fitted from early age-stratified UK
case data to capture the age profile
of infection.

HR Household quarantine proportion = 0.8φR Can be varied according to sce-
nario

NR
a Population size of a given age within each region ONS

ε Rate of progression to infectious disease (1/ε is the
duration in the exposed class). ε ∼ 0.2

MCMC

α Scales the degree to which age-structured hetero-
geneity is due to age-dependent probability of symp-
toms (α = 0) or age-dependent susceptibility (α =
1)

MCMC

τ Relative level of transmission from asymptomatic
compared to symptomatic infection

MCMC

φR Regional relative strength of the lockdown restric-
tions; scales the transmission matrices. Can also be
varied according to scenario.

MCMC

σR Regional modifier of susceptibility to account for dif-
ferences in level of social mixing

MCMC

ER
0 Initial regional level of infection, rescaled from early

age-distribution of cases
MCMC

DR
S Regional scaling for the mortality probability

Pa(Death|Hospitalised))
MCMC

HR
S,v3 Regional scaling for the hospitalisation probability

Pa(Hospitalised|Symptomatic))
MCMC dependent on type 3 vac-
cine status

IRS,v3 Regional scaling for the ICU probability
Pa(ICU|Symptomatics))

MCMC dependent on type 3 vac-
cine status

We would highlight that the parameters of α and τ are key in determining age-structured behaviour
and are therefore essential in quantifying the role of school children in transmission [7]. We argue
that a low τ and a low α are the only combination that are consistent with the growing body of
data suggesting that levels of seroprevalence show only moderate variation across age-ranges [8], yet
children are unlikely to display major symptoms, suggesting their role in transmission may be lower
than for other respiratory infections [9, 10].

Throughout the current epidemic, there has been noticeable heterogeneity between the different regions
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of England and between the devolved nations. In particular, London is observed to have a large
proportion of early cases and a relatively steeper decline in the subsequent lock-down than the other
regions and the devolved nations. In our model this heterogeneity is captured through three regional
parameters (DR

S , HR
S,v3 and IRS,v3) which act on the heterogeneous population pyramid of each region

to generate key observables. It is via this variable through which we affect a type 3 vaccine, acting to
prevent severe disease outcome.

4 Modelling social distancing

Age-structured contact matrices for the United Kingdom were obtained from Prem et al. [4] and
used to provide information on household transmission (βHba, with the subscript ba corresponding to
transmission from age group b towards age group a), school-based transmission (βSba), work-place
transmission (βWba ) and transmission in all other locations (βOba). We assumed that the suite of social-
distancing and lockdown measured acted in concert to reduce the work, school and other matrices
while increasing the strength of household contacts.

We capture the impact of social-distancing by defining new transmission matrices (Bba) that represent
the potential transmission in the presence of extreme lockdown. In particular, we assume that:

BS
ba = qSβSba, BW

ba = qWβWba , BO
ba = qOβOba,

while household mixing BH is increased by up to a quarter to account for the greater time spent at
home. We take qS = 0.05, qW = 0.2 and qO = 0.05 to approximate the reduction in attendance
at school, attendance at workplaces and engagement with shopping and leisure activities during the
lock-down, respectively.

For a given compliance level, φ, we generate new transmission matrices as follows:

β̂Hba = (1− φ)βHba + φBH
ba

β̂Sba = (1− φ)βSba + φBS
ba

β̂Wba = (1− θ)
[
(1− φ)βWba + φBW

ba

]
+ θ

(
(1− φ) + φqW

)
((1− φ) + φqO)βWba

β̂Oba = βOba((1− φ) + φqO)2

As such, home and school interactions are scaled between their pre-lockdown values (β) and post-
lockdown limits (B) by the scaling parameter φ. Work interactions that are not in public-facing
‘industries’ (a proportion 1 - θ) were also assumed to scale in this manner; while those that interact
with the general populations (such as shop-workers) were assumed to scale as both a function of their
reduction and the reduction of others. We have assumed θ = 0.3 throughout. Similarly, the reduction
in transmission in other settings (generally shopping and leisure) has been assumed to scale with the
reduction in activity of both members of any interaction, giving rise to a squared term.

We infer the level of NPIs as a slowly varying parameter in the MCMC processes on a weekly basis.
In turn, the weekly value of φ allows us to calculate the growth rate r (and hence the reproductive
number R) by an eigenvalue approach.
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5 QALY losses

Our computation of loss of quality adjusted life years (QALYs) incorporated loss due to deaths and
losses associated with severe cases requiring hospitalisation.

QALY losses due to death were based on the quality adjusted life expectancy by age, modified for the
relative life-expectancy of individuals that die:

Fatal case QALY loss =
21∑
a=1

(D(a)× E(a)) ,

where D(a) is the number of deaths in age bracket a, and E(a) is the discounted quality adjusted
value of the remaining life expectancy, L(a), of individuals in age group a. This quality adjusted life
expectancy is given by:

E(a) =

L(a)∑
i=1

Qw(â+ i)

(1 + d)i

where Qw(a) is the age-specific quality of life weight at age a, â is the average age (in years) of an
individual in age-group a, and d the discount rate (set at 0.035, corresponding to 3.5% per annum);
the values of L(a) are rounded to full years.

For individuals that are admitted to hospital (or ICU) we make the pessimistic assumption that their
quality of life while in hospital is zero:

Hospitalised QALY loss =

21∑
a=1

(
H(a)×Qw(a)×HS

)
,

where H(a) is the number of hospital admissions in age bracket a, and HS is the average hospital stay
(approximately 10 days). We ignore the impact of recovery time outside the hospital and the effects
of long-COVID. In all our calculations QALY loss from mortality vastly outweighs loss from hospital
admissions.

For parameterising the age-specific quality of life weights, Qw, we obtained age-specific EQ-5D index
population norms estimates for England from two literature sources. We took childhood estimates
(which we used to cover 0–19 years of age) from Table 3 of [11], and values for those aged 20 and above
were sourced from Table 3.6 of [12]. A complete listing of age-specific quality of life weights values by
age is presented in Table B.

Table B: EQ-5D index population norms for England.

Age group
(yrs)

EQ-5D index
population norms scale

<20 0.948
20–24 0.929
25–34 0.919
35–44 0.893
45–54 0.855
55–64 0.810
65–74 0.773
75+ 0.703
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