Supplementary Information

Rapid Development of Neutralizing and Diagnostic SARS-COV-2 Mouse Monoclonal Antibodies

Asheley P. Chapman,¹ Xiaoling Tang,^{2‡} Joo R. Lee,^{2‡} Asiya Chida,^{2‡} Kristina Mercer,³ Rebekah E. Wharton,³ Markus Kainulainen,⁴ Jennifer L. Harcourt,⁵ Roosecelis B. Martines,⁶ Michelle Schroeder,¹ Liangjun Zhao,¹ Anton Bryksin,⁷ Bin Zhou,⁸ Eric Bergeron,⁴ Brigid C. Bollweg,⁶ Azaibi Tamin,⁵ Natalie Thornburg,⁵ David E. Wentworth,⁸ David Petway,² Dennis Bagarozzi, Jr,² M.G. Finn,^{1,9}* Jason M. Goldstein²*

- ¹ School of Chemistry and Biochemistry, Georgia Institute of Technology, 901 Atlantic Dr., Atlanta, GA, USA, 30306
- ² Immunodiagnostic Development Team/ Reagent Diagnostic Services Branch (RDSB)/DSR/NCEZID/CDC, 1600 Clifton Rd NE. Atlanta, GA, USA, 30333
- ³ Division of Laboratory Sciences DLS/NCEH/CDC, 4770 Buford Hwy, Atlanta, GA 30341, USA
- ⁴ Viral Special Pathogens Branch VSPB/DHCPP/NCEZID/CDC, 1600 Clifton Rd NE. Atlanta, GA, USA, 30333
- ⁵ Respiratory Disease Branch (RDB)/DVD/NCIRD/CDC, 1600 Clifton Rd NE. Atlanta, GA, USA, 30333
- ⁶ Infectious Disease Pathology Branch (IDPB)/DHCPP/NCEZID/CDC, 1600 Clifton Rd NE. Atlanta, GA, USA, 30333
- ⁷ Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA, 30306
- ⁸ Vaccine Preparedness Team/ Virology Surveillance and Diagnosis Branch (VSPB)/ID/NCIRD/CDC, 1600 Clifton Rd NE. Atlanta, GA, USA, 30333
- ⁹ School of Biological Sciences, Georgia Institute of Technology, 901 Atlantic Dr., Atlanta, GA, USA, 30306
- *Corresponding authors: <u>mgfinn@gatech.edu</u>, <u>fex0@cdc.gov</u>

[‡]Authors provided equivalent contributions

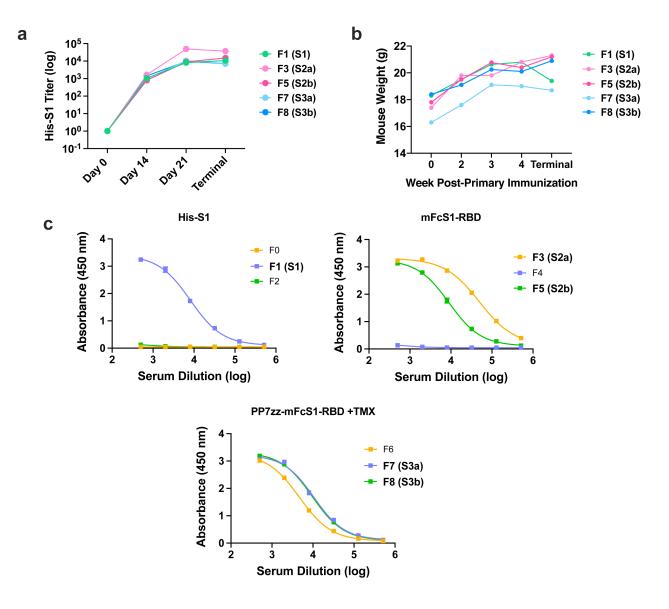
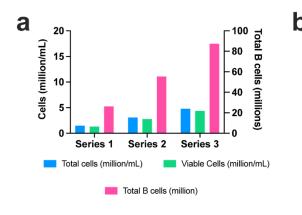
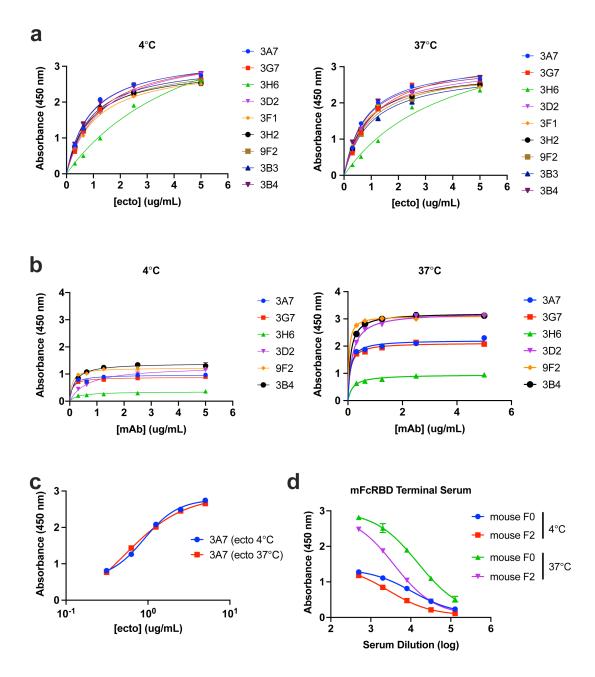



Figure S1. SARS-COV-2 Spike protein subunit vaccine safety and humoral immune response in mice. a, Anti-S1 titers over time (fusion mice only) measured by ELISA against His-S1. Day 0 is preimmune sera, Day 14 is two weeks after prime (blood taken prior to boost 1), Day 21 is one week after the first boost, Terminal sera is Day 30. b, Fusion mouse weight over the course of vaccine schedule (n=5). c, Vaccine response at day 21 as assessed by ELISA. Immunized mouse sera from each group was collected, diluted, and tested against His-S1 (1 μ g/mL) (F1: His-S1 + Titermax Gold [Series 1]; F3 and F5: mFcS1-RBD + Titermax [Series 2]; F7-F8: PP7zzmFcS1-RBD + Titermax Gold adjuvant [Series 3]).



3B1			3F6			3F1
•	3A1	3E1/9F		3A6		3F5
3D2	3H6 3A2			. • • .	3A7 3G2	
				3B6	• •	
3H4	3C2 3G6		3D3 ^{3C4}		383	354
	•	3E4	3G1	3D5 -	3H2	
	3E5 • 3G7	3D1	3B	3F2	3C6	
3B1		17.	3F6			3F1
	3A1	3E1/5	9F2 3D7	3A6		3F5
3D2	3H6 3A2				3A7 3G2	
				3B6		•
3H4	3C2 3G6		3C4 3D3		3B3 -	3F4
		3E4	3G1	3D5	3H2	
	3E5 3G7	3D1	3B4	3F2	3C6	

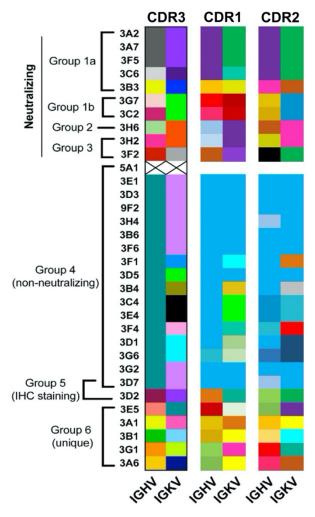
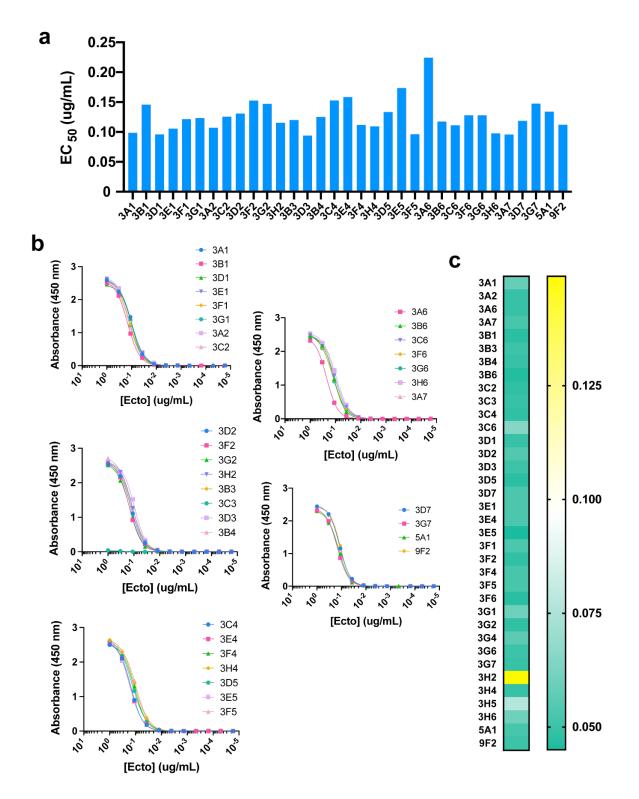

Figure S2. Hybridoma statistics from SARS-COV-2 immunized mice. a, Total cell yield and B cell yield from mice immunized with either His-tag S1 (Series 1), mouse Fc-tagged S1 Receptor Binding Domain (Series 2), or codelivery of mFcRBD by complexation with PP7zz VLPs (Series 3), all in emulsion with Titermax Gold. b, Representative images from 3D culture of IgG secreting hybridoma from the combined B cells harvested from two mice immunized with mFcRBD. (*top*) brightfield, (*bottom*) anti-IgG FITC. Clones were chosen by ClonePix2 based on morphology of each clone and the diameter and brightness of the FITC halo, indicating the level of IgG secretion. IgG secretion measured using CloneDetect anti-IgG-FITC reagent (Mouse IgH (H+L) specific fluorescein-PN) and detected by ClonePix II instrument.

Table S1. Hybridoma statistics from	n SARS-COV-2 immunized mice.

[Fusion #], initial immunogen, (mice used)	Total B cells fused	Clones detected (fusion efficiency)	High/Low FITC clones detected (%)	Clones spike reactive (total clones picked)	Clones dual antigen reactive	Clones with ecto preference	Clones with S1 reactive preference
[1] SARS-COV- 2 His S1 (mouse F1)	25 x 10 ⁶	699 (2.8 x 10 ⁻⁵)	16/304 (5.2%)	27 (282)	15	3	9
[2] SARS-COV- 2 mFcRBD (mice F3 + F5)	55	667 (1.2 x 10 ⁻⁵)	85/184 (46.1%)	157 (258)	107	48	2
[3] SARS-COV- 2 PP7zzmFcRBD + TiterMax (mice F7 + F8)	75	307 (0.41 x 10 ⁻⁵)	4/8 (50%)	2 (12)	1	1	0
Totals	155	1673 clones	105/496 (21.2%)	186 (552)	123	52	11

Figure S3. Thermal stability of SARS-CoV-2 spike ectodomain. a, Decreasing concentrations of r-spike ecto protein were plated on streptavidin coated 96-well plates (5 ug/mL), with the protein either used directly from storage at 4°C or after 1 h incubation at 37°C. The indicated monoclonal antibodies were then introduced (10 µg/mL) and incubated for 1 h. After washing, goat anti-mouse IgG-HRP reporter (1:2000 dilution) was added for 1 h, and plates were developed with Ultra-TMB substrate (30 s) and quenched with 2N H₂SO₄. **b**, After equilibration at 4°C or 37°C for one hour, r-spike ecto was plated at 0.5 µg/mL for one hour followed by incubation with decreasing concentrations of select mAbs (5 µg/mL – 0 µg/mL) under the conditions described for panel (**a**). **c**, Comparative binding profile of anti-RBD mAb 3A7 to r-spike ecto plated after temperature equilibration at either 4°C or 37°C. **d**, Terminal sera ELISA from mice immunized with mFcRBD (from which 32 out of 33 selected mAbs originated) against temperature-varied r-spike ecto (0.5 µg/mL).

Figure S4. Sequence relationships in complementarity-determining regions. CDR3 portion is shown in Figure 3e of the main paper and represents gene usage. Color coding for CDR1 and CDR2 is based on sequence similarity for these much shorter regions (generally, 3-12 amino acids). Closely related sequences for each CDR are indicated by colors with similar hue. No similarity is implied by identical or related colors between columns. Unique mAbs are unique across CDRs, mAbs clustered by CDR3 maintain those trends across CDRs as well. See Tables S2 and S3 for CDR sequences.



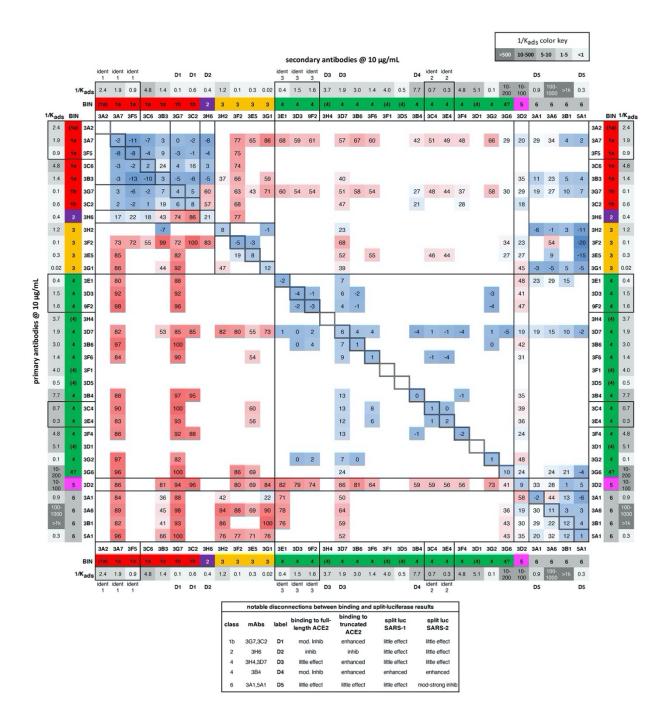

Figure S5. EC50 values for binding to plated r-spike ecto. a, EC50 (μ g/mL) of SARS-CoV-2 mAbs to trimeric spike ectodomain, calculated using EC50 shift nonlinear regression (GraphPad Prism v.8) from plots in panel (b). b, Indirect ELISA mAb (1 μ g/mL) sensitivity to spike ectodomain (titration beginning at 1 μ g/mL). c, Qualitative response (optical density) from indirect ELISA of mAbs against plated heat-inactivated SARS-CoV-2 (obtained from ATCC).

Table S2. Sequences and amino acid lengths of heavy chain CDRs for 32 SARS-CoV-2 monoclonal antibodies. mAbs were sequenced by Illumina next generation sequencing, and heavy and light chain variable gene and CDR3 regions assigned by MiXIR software. Corresponding epitope bins are included, as determined by competitive BLI and summarized in Figure S5.

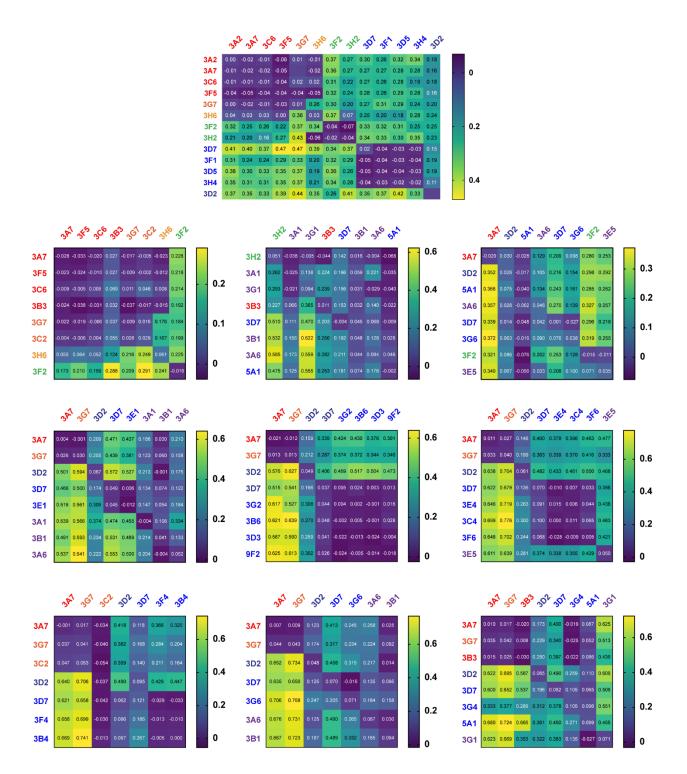

		Heavy Chain Sequence								
mAb	Bin	CDR1	length	CDR2	length	CDR3	length			
<u>3A2</u>	<u>1a</u>	GFSLSTSGMG	10	IYWDDDK	7	CARRGPLITTDGTFDVW	17			
<u>3A7</u>	<u>1a</u>	GFSLSTSGMG	10	IYWDDDK	7	CARRGPLITTDGTFDVW	17			
<u>3F5</u>	<u>1a</u>	GFSLSTSGMG	10	IYWDDDK	7	CARRGPLITTDGTFDVW	17			
3C6	1a	GFSLSTSGMG	10	IYWDDDK	7	CARRGPLITTDGTFDVW	17			
3B3	1a	GYSITSDYA	9	ISYSGTT	7	CAGRRGAYYGNYEEDYW	17			
3G7	1b	GYSFTSYW	8	IHPSDSET	8	CARSSGYDWYFDVW	14			
3C2	1b	GYAFTSYW	8	IYPGDGAT	8	CARSGGYDWYFDVW	14			
3H6	2	GFTFNTYA	8	IRSKSDNFAM	10	CASYDGYRAWFAYW	14			
3H2	3	GNTFSNYW	8	ILPGSDST	8	CARNRFYWYFDVW	13			
3F2	3	GYTFTSYS	8	VYPGNDDT	8	CARDGYFAMDYW	12			
<u>3E1</u>	<u>4</u>	GFNIKDTY	8	IDPANGNT	8	CARTYYYGSSYEAMDYW	17			
<u>3D3</u>	<u>4</u>	GFNIKDTY	8	IDPANGNT	8	CARTYYYGSSYEAMDYW	17			
<u>9F2</u>	<u>4</u>	GFNIKDTY	8	IDPANGNT	8	CARTYYYGSSYEAMDYW	17			
3H4	4	GFNIKDTY	8	IDPANGNS	8	CARSYYDYDGGGCFDYW	17			
3B6	4	GFNIKDTY	8	IDPASGNT	8	CARSYYTYDGFFDVW	15			
3F6	4	GFNIKDTY	8	IDPASGNT	8	CARSYYTYDGFFDVW	15			
3F1	4	GFNIKDTY	8	IDPANGNT	8	CVSGYYYYGSPYGAMDYW	18			
3D5	4	GFNIKDTY	8	IDPANGNT	8	CTRYYYGSSGFFDVW	15			
3B4	4	GFNIKDTY	8	IDPANGDT	8	CARSYYYGTTSWFASW	16			
<u>3C4</u>	<u>4</u>	GFNIKDTY	8	IDPASGKT	8	CASGYDVNYELDYW	14			
<u>3E4</u>	<u>4</u>	GFNIKDTY	8	IDPASGKT	8	CASGYDVNYELDYW	14			
3F4	4	GFNIKDTY	8	IDPANDNT	8	CTRYYDYVYAMDYW	14			
3D1	4	GFNIKDTY	8	IDPANGNT	8	CARWDFGNYVDYAMDYW	17			
3G6	4	GFNIKDTN	8	IDPANGDT	8	CARLNYDGYYDYAMDYW	17			
3G2	4	GFNIKDTY	8	IDPANGNT	8	CTRYYYGSSGFFDVW	15			
3D7	5	GFNIKDTY	8	IDPANGNS	8	CARSYYDYDGGGCFDYW	17			
3D2	5	GYTFSTYW	8	INPYTDYT	8	CARRYGNYDAWFTYW	15			
3E5	6	GYSFTGYF	8	INPYNGDT	8	CGLRTYW	7			
3A1	6	GYSITGDYS	9	IHYSGSA	7	CARWGNGKNAMDYW	14			
3B1	6	GYSITSGYY	9	IIYDGTN	7	CARVDYDVGHWFAYW	15			
3G1	6	GFSLTSYG	8	IWSGGST	7	CAKYRYDSFAYW	12			
3A6	6	GFSLISYG	8	IWAGGST	7	CGRDYGILLIDYW	13			

Table S3. Sequences and amino acid lengths of light chain CDRs for 32 SARS-CoV-2 monoclonal antibodies. mAbs were sequenced by Illumina next generation sequencing, and heavy and light chain variable gene and CDR3 regions assigned by MiXIR software. Corresponding epitope bins are included, as determined by competitive BLI and summarized in Figure S5.

		Light Chain Sequence							
mAb	Bin	CDR1	length	CDR2	length	CDR3	length		
<u>3A2</u>	<u>1a</u>	QDVGTS	6	WAS	3	CQQYSSYPYTF	11		
<u>3A7</u>	<u>1a</u>	QDVGTS	6	WAS	3	CQQYSSYPYTF	11		
<u>3F5</u>	<u>1a</u>	QDVGTS	6	WAS	3	CQQYSSYPYTF	11		
3C6	1a	QDVDTA	6	WAS	3	CQQYSSYPYTF	11		
3B3	1a	SIVNY	5	DTS	3	CQQWSSYPYTF	11		
3G7	1b	ESVDSYGNSF	10	RAS	3	CQQSNEDPWTF	11		
3C2	1b	ETVDSYGNSF	10	RAS	3	CQQSNEDPWTF	11		
3H6	2	QSLVHSNGNTY	11	KVS	3	CSQSTHVPWTF	11		
3H2	3	QSLVHSNGNTY	11	KVS	3	CSQSTHVPWTF	11		
3F2	3	QSLLYSTNQKNY	12	WAS	3	CHQYYSYPWTF	11		
<u>3E1</u>	<u>4</u>	QSVSND	6	YAS	3	CQQDYSSPTF	10		
<u>3D3</u>	4 4 4 4	QSVSND	6	YAS	3	CQQDYSSPTF	10		
<u>9F2</u>	<u>4</u>	QSVSND	6	YAS	3	CQQDYSSPTF	10		
3H4	4	QSVSND	6	YAS	3	CQQGYSSPLTF	11		
3B6	4	QSVSND	6	YAS	3	CQQDYSSPPTF	11		
3F6	4	QSVSND	6	YAS	3	CQQDYSSPPTF	11		
3F1	4	SSVSY	5	HTS	3	CQQYHGYPLTF	11		
3D5	4	QSVSND	6	YAS	3	CQQDYSSPTF	10		
3B4	4	EDIYNH	6	GAP	3	CQQYWSTPYTF	11		
<u>3C4</u>	<u>4</u>	QNINVW	6	KAS	3	CQQGQSYPYTF	11		
<u>3E4</u>	<u>4</u> <u>4</u>	QNINVW	6	KAS	3	CQQGQSYPYTF	11		
3F4	4	QTIGTW	6	AAT	3	CQQLYSTPLTF	11		
3D1	4	QDLYSF	6	RAN	3	CLQYDAFPWTF	11		
3G6	4	QDINSF	6	RAN	3	CLQYDEFPFTF	11		
3G2	4	QSVSND	6	YAS	3	CQQDYSSPTF	10		
3D7	5	QSVSND	6	YAS	3	CQQGYSSPLTF	11		
3D2	5	QDVGTA	6	WAS	3	CQQYRTF	7		
3E5	6	QDINNN	6	HGT	3	CVQSVQFPYTF	11		
3A1	6	ENIYSY	6	NTK	3	CQHHYGSPPTF	11		
3B1	6	SSVNY	5	YTS	3	CHQFTTSPWTF	11		
3G1	6	KSVSTSGYSY	10	LAS	3	CQHSRELPYTF	11		
3A6	6	SSVSY	5	DTS	3	CFQGSGYPFTF	11		

Figure S6. Collected from competitive binding experiments of the type shown in Figure 3f and Figure S6, performed on groups of up to 13 mAbs at a time. BLI values for each experiment were normalized to a maximum of 100 to allow for incorporation into this master dataset. Color-coded bin assignments are the same as done by sequence. When rows do not match columns, the avidities of the antibodies were usually significantly different, skewing the results of this competitive binding assay. Blank squares denote comparisons not made. Most of group 6 (5A1, 3B1, 3G4, 3C3, 3H5, 9B1) are included because some data was collected, but they were not sequenced and are omitted from the list of 33 selected antibodies discussed in the main text. The three sets of identical antibodies are denoted by "ident #". The table at the bottom summarizes results described in the text concerning the experiments shown in Figure 4a vs. 4f, highlighting the connection between competitive binding, functional properties, and sequence.

Figure S7. Individual epitope binning results. Epitope classification experiments performed by BLI. r-Spike ectodomain protein (bearing twin Strep-Tag II sequences) was immobilized on streptavidin-coated biosensors ($10 \mu g/mL$). Primary antibody (y axis) was incubated for 400 s, allowed to dissociate in buffer for 300 s, followed by incubation with secondary antibody (x axis) for 300 s. Data analyzed using ForteBio Octet Data Analysis software v. 10.0.