Supplementary Methods

Sample preparation and immunogene panel sequencing

Mononuclear cells (MNC) were enriched from peripheral blood or bone marrow samples with
Ficoll density gradient centrifugation (Ficoll-Paque PLUS, GE Healthcare). CD8+ and CD4+ T cell
fractions were separated via positive selection by immunomagnetic bead sorting (Miltenyi Biotec)
according to manufacturer’s instructions or by flow cytometry (FACSAria II, Beckton Dickinson).
Purity of CD4+ and CD8+ T cells was analyzed by flow cytometry sorting and purities were 92-
99% of CD3+ cells. Purity analysis and sorting was performed with following antibody mixture
(Cat. No. 342417) from Beckton Dickinson (BD): anti-CD45 (2D1, PerCP), anti-CD3 (SK7, FITC),
anti-CD4 (SK3, APC), and anti-CD8 (SK1, PE-Cy7). DNA from separated CD4+ and CD8+ T cells
was isolated with NucleoSpin Tissue kit (Macherey-Nagel, Cat. No. 740952) according to
manufacturer’s instructions. Library preparation, target genome capture and sequencing was

performed as described previously (1).

Identification of potentially pathogenic somatic variants

Variant identification was performed with Genome Analysis Toolkit (GATK) and involved an
initial variant discovery on individual samples and a subsequent genotyping of all variants across all
samples. Briefly, pre-processing of sequencing data, read mapping to GRCh38 reference, and
discovery of short somatic variants followed our previous procedure (2,3). Variants were
discovered in tumor-only mode without a paired normal as well as by pairing samples with their
matched counterparts (i.e. CD4+ datasets paired with CD8+ datasets and vice versa and CD3+
datasets paired with CD3neg datasets and vice versa). MuTect2 was used to make variant calls.
Recurrent variant calling artifacts were in exome sequencing analyses filtered using a panel of
normals (PON) created from the exome data of 24 healthy unrelated Finnish individuals and in
panel sequencing analyses using a panel of normals created from immunogene panel healthy T cell
samples. For the genotyping analysis, variant calls passing filters and supported by ten or more
reads were aggregated across samples and supplemented by a set known STAT3 lost-of-function
variants* and hotspot variants (detected >30 samples and constituting >1% of the listed mutations of
the each gene in COSMIC v90 (4)) in genes recurrently mutated in AA (5) or T cell neoplasms (6)
(Supplementary table S2). These variants were then genotyped across samples in tumor-only mode

using GATK-4.1.3.0 Mutect2 program. Finally, variant calls obtained from genotyping analyses



were filtered for vector contamination, RNA or pseudogene artefacts as described previously (3) to

distinguish variants with a low variant allele frequency from technical or biological artefacts.

Variant annotation was performed with Annovar tool15 against the RefGene database and variant
filtering using in-house solution. At first, variant calls were normalized using bcftools16. Variants
other than those passing all MuTect2 filters and located in intronic and intergenic regions were then
filtered as well as variants with a total depth <30, a strand-specific depth <1 in both directions, <1
read in the F1R2 configuration, <1 read in the F2R1 configuration, quality value <40, variant allele
frequency <2% or >30%, strand odd ratio for SNVs >3.00, strand odd ratio for indels >11.00, minor
allele frequency >1% in the 1KG database and EPS database, minor allele frequency >0.1% in
general, American, African, Finnish, East Asian, and Non-Finnish European ExAC, gnomAD v2
exome, or gnomAD v2 genome databases, and minor allele frequency >0.1% in male, female, or
gender unspecific general, Amish, American, African, Ashkenazi Jewish, other, Finnish, South
Asian, East Asian, and Non-Finnish European gnomAD v3 databases. Variants with a variant allele
frequency 1-2% were accepted, if supported by five or more COSMIC17 samples. Finally, variants
were filtered against variants detected in two or more immunogene panel healthy T cell samples and
skin WES samples. For functional analyses, the variant call set was further filtered by removing
synonymous mutations and non-frameshift variants. Potentially pathogenic variants that were
identified in both CD4+ and CD8+ T datasets of same patient were interpreted as lymphoid
precursor (LP) variants. Rest of the variants were categorized as CD8+ or CD4+ specific variants.
Sequencing coverage was computed using Samtools (7) depth and by restricting coverage

computation to panel regions and/or known RefSeq exons.

Somatic mutation burden analysis

As variants seen recurrently in healthy T cell samples were used to filter variants, an adjusted
somatic mutation burden was computed for each sample by taking into account only singleton
variants passing the filtering process. Adjusted somatic mutation burden was calculated separately
for LP variants and fraction-specific variants in CD4+ and CD8+ T cells of each patient. Total
number of variants was divided by the number of exonic bases with a depth >30 per sample. In
group comparisons, outliers were excluded by removing samples whose adjusted mutation burden

was more than 1.5 fold above 3™ or below 1% quartile.



Variant effect predictions

Variant effects were predicted with eight approaches: SIFT (8), Polyphen-2 (HVar and HDiv) (9),
likelihood ratio test (10), MutationTaster (11), MutationAssessor (12), FATHMM (13), VEST3
(14,15) and CADD (16,17). Conservation scores were predicted using three approaches: SiPhy (18)
and phyloP (placental and vertebrate) (19). For conservation scores, we predicted variants with
score of >1.6 for PhyloP and >12.17 for SiPhy to be pathogenic, as suggested by Dong et al (20).
Variant effect and conservation results were aggregated using a majority rule (i.e. the variant was
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deemed as damaging if more than 50% of predictions categorized it as “damaging”, “pathogenic”,
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“possibly pathogenic”, “medium” or “high”).

Mutational signature analysis

All synonymous and non-synonymous variants passing the filtering process were used in mutational
signature analysis. Identification of mutational signatures was done using the deconstructSigs18
software with default parameters and using cancer profiles downloaded from the COSMIC web site
on September 2017. Function mapSeqlevels from the package GenomelnfoDb was used to convert

EnsEMBL chromosome nomenclature to UCSC nomenclature.

Amplicon validation

Mutations found in the immunopanel sequencing (Supplementary table S4) were validated by
amplicon sequencing as previously described (21) with small modifications. 2-step PCR protocol
was used and sample pools were sequenced with Illumina HiSeq System using Illumina HiSeq
Reagent Kit v4 100 cycles kit or Illumina MiSeq System using MiSeq 600 cycles kit (Illumina, San
Diego, CA, USA).

Amplicon read alignment was performed with Bowtie2. GATK IndelRealigner was used for local
realignment near indels. A variant was called, if variant count was >5 and base frequency was 0.5%
of all reads covering a given a position. Variants with the base quality frequency ratio (ratio of
number of variant calls/numbers of all bases and quality sum of variant calls/quality sum of all
bases at the position) <0.9 were excluded. Somatic variant was considered to be true if it was called
and passed all filters in both immunogene panel sequencing and amplicon sequencing with similar

VAF.



TCR VB family based flow cytometry analysis and sorting

TCR VB families of CD4+ and CD8+ T cells were analyzed from frozen MNC by flow cytometry-
based antibody staining using IOTest® Beta Mark TCR V3 Repertoire Kit recognizing 24 members
of TCR B chain, which covers about 70% of the normal human TCR Vp repertoire (cat. no:
IM3497, Beckman Coulter). MNC samples were stained after thawing with anti-CD3 (SK7, BD,
cat. no 345767), anti-CD4 (SK3, BD, cat. no 345770), and anti-CD8 (SK-1, BD, cat. no 335822)
and the panel of TCR V antibodies. All antibodies were used according to the manufacturers’

instructions. Stained cells were further analysed and sorted using FACSAria II (BD).

Single-cell gene expression and V(D)J transcript profiling

Frozen MNC from PB or BM were sorted with BD Influx Cell sorter and the gene and V(D)J
transcript profiles were studied with 10x Genomics Chromium Single Cell V(D)J and 5' Gene
Expression platform. When thawing, the cryo-preserved samples were resuspended to 13ml of
+37°C plain RPMI (Roswell Park Memorial Institute) and after centrifugation of 5 minutes at 300g,
washed with PBS + 2mM EDTA buffer. After 2nd 5 minute centrifugation at 300g, cells were
resuspended to PBS + 0.05% BSA in concentration of 10,000 cells/ul and 2ul of CD45-APC-H7
(2D1, BD, cat. no 641417) and 5ul CD34 (8G12, BD, cat.no 345801) antibodies per 1 million cells
were added. Samples were incubated with the antibodies for 15 minutes in room temperature. Cells
were washed with 2ml of PBS-BSA buffer (300g/5min), resuspended to RPMI and kept on ice
before and after sorting. Sorting was performed with BD Influx Cell sorter with gating strategy as
presented in Figure S2. 300,000 target cells were collected to Protein Lo-Bind tubes (Eppendorf,
cat. no 0030108). After sorting, single-cell samples were partitioned using a Chromium Controller
(10X Genomics) and scRNA-seq and TCRaf-libraries were prepared using Chromium Single Cell
5’ Library & Gel Bead Kit (10X Genomics), according to manufacturer’s instructions (CG000086
Rev D). 12,000 cells from each sample, suspended in 0.04% BSA in PBS, were loaded on the
Chromium Single Cell A Chip. During the run, single-cell barcoded cDNA is generated in
nanodroplet partitions. The droplets were subsequently reversed and the remaining steps were
performed in bulk. Full length cDNA was amplified using 14 cycles of PCR (Veriti, Applied
Biosystems). TCR ¢cDNA was further amplified in a hemi-nested PCR reaction using Chromium
Single Cell Human T Cell V(D)J Enrichment Kit (10X Genomics). Finally, the total cDNA and the
TCR-enriched cDNA were subjected to fragmentation, end repair and A-tailing, adaptor ligation,
and sample index PCR (14 and 9 cycles, respectively). All libraries were sequenced using NovaSeq

6000 system (Illumina), S1 flowcell with the following read length configuration for gene



expression libraries: Read1=26, 17=8, 15=0, Read2=91. Length configurations used for TCR-
enriched libraries: Read1=150, 17=8, 15=0, Read2=150. The raw data was processed using Cell
Ranger 3.0.1 pipelines. 10X Genomix pipelines “cellranger mkfastq” was used to produce FASTQ
(raw data) files, “cellranger count” to perform alignment, filtering and UMI counting for the 5' gene
expression data and "cellranger vdj" to perform V(D)J sequence assembly and paired clonotype

calling for the V(D)J data.

Single-cell RNA-sequencing data analysis

Cells were subject to quality control. Cells with a high amount of mitochondrial transcripts (>15%
of all UMI counts) or ribosomal transcripts (>50%), cells with less than 100 genes or over 4500
genes expressed, cells expressing a low or high (<25% or >60%) amount of house-keeping genes,
or cells with a low or high read depth (<500 or >30 000) were excluded. Quality control measures
are illustrated in Figure S3 for AA-4 and Figure S4 for AA-3. In total, 7 822 — 15 651 cells per

sample were captured.

To overcome batch-effect, we used a recently described probabilistic framework to overcome
different nuisance factors of variation in an unsupervised manner with deep generative modelling as
described elsewhere (22). Briefly, the transcriptome of each cell is encoded through a nonlinear
transformation into a low-dimensional, batch corrected latent embedding. The latent embedding
was then used for graph-based clustering implemented in Seurat (3.0.0) and UMAP-dimensionality
reduction with default parameters in RunUMAP function. TCR-related (V, D and J) genes were
excluded from the clustering. The number of latent dimensions used were 16 (for AA-3) and 22 (for
AA-4). Differential expression analyses were performed based on the t-test, as suggested by
Soneson and Robinson (23), where Bonferroni adjusted p-values below 0.05 where denoted as
significant. Clusters were annotated using differentially expressed genes, comparison to bulk-
RNAseq based on sorted immune subsets and canonical markers (Figure S5). List of differentially
expressed genes for each cluster are provided in Supplementary Table S5 for AA-4 and S6 for AA-
3. The V(D)J sequences of each cell were integrated into the Seurat object as metadata for gene
expression and clonotype analysis. Clonotypes were identified based on the total nucleotide level
TCRa and TCRp. Gene Set Enrichment Analysis (GSEA)
(software.broadinstitute.org/gsea/index.jsp) between groups was based on ordered gene lists by
fold-change. Overlap with GO and HALLMARK-categories was assessed and the False Discovery
Rate (FDR) calculated while the number of permutations was 1000. The source code will be

available at github (https://github.com/janihuuh).




Supplementary Figures and tables
Figure S1.
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Study design. Bead separated CD8+ and CD4+ T cells were sequenced with immunogene panel to characterize somatic
mutations in lymphocytes. GATK tools were used in the analysis. We also performed TCRb sequencing of all available

patients” CD8+ T cells to understand the clonal dynamics of cytotoxic T cell repertoire. Whole exome sequencing data

of CD3+ and CD3neg MNCs was incorporated into the variant analysis.

Figure S2.
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Sorting strategy for samples analyzed by scRNA+TCRab-seq. Samples were stained with anti-CD45 and anti-CD34

antibodies. With flow cytometry sorting, we selected the CD45+ and CD34+ cell population (circled with green in the
most right panel) for analysis. SSC = side scatter, FSC = forward scatter.
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Quality control of scRNA+TCR-seq data on patient AA-4. Timepoints 1-3 are presented with same colours in all
plots and treshold values used in filtering are marked with dashed line. Number of filtered cells is written next to
treshold lines. (A) Number of reads per cell. (B) Number of expressed genes per cell. (B) Mitochondrial gene
expression as a percent of all expressed genes per cell. (D) Percent of ribosomal genes of all expressed genes. (F)
Percent of housechold genes of all expressed genes. (E) Number of expressed genes is shown on y axis and number of

reads per cell are shown on x axis.
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Quality control of scRNA+TCR-seq data on patient AA-3 (A) Number of reads per cell. (B) Number of expressed
genes per cell. (B) Mitochondrial gene expression as a percent of all expressed genes per cell. (D) Percent of ribosomal
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Figure S6.
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Figure S3 (previous page). Sequencing coverages and variant allele frequencies in immunogenepanel sequencing.
(A) In the panel above is shown the number of genomic sites covered >10/20/30/50/100/300x in all samples. In the
panel below is number of T cell somatic variants in corresponding sample. (B) Mean target coverage was not associated
with number of variants detected with immunogenepanel sequencing (Spearman p = 0.27, p = —0.15). (C) Variant
allele frequencies of fraction-specific variants. The variant allele frequency in AA patients did not significantly differ

between CD4+ and CD8+ T cell specific variants.

Figure S4 (next page) All non-synonymous variants of AA patients. Y axis shows the VAF on CD8+ T cells and x
axis shows the VAF on CD4+ T cells. LP variants are plotted as triangles and fraction-specific variants as round dots.

Variants on JAK-STAT and MAPK signaling pathways are marked with red and blue colours.
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Figure S9.
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Spearman test was used to test correlation. Mutation burden was calculated as described in the Supplementary Methods.
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Mean target coverage of each sample is presented in the top panel.
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Figure S11.
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JAK-STAT signaling pathway variants in AA and healthy samples. Variants that were predicted to be damaging are

marked with a black asterisk. Mean target coverage of each sample is presented in the top panel.
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Figure S12.
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Variant types. (A) SNV variant types from immunogenepanel sequencing. (B) Functional variant types from

immunogenepanel sequencing.
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Age in patients with and without LP variants. AA patients with LP variants in immunogene panel sequencing tended

to be older than those without LP variants.
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Figure S14.
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Table S1. Clinical characteristics of cohorts analyzed by immunogene panel sequencing.

(attached as an excel file)

Table S2. Hotspot and STAT3 gain-of-function variants genotyped from AA and healthy

samples (attached as an excel file)

Table S3. Variants in immunogene panel sequencing (attached as excel file)

Table S4. Results from amplicon validation (attached as an excel file)

Table SS. Differentially expressed genes in scCRNA sequencing used in cluster annotation of

AA-4 (attached as an excel file)

Table S6. Differentially expressed genes in scCRNA sequencing used in cluster annotation of

AA-3 (attached as an excel file)

Table S7. Upregulated genes in TCRBV04-03 clone compared to other CD8+ Temra cells in

scRNA sequencing
Gene p value log of mean fold
change

TRBV4-2 7,90E-18 5,9
FTH1 1,10E-09 1,1
CSRNP1 3,70E-07 0,64
TNFAIP3 3,80E-07 8,1
MAFF 9,40E-07 1,8
BHLHE40 1,30E-06 0,99
ELL2 1,10E-05 1,5
TRGV3 1,90E-05 0,48
EMLA4 2,00E-05 0,51
NFKBIA 2,30E-05 2,3
ZC3H12A 3,10E-05 0,95
ZNF644 4,00E-05 0,64
MT2A 4,10E-05 25
SELL 4,10E-05 1,1
GNG2 4,50E-05 1,1
ARHGAP15 7,90E-05 0,93
SLC2A3 0,00012 5,2

FAM177A1 0,00013 4,2
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NFKBI1
CD69
HSP90AA1
RELB
RNF19A
DSTN
FNBP4
SRSF5
IL1SRAP
PDE4B
RBM38
POLB
RAB2A
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IFNGR1
MAP3KS8
MORF4L1
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CHD2
PTGER4
FYN
PPM1G
PBX4
DNTTIP2
Clorf52
STAT4
AKIRIN1
RBL2
PERI1
CD320
REL
SBDS
GUK1
RAB11B
PAXX

0,00017
0,00018
0,00021
0,00023
0,00029
0,00030
0,00031
0,00033
0,00034
0,00035
0,00036
0,00036
0,00056
0,00061
0,00063
0,00068
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0,49
8,6
33
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