Supplementary Information for

On-Demand Synthesis of Phosphoramidites

Alexander F. Sandahl, Thuy J. D. Nguyen, Rikke A. Hansen, Martin B. Johansen, Troels Skrydstrup, Kurt V. Gothelf

Correspondence to: kvg@chem.au.dk

Table of Contents

Supplementary Methods	3
Data Availability	3
Solution Phase Reference Results	4
Synthesis of Heterocycles	10
Functionalization of Resins	11
Modification of NMR Tube	13
Loading Studies	14
Hygroscopicity Studies	20
Overlay of Reference Spectra for ¹⁹ F NMR Analysis	25
Base Screen	26
³¹ P NMR Study of Aminopyridine Intermediates	33
Flow System Setup	35
PCI Stability	37
Diffusion Study	38
Concentration Screen of 9AJ	39
Synthesis of Starting Material Alcohols	40
Residence Time Study	47
Stability of Phosphoramidite 9-P in Solution	58
Synthesis and Characterization of Reference Oligonucleotides	60
Single Coupling Reactions	64
Oligonucleotide Synthesis	79
Synthesis of Reference Phosphoramidites	80
NMR Spectra of P(III)-loaded Resins	85
NMR Spectra of Synthesized Starting Materials and Reference Products	90
NMR Spectra of 9AJ and 2-cyanoethyl N,N-diisopropylphosphonamidate	112
NMR Spectra (Full) of Flowthrough (Stacked with References)	114
Supplementary References and Notes	128

Supplementary Methods

All chemicals were purchased from Sigma-Aldrich, Carbosynth, and Link Technologies Ltd. in Scotland and used without further purification. Solvents were of HPLC grade and anhydrous solvents were purchased in Sure/Seal bottles with inert atmosphere or dried prior use by an M-BRAUNsolvent purification system. Yields refer to mass of isolated compounds unless otherwise stated. Reactions were monitored by thin-layer chromatography (TLC) on Merck silica 60 F254 plates and visualised by exposure to UV (254 nm) or by staining with solutions of molybdic acid, potassium permanganate, ninhydrin, vanillin, or *p*-anisaldehyde. Flash column chromatography was performed using Merck silica gel 60 (230-400 mesh) as stationary phase. NMR spectra were recorded on a Bruker BioSpin GmbH AscendTM 400 and were calibrated using deuterated solvents (MeCN, DMSO, Chloroform). ¹H NMR was recorded at 400 MHz, ¹³C NMR was recorded at 101MHz, ¹⁹F NMR was recorded at 376 MHz and ³¹P NMR was recorded at 162 MHz. Chemical shifts are reported in parts per million and following abbreviations were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet. Coupling constants are reported in Hz. HRMS was performed using electrospray ionization on a Bruker Daltonics MicrOTOF.

Oligonucleotides were synthesised in house on a BioAutomation MerMade-12 automated oligonucleotide synthesiser using reagents and preloaded 1000 Å CPG columns purchased from Link Technologies Ltd. in Scotland. Phosphoramidites were synthesised in house or purchased from Link Technologies Ltd. in Scotland. Oligonucleotide synthesis was carried out under standard conditionsunless otherwise states. Synthesised oligonucleotides were cleaved from solid support using AMA (1:1 40% methylamine/30-33% ammonium hydroxide). The mass was confirmed by UHPLC-ESI-TOF on a Shimadzu LCMS-2020 system. All oligonucleotides were HPLC purified on a Hewlett-Packard Agilent Expand C-18 stationary column using the following methods (Solvent A: 0.1 M Triethylammonium acetate, pH = 7; Solvent B: MeCN; Gradient: 5% to 20% B over 15 mins, 20% to 70% B 15-20 mins or 5% to 15% B over 15 mins, 15% to 70% B 15-20 mins).

Solution Phase Reference Spectra

General procedure:

Heterocycles (0.10 M, 0.10 mmol) were dissolved in MeCN (1.0 mL) and DIPEA (0.030 M, 0.030 mmol) was added along with PCl (0.020 M, 0.020 mmol). NMR spectra were recorded after 10 mins.

Imidazole

 ^{31}P NMR (162 MHz, MeCN) δ_P (ppm) 124.6

210 190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -17C

1,2,4-Triazole

³¹P NMR (162 MHz, MeCN) δ_P (ppm) 126.9

210 190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170

1,2,3-Triazole

³¹P NMR (162 MHz, MeCN) δ_P (ppm) 130.6

Tetrazole

³¹P NMR (162 MHz, MeCN) δ_P (ppm) 132.2

3-Nitro-1,2,4-triazole

 ^{31}P NMR (162 MHz, MeCN) δ_P (ppm) 134.7

Synthesis of Heterocycles

Synthesis of Het3

3-(1H-1,2,3-Triazol-4-yl)propanoic acid was prepared according to previously published procedures and reported data are consistent with reported values.¹

Synthesis of Het5

5-Amino-1,2,4-3yl-acetic acid was prepared according to previously published procedures and data are consistent with reported values.²

Synthesis of Het5.1

2-(5-Nitro-4H-1,2,4-triazol-3-yl)acetic acid was prepared according to previously published procedures and data are consistent with reported values.³

Functionalization of Resins

General procedure for coupling between amine-functionalised resins and carboxylic acids

The carboxylic acid (0.205 M, 1.03 mmol, 10 eq) was dissolved in 5 mL CH_2Cl_2 and DIC (0.205 M, 1.03 mmol, 10 eq), DIPEA (0.615 M, 3.08 mmol, 30 eq), and HOBt H_2O (0.205 M, 1.03 mmol, 10 eq) were added. The mixture was stirred at rt for 20 mins and then added to the amine-functionalised resin (0.103 mmol, 1 eq) in a plastic column (PD-10 from GE Lifesciences) and shaken overnight at rt. The resin was then washed with MeOH, CH_2Cl_2 , and Et_2O . The beads were analysed by Kaiser test which gave negative results for amines suggesting quantitative coupling yields.

This procedure was performed for the following resin and heterocycle combinations:

TentaGelTM S-NH₂ (TG) was functionalised with 2-(4H-1,2,4-triazol-3-yl)acetic acid (**TG-Het2**) 3-(1H-1,2,3-triazol-5-yl)propanoic acid (**TG-Het3**) 2-(1H-tetrazol-5-yl)acetic acid (**TG-Het4**) 2-(5-nitro-4H-1,2,4-triazol-3-yl)acetic acid (**TG-Het5.1**)

Amino-SynBaseTM Controlled Pore Glass 3000/110, LCAA (CPG) was functionalised with 2-(1H-tetrazol-5-yl)acetic acid (**CPG-Het4**) 2-(5-nitro-4H-1,2,4-triazol-3-yl)acetic acid (**CPG-Het5.1**)

(Aminomethyl)polystyrene (AM-PS) was functionalised with 2-(1H-tetrazol-5-yl)acetic acid (**AM-PS-Het4**) 2-(5-nitro-4H-1,2,4-triazol-3-yl)acetic acid (**AM-PS-Het5.1**)

PEGA was functionalised with 2-(1H-tetrazol-5-yl)acetic acid (**PEGA-Het4**)

Aminomethyl ChemMatrix® (AM-CM) was functionalised with 2-(1H-tetrazol-5-yl)acetic acid (AM-CM-Het4)

TentaGel® XV HMPA (TG-XV) Resin was functionalised with 2-(1H-tetrazol-5-yl)acetic acid(**TG-XV-Het4**)

HypoGel® RAM Resin (HypoGel) was functionalised with 2-(1H-tetrazol-5-yl)acetic acid (**HypoGel-Het4**)

Aminobutyl Polystyrene (AB-PS) was functionalised with 2-(1H-tetrazol-5-yl)acetic acid (**AB-PS-Het4**)

Imidazole functionalization of TentaGelTM S-NH₂ (TG-Het1)

Succinic anhydride (100 mg, 1.0 mmol, 7.4 eq) was dissolved in CH_2Cl_2 (5 mL) and Et_3N (0.138 mL, 1.0 mmol, 7.4 eq) was added. The mixture was added to TentaGelTM S-NH₂ (300 mg, 0.45 mmol/g, 0.135 mmol, 1.0 eq) in a plastic tube and shaken at rt for 3 hrs. The resin was washed with CH_2Cl_2 and Et_2O . The beads were analysed by Kaiser test which gave negative results for amines meaning quantitative coupling yield.

A solution of DIC (0.11 mL, 0.68 mmol, 5.0), HOBt·H₂O (103 mg, 0.24 mmol, 1.8 eq), and DIPEA (0.35 mL, 0.72 mmol, 5.3 eq) in CH₂Cl₂ (4 mL) was added to the resin and shaken at rt for 30 mins. Histamine (75 mg, 0.68 mmol, 5.0 eq) was then added to the mixture and tube was shaken overnight at rt The beads were then washed with MeOH, CH₂Cl₂ and Et₂O.

Modification of NMR Tube

The bottom of an NMR tube (outer diameter: 5 mm) was cut off using a diamond tipped glass cutter (1). The glass was then melted under a torch and pulled with a tweezer (2). After cooling, a filter was added to the NMR tube (3). The resin could then be added and used for the following experiments (4).

Instructions on how to make modified NMR tube

Figure S1| **Step-by-step guide on how to prepare the modified NMR tubes.** Figure by Alexander F. Sandahl

Loading Studies

A modified NMR tube was loaded with TG-heterocycle resin (50 mg, 0.4 mmol/g, 0.2 mmol). The resin was washed with CH_2Cl_2 (2 mL), and a solution of PCl (0.10 M, 0.20 mmol) and DIPEA (0.10 M, 0.20 mmol) in CH_2Cl_2 (2 mL) was eluted over 1 min. The resin was then washed with CH_2Cl_2 (2 mL) and a Gel Phase ³¹P NMR spectrum was recorded. MeOH (1 mL) was then eluted through the resin followed by CH_2Cl_2 (2 mL) and a new Gel Phase ³¹P NMR spectrum was recorded.

It should be noted that a signal around 143-144 ppm is observed for imidazole (**TG-Het1**) and tetrazole (**TG-Het4**) which does not correlate with the P(III)-azolide. A likely structure may be the P(III) bound to the neighbouring amide to give a P(III)-imidate.

TG-Het1 (Imidazole)

149 147 145 143 141 139 137 135 133 131 129 127 125 123 121 119 117 115 113 111

TG-Het2.1 (1,2,3-Triazole)

149 147 145 143 141 139 137 135 133 131 129 127 125 123 121 119 117 115 113 111

149 147 145 143 141 139 137 135 133 131 129 127 125 123 121 119 117 115 113 111

TG-Het4 (Tetrazole)

149 147 145 143 141 139 137 135 133 131 129 127 125 123 121 119 117 115 113 111

149 147 145 143 141 139 137 135 133 131 129 127 125 123 121 119 117 115 113 111

Hygroscopicity Studies

Modified NMR tube was loaded with tetrazole-functionalised resin (50 mg, 0.050-0.075 mmol tetrazole). The resin was washed with CH_2Cl_2 (2 mL) and then loaded with with PCl (0.10 M, 0.20 mmol) and DIPEA (0.1 M, 0.20 mmol) in CH_2Cl_2 (2 mL) over 1 min. The resin was then washed with CH_2Cl_2 (2 mL) and Gel Phase ³¹P NMR spectra were recorded over time. Signals in the range of 120-140 ppm correspond to the P(III)-azolides. The signal around 15 ppm corresponds to the H-phosphonate from hydrolysis and the signals around 0 ppm corresponds to P(V) species through oxidation.

AM-PS-Het4

PEGA-Het4

210 190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170

^{210 190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170}

AM-CM-Het4

AB-PS-Het4

^{210 190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170}

HypoGel-Het4

TG-XV-Het4

^{210 190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170}

A modified NMR tube was loaded with **AM-PS-Het5.1** or **HypoGel-Het5.1** (50 mg). The resin was washed with CH_2Cl_2 (2 mL) and then loaded with with PCl (0.10 M, 0.20 mmol) and DIPEA (0.10 M, 0.20 mmol) in CH_2Cl_2 (2 mL) over 1 min. The resin was then washed with CH_2Cl_2 (2 mL) and ³¹P Gel Phase NMR spectra were recorded over time.

HypoGel-Het5.1

Table S1, Summary	v of results for h	vorosconicity stud	v of HvnoGel-Het5.1
Table SI. Summar	y of results for it	ygroscopicity stud	y of mypuder-meisi

Time / hours	0	1	3	5	7
Amount of P(III)-N	81%	68%	38%	18%	0%

AM-PS-Het5.1

Tuble 52. Summary of results for hygroscopicity study of third 1.5 field.					
Time / hours	0	1	3	5	7
Amount of P(III)-N	94%	78%	49%	34%	24%

^{210 190 170 150 130 110 90 70 50 30 10 -10 -30 -50 -70 -90 -110 -130 -150 -170}

Overlay of Reference Spectra for ¹⁹F NMR Analysis

Structures of 5'DMTr-floxuridine (1) and 3'-phosphoramidite-5'DMTr-floxuridine (1-P)

i5.0 -165.2 -165.4 -165.6 -165.8 -166.0 -166.2 -166.4 -166.6 -166.8 -167.0 -167.2 -167.4 -167.6 -167.8 -16

Base Screen

A modified NMR tube was loaded with **AM-PS-Het5.1** (50 mg, 0.50-0.75 mmol nitrotriazole). The resin was washed with CH_2Cl_2 (2 mL) and then loaded by elution of PCl (0.10 M, 0.20 mmol) and DIPEA (0.10 M, 0.02 mmol) in CH_2Cl_2 (2 mL) over 1 min. The resin was washed with CH_2Cl_2 (2 mL) before elution and collection of a solution of **1** (9 mg, 0.025 M, 0.025 mmol) with base (0.10 M, 0.10 mmol) in CH_2Cl_2 (1 mL) over 40 s. The eluate was directly analysed by ¹⁹F NMR spectroscopy.

Base	¹⁹ F NMR Conversion* / %	
-	13	
9AJ	96	
DABCO	27	
DBU	18	
DIPEA	12	
DMAP	42	
NMI	23	
PPY	45	
Proton Sponge	12	
Pyridine	5	
Quinoline	6	
Triethylamine	15	

 Table S3. Results of base screen

*Based on product/starting material ratio.

Abbreviations: 9AJ (9-azajulolidine), DABCO (1,4-diazabicyclo[2.2.2]octane), DBU (1,8-diazabicyclo[5.4.0]undec-7-ene), DIPEA (*N*,*N*-diisopropylethylamine), DMAP (4-dimethylaminopyridine), NMI (*N*-methylimidazole), PPY (4-pyrrolidinopyridine).

No base

55.0 -165.2 -165.4 -165.6 -165.8 -166.0 -166.2 -166.4 -166.6 -166.8 -167.0 -167.2 -167.4 -167.6 -167.8 -16

9AJ

DABCO

55.0 -165.2 -165.4 -165.6 -165.8 -166.0 -166.2 -166.4 -166.6 -166.8 -167.0 -167.2 -167.4 -167.6 -167.8 -16

DBU

DIPEA

55.0 -165.2 -165.4 -165.6 -165.8 -166.0 -166.2 -166.4 -166.6 -166.8 -167.0 -167.2 -167.4 -167.6 -167.8 -16

DMAP

35.0 -165.2 -165.4 -165.6 -165.8 -166.0 -166.2 -166.4 -166.6 -166.8 -167.0 -167.2 -167.4 -167.6 -167.8 -1€

NMI

35.0 -165.2 -165.4 -165.6 -165.8 -166.0 -166.2 -166.4 -166.6 -166.8 -167.0 -167.2 -167.4 -167.6 -167.8 -16

PPY

Proton sponge

35.0 -165.2 -165.4 -165.6 -165.8 -166.0 -166.2 -166.4 -166.6 -166.8 -167.0 -167.2 -167.4 -167.6 -167.8 -1€

Pyridine

Quinoline

5.0 -165.2 -165.4 -165.6 -165.8 -166.0 -166.2 -166.4 -166.6 -166.8 -167.0 -167.2 -167.4 -167.6 -167.8 -16

Triethylamine

35.0 -165.2 -165.4 -165.6 -165.8 -166.0 -166.2 -166.4 -166.6 -166.8 -167.0 -167.2 -167.4 -167.6 -167.8 -1€

³¹P NMR Study of Aminopyridine Intermediates

Formation of P(III)-Aminopyridine species

To a solution of PCl (0.5 mL, 0.1 M) dissolved in CH_2Cl_2 in an NMR tube was added either DMAP, PPY or 9AJ (0.5 mL, 0.2 M) in CH_2Cl_2 . ³¹P NMR spectra were then recorded.

DMAP

³¹P NMR (162 MHz, CH₂Cl₂) δ_P (ppm) 164.7

PPY

³¹P NMR (162 MHz, CH₂Cl₂) δ_P (ppm) 158.2

9AJ

³¹P NMR (162 MHz, CH₂Cl₂) δ_P (ppm) 142.0

Competition with between 9AJ and already formed P(III)-nitrotriazole

A solution of PCl (0.1 M) and nitrotriazole (0.2 M) in CH_2Cl_2 (0.5 mL) was prepared and ³¹P NMR spectra was recorded to confirm the formation of the P(III)-nitrotriazolide. Then a solution of 9AJ (0.2 M) in CH_2Cl_2 (0.5 mL) was added to the NMR tube and ³¹P NMR spectra was recorded. However, no change was observed upon addition of 9AJ.

Flow System Setup

Flow System Description

The tubing throughout the system contained of stainless steel tubing (1/16" OD x 0.75 mm ID) and connections were made with PEEK or stainless steel HPLC fittings (all with 1/16" ID). A HPLC pump (Knauer Azura P 4.1S) was used to pump CH_2Cl_2 through the reactor system that consisted of one backpressure regulator (PBR, 100 psi), two injections valves (2 position: load and inject, 6-port, 1/16", Vici) in series, and a packed bed reactor prepared with resin. The exiting fluid was collected in a roundbottomed flask under argon atmosphere, unless otherwise stated. To the two injection valves were connected two loops for loading of reagents: an alcohol loop (0.959 mL) and a PCI/DIPEA loop (2.42 mL).

Preparation of Packed Bed Reactor

An empty HPLC column of stainless steel (76 mm length, 4.6 mm ID) was filled with **AM-PS-Het5.1** resin (approx. 250 mg, 1.00-1.50 mmol/g, 0.25-0.375 mmol) and sealed.

Determination of void volume

The internal volume of a freshly prepared packed bed reactor or of an empty sample loop was determined by weighing the freshly prepared packed bed reactor or empty sample loop, m_1 . Then solvent was pumped through the packed bed reactor or sample loop to fill the void with solvent before it was weighed again, m_2 . For our determination we used CH₂Cl₂ and toluene as the two solvent. The reactor or sample loop void volume, V_{void} , was determined by:

$$V_{void} = \frac{m_2 - m_1}{\Delta \rho_{solvent}} = \frac{m_{CH_2Cl_2 + resin + column} - m_{Toluene + resin + column}}{\rho_{CH_2Cl_2} - \rho_{Toluene}} = \frac{43.550 \text{ g} - 43.140 \text{ g}}{1.33 \frac{\text{g}}{\text{mL}} - 0.867 \frac{\text{g}}{\text{mL}}}$$
$$= 0.890 \text{ mL}$$

The packed bed reactor with $V_{Void} = 0.890$ mL was used for all the following studies.

The flow system

Figure S2 | Schematics of the flow setup. Figure by Martin B. Johansen

The total backpressure was usually in the range of 30-60 bar

Picture of the used flow system.

Figure S3 | Image of the flow setup in a fume hood. Figure by Alexander F. Sandahl
PCl stability

A solution of PCl (0.1 M) and DIPEA (0.1 M) in dry DCM was prepared and ³¹P NMR spectra were recorded over time.

	Fresh sample	24 hrs	96 hrs
Amount of PCI	۵۲%	01%	Q 20/
remaining	53%	91/0	0370

³¹P NMR Spectra of the PCl solution over time

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

Diffusion Study

Using the PCl loop, the resin was loaded by elution of PCl (0.10 M, 0.24 mmol) and DIPEA (0.10 M, 0.24 mmol) in CH₂Cl₂ (2.4 mL) with flow rate of 0.89 mL/min ($t_R = 1$ min) for 15 mins. Using the Alcohol loop, 5'DMTr-thymidine (0.104 M, 0.10 mmol) and 9AJ (0.05 M, 0.045 mmol) dissolved in CH₂Cl₂ (0.890 mL) was eluted through the resin with different retention times ($t_R = 1$ -3 mins). Up to 10 fractions were collected each corresponding to 1 void volume. The fractions were then subjected to TLC analysis (EtOAc/pentane = 2/1 + 1% Et₃N).

TLC analysis of the elution profile when eluting the alcohol through the resin.

It was concluded that the compounds had eluted after 6 residence times giving a total collection volume of 5.34 mL.

Concentration Screen of 9AJ

The resin was loaded with PCI/DIPEA (flow rate = 1 V_{void} /min, 15 mins including washing step) and 5'DMTr-thymidine (0.10 mmol, 0.104 M, 0.96 mL) and 9AJ (varying concentration) was eluted through the resin (flow rate = 1 V_{void} /min, 6 mins) and the eluate was collected in a flask. The eluate was concentrated under reduced pressure and analysed by ¹H NMR to determine the reaction yield.

c(9AJ)	¹ H NMR Yield* / %
5 mM	52
10 mM	60
50 mM	78
75 mM	80
100 mM	89

Table S4. Results of concentration screen

*Based on product/starting material ratio.

We decided to continue with a concentration of 50 mM 9AJ for the rest of the studies described.

Synthesis of Starting Material Alcohols

2-dmf-2'-Deoxyguanisine

To a solution of 2'-deoxyguanosine (0.50 g, 1.87 mmol, 1.0 equiv.) in dry methanol (6 mL) was added *N*,*N*-dimethylformamide dimethyl acetal (1 mL, 7.48 mmol, 4.0 equiv.) over 5 mins. The resulting suspension was stirred at 55 °C for 16 hrs. The precipitate was collected by vacuum filtration, and the solid was washed with cold methanol to give the desired compound (520 mg, 1.61 mmol, 86%) as a white solid.

¹**H NMR (400 MHz, DMSO)** $\delta_{\rm H}$ (ppm) 11.31 (s, 1H), 8.55 (s, 1H), 8.03 (s, 1H), 6.25 (dd, J = 7.81 Hz, 6.20 Hz, 1H), 5.29 (d, J = 3.91 Hz, 1H), 4.93 (t, J = 5.58 Hz, 1H), 4.39-4.35 (m, 1H), 3.85-3.81 (m, 1H), 3.61-3.47 (m, 2H), 3.16 (s, 3H), 3.03 (s, 3H), 2.63-2.55 (m, 1H), 2.23 (ddd, J = 9.03 Hz, 6.13 Hz, 2.87 Hz, 1H).

¹³C NMR (101 MHz, DMSO) δ_C (ppm) 158.0, 157.6, 157.3, 149.6, 136.6, 119.7, 87.7, 82.8, 70.9, 61.8, 40.6, 34.6.

HRMS (ESI) *m*/*z* [M+Na]⁺ calc. for C₁₃H₁₈N₆O₄Na⁺ 345.1282, found 345.1289

2-dmf-5'-DMTr-2'-Deoxyguanisine (dmf-dG)

To a solution of 2-dmf-2'-deoxyguanisine (0.50 g, 1.55 mmol, 1.00 equiv.) in pyridine (10 mL) was added DMTrCl (0.630 g, 1.86 mmol, 1.30 equiv.) and the mixture was stirred overnight at rt. The volatiles were removed under reduced pressure and the residue subjected to flash column chromatography (0-5% MeOH in $CH_2Cl_2 + 1\%$ Et₃N) to give the desired product (0.57 g, 0.91 mmol, 59 %) as a white solid.

¹**H NMR (400 MHz, CD₃CN)** $\delta_{\rm H}$ (ppm) 9.27 (s, 1H), 8.54 (s, 1H), 7.68 (s, 1H), 7.39 (d, J = 7.49 Hz, 2H), 7.28-7.21 (m, 8H), 6.83-6.76 (m, 4H), 6.28 (t, J = 6.51 Hz, 1H), 4.57-4.51 (m, 1H), 4.02-3.97 (m, 1H), 3.75 (s, 3H), 3.75 (s, 3H), 3.46 (d, J = 4.0 Hz, 1H), 3.24 (ddd, J = 16.70 Hz, 10.81 Hz, 5.87 Hz, 2H), 3.09 (s, 3H), 3.05 (s, 3H), 2.72 (dt, J = 13.22 Hz, 6.36 Hz, 1H), 2.37 (ddd, J = 11.40 Hz, 6.73 Hz, 4.66 Hz, 1H)

¹³C NMR (101 MHz, CD₃CN) δ_C (ppm) 159.6, 159.1, 158.5, 158.2, 151.1, 146.1, 137.3, 136.8, 131.0, 130.9, 129.0, 128.7, 127.8, 121.3, 114.0, 87.1, 86.9, 84.3, 72.3, 65.1, 55.8, 41.5, 40.4, 35.2.

HRMS (ESI) *m/z* [M+H]⁺ calc. for C₃₄H₃₆N₆O₆H⁺ 625.2769, found 625.2780

Floxuridine (750 mg, 3.05 mmol, 1.0 eq), DMTr-Cl (1.34 g, 3.96 mmol, 1.3 eq), and DMAP (74 mg, 0.61 mmol, 0.20 eq) were dissolved in pyridine (15 mL) and stirred overnight at rt The solvent was then removed under reduced pressure and the residue was redissolved in EtOAc (30 mL) and washed with water (30 mL) and brine (30 mL), dried over Na₂SO₄, filtered, and concentrated under reduced pressure. The residue was subjected to flash column chromatography (0-5% MeOH in $CH_2Cl_2 + 1\%$ Et₃N) to give the desired compound (1.256 g, 2.29 mmol, 75%) as a light pink foam.

¹**H NMR (400 MHz, CD₃CN)** $\delta_{\rm H}$ (ppm) 9.27 (broad s, 1H), 7.74 (d, J = 6.77 Hz, 1H), 7.43 (d, J = 7.20 Hz, 2H), 7.36-7.29 (m, 6H), 7.24 (tt, J = 7.18, 2.02 Hz, 1H), 6.86 (dd, J = 7.64, 1.27 Hz, 4H), 6.14 (td, J = 6.45, 1.67 Hz, 1H), 4.47-4.42 (m, 1H), 3.94 (q, J = 4.16 Hz, 1H), 3.77 (s, 6H), 3.39 (broad s, 1H), 3.32 (dd, J = 10.74, 4.45 Hz, 1H), 3.24 (dd, J = 10.73, 2.97 Hz, 1H), 2.32-2.19 (m, 2H).

¹³C NMR (100 MHz, CD₃CN) δ_C (ppm) 159.7, 158.1, 157.9, 149.9, 145.9, 142.7, 140.4, 136.8, 136.6, 131.0, 128.9, 127.9, 125.5, 125.2, 114.1, 87.5, 87.1, 86.1, 71.6, 64.3, 55.9, 41.1.

¹⁹F NMR (376 MHz, CD₃CN) δ_F (ppm) -168.43.

HRMS (ESI) *m*/*z* [M+Na]⁺ calc. for C₃₀H₂₉FN₂O₇Na 571.1851, found 571.1852.

Compound 4

Clofarabine (500 mg, 1.65 mmol, 1.0 eq), DMTr-Cl (642 mg, 1.89 mmol, 1.15 eq) and DMAP (40 mg, 0.33 mmol, 0.20 eq) were dissolved in pyridine (10 mL) and stirred overnight at rt The solvent was then removed under reduced pressure and the residue was redissolved in EtOAc (25 mL) and washed with water (25 mL) and brine (25 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was subjected to flash column chromatography (1/2 - 1/0 EtOAc/pentane + 1% Et₃N) to give the desired compound (852 mg, 1.40 mmol, 85%) as a white foam.

¹**H** NMR (400 MHz, CD₃CN) $\delta_{\rm H}$ (ppm) 7.99 (d, J = 2.20 Hz, 1H), 7.44 (d, J = 7.35 Hz, 2H), 7.35-7.18 (m, 7H), 6.85-6.79 (m, 4H), 6.50 (broad s, 2H), 6.35 (dd, J = 15.23, 4.36 Hz, 1H), 5.14 (dt, J = 52.23, 4.02 Hz, 1H), 4.55 (d, J = 18.56 Hz, 1H), 4.11-4.04 (m, 2H), 3.74 (d, J = 1.04 Hz, 6H), 3.44 (dd, J = 10.40, 6.45 Hz, 1H), 3.34 (dd, J = 10.42, 3.55 Hz, 1H).

¹³C NMR (100 MHz, CD₃CN) δ_C (ppm) 159.6, 157.7, 154.8, 151.8, 146.0, 141.4, 141.3, 136.8, 136.8, 131.0, 131.0, 129.0, 128.8, 127.8, 119.0, 114.0, 97.3, 95.3, 87.1, 83.5, 83.4, 83.3, 83.1, 75.2, 74.9, 64.2, 55.9.

¹⁹F NMR (376 MHz, CD₃CN) δ_F (ppm) -199.04.

HRMS (ESI) m/z [M+H]⁺ calc. for C₃₁H₃₀ClFN₅O₅ 606.1914, found 606.1923.

Compound 4.1

Compound 4 (780 mg, 1.29 mmol, 1.0 eq) was dissolved in dry MeOH (20 mL) and N,Ndimethylformamide dimethyl acetal (0.857 mL, 6.44 mmol, 5.0 eq) was added and the mixture was stirred overnight at rt. The mixture was then diluted with EtOAc (50 mL) and washed 5 times with water (50 mL), brine (50 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure to give the desired compound (851 mg, 1.29 mmol, quant.) as a white foam. ¹**H** NMR (400 MHz, CD₃CN) $\delta_{\rm H}$ (ppm) 8.87 (s, 1H), 8.03 (d, J = 2.32 Hz, 1H), 7.43 (d, J = 7.11 Hz, 2H), 7.35-7.19 (m, 7H), 6.85-6.80 (m, 4H), 6.38 (dd, J = 15.42, 4.37 Hz, 1H), 5.16 (dt, J = 52.07 Hz 4.28 Hz, 1H), 4.57 (d, J = 18.55 Hz, 1H), 4.12-4.06 (m, 2H), 3.75 (d, J = 1.60 Hz, 6H), 3.42 (dd, J = 10.43, 6.42 Hz, 1H) 3.33 (dd, J = 10.87, 3.53 Hz, 1H), 3.19 (s, 3H), 3.16 (s, 3H).

¹³C NMR (100 MHz, CD₃CN) δ_C (ppm) 161.7, 159.7, 159.7, 154.3, 153.7, 146.0, 142.3, 142.3, 136.8, 136.8, 131.0, 131.0, 129.0, 128.8, 127.9, 125.5, 114.0, 97.3, 95.4, 87.1, 83.5, 83.5, 83.2, 83.1, 75.2, 75.0, 64.2, 55.9, 41.8, 35.5.

¹⁹F NMR (376 MHz, CD₃CN) δ_F (ppm) -199.0.

HRMS (ESI) m/z [M+H]⁺ calc. for C₃₄H₃₅ClFN₆O₅ 661.2336, found 661.2339.

(2'R)-2'-Deoxy-2'-fluoro-2'-methyluridine (300 mg, 1.15 mmol, 1.0 eq), DMTrCl (508 mg, 1.50 mmol, 1.3 eq) and DMAP (28 mg, 0.23 mmol, 0.20 eq) were dissolved in pyridine (7 mL) and stirred overnight at rt The solvent was then removed under reduced pressure and the residue was redissolved in EtOAc (25 mL) and washed with water (25 mL) and brine (25 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was subjected to flash column chromatography (1/2 - 1/0 EtOAc/pentane + 1% Et₃N) to give the desired compound (444 mg, 0.80 mmol, 69%) as a white foam.

¹**H** NMR (400 MHz, CD₃CN) $\delta_{\rm H}$ (ppm) 9.12 (s, 1H), 7.86 (d, J = 8.15 Hz, 1H), 7.44 (d, J = 7.23 Hz, 2H), 7.36-7.25 (m, 7H), 6.90 (d, J = 8.73 Hz, 4H), 6.05 (d, J = 18.69 Hz, 1H), 5.12 (d, J = 8.17 Hz, 1H), 4.17 (dt, J = 24.07, 9.17 Hz, 1H), 4.01 (d, J = 9.68 Hz, 1H), 3.77 (s, 6H), 3.62 (d, J = 8.38 Hz, 1H), 3.48-343 (m, 2H), 1.37 (d, J = 10.82 Hz, 3H).

¹³C NMR (100 MHz, CD₃CN) δ_C (ppm) 163.8, 159.8, 159.8, 151.5, 145.8, 136.6, 136.3, 131.2, 131.1, 129.1, 129.0, 128.1, 114.2, 114.2, 103.0, 102.8, 101.0, 87.7, 81.5, 72.8, 72.6, 61.8, 55.9, 17.0, 16.8.

¹⁹F NMR (376 MHz, CD₃CN) δ_F (ppm) -162.34.

HRMS (ESI) m/z [M+H]⁺ calc. for C₃₁H₃₂FN₂O₇, 563.2188, found 563.2189.

Compound 6

Compound **6** was prepared according to previously published procedures and data are consistent with reported values⁴

Compound 6.1

To a stirred solution of uracil acetic acid (2.29 g, 13.5 mmol, 1 equiv.), **6** (6.06 g, 14.9 mmol, 1.1 equiv.) and DIPEA (4.8 mL, 27.6 mmol, 2 equiv.) in dry DMF (48 mL) was added HBTU (7.69 g, 20.3 mmol, 1.5 equiv.) under argon atmosphere. The reaction stirred at rt overnight. The reaction mixture was diluted with EtOAc and washed with water followed by drying over Na₂SO₄ where after the solvent was evaporated *in vacuo*. The compound was purified by flash chromatography (0 – 3% MeOH in CH₂Cl₂+ 1% Et₃N) to yield a white foam (4.50 g, 8.04 mmol, 60%).

¹**H NMR (400 MHz,** *d6***-DMSO)** $\delta_{\rm H}$ (ppm) 11.27 (s, 1H), 8.00 – 7.97 (d, J = 9.2 Hz, 1H), 7.53 – 7.51 (d, J = 8.0 Hz, 1H), 7.39 – 7.19 (m, 9H), 6.90 – 6.87 (m, 4H), 5.56 – 5.53 (dd, J = 7.6, 2.0 Hz, 1H), 4.62 – 4.61 (d, J = 4.4 Hz, 1H), 4.41 (s, 2H), 3.94 – 3.87 (m, 2H), 3.73 (s, 6H), 2.88 – 2.85 (m, 1H), 0.96 – 0.95 (d, J = 6.4 Hz, 3H)

¹³C NMR (100 MHz, *d6*-DMSO) δ_C (ppm) 170.8, 167.4, 164.4, 158.4, 151.4, 147.3, 145.5, 136.2, 130.2, 128.2, 127.0, 113.6, 100.7, 85.6, 65.3, 63.2, 60.2, 55.5, 54.7, 49.9, 46.2, 21.2, 20.7, 14.6, 9.1

HRMS (ESI) *m*/*z* [M+Na]⁺ calc. for C₃₁H₃₃N₃O₇Na 582.2216, found 582.2211.

Compound 8

DMTrO_____STs

1,6-Hexanediol (17.4 g, 148 mmol, 10 eq) and triethylamine (2.26 mL, 16.2 mmol, 1.1 eq) were dissolved in THF (100 mL) and DMTr-Cl (5.00 g, 14.8 mmol, 1.0 eq) was added. The mixture was stirred at rt overnight. Et₂O (200 mL) was added and the organic phase was washed 3 times with water (100 mL) and once with brine (100 mL), dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was dissolved in CH₂Cl₂ (50 mL) and cooled in an ice bath. *N*-Methyl morpholine (5.67 mL, 51.6 mmol, 3.5 eq) was added along with MsCl (1.37 mL, 17.7 mmol, 1.2 eq) and the mixture was stirred at 0 °C for 30 mins whereafter the reaction mixture

was allowed to warm to rt and stirred overnight. The reaction was quenched with water (50 mL) and the phases were separated. The organic phase was washed twice with water (50 mL), once with brine (50 mL) and then dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was dissolved in MeCN (50 mL) along with potassium *p*-toluenethiosulphonate (4.12 g, 18.2 mmol, 1.23 eq) and the mixture was stirred at 75 °C overnight. The mixture was then diluted with Et₂O and washed with water and brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure. The residue was purified with flash column chromatography (3/1 – 0/1 pentane/ CH₂Cl₂ gradient + 1% Et₃N) to give the desired compound (5.507 g, 9.32 mmol, 63% for 3 steps) as a clear oil.

¹**H NMR (400 MHz, CDCl₃)** $\delta_{\rm H}$ (ppm) 7.77 (d, J = 8.29 Hz, 2H), 7.40 (d, J = 7.20 Hz, 2H), 7.32-7.23 (m, 8H), 7.18 (t, J = 7.20 Hz, 1H), 6.82 (d, J = 8.84 Hz, 4H), 3.77 (s, 6H), 2.99 (t, J = 6.43 Hz, 2H), 2.94 (t, J = 7.38 Hz, 2H), 2.41 (s, 3H), 1.59-1.48 (m, 4H), 1.33-1.19 (m, 4H).

¹³C NMR (100 MHz, CDCl₃) δ_C (ppm) 158.5, 145.5, 144.7, 142.3, 136.8, 130.1, 129.9, 128.3, 127.8, 127.1, 126.7, 113.1, 85.8, 63.2, 55.3, 36.1, 29.9, 28.7, 28.5, 25.8, 21.7.

HRMS (ESI) *m*/*z* [M-K]⁺ calc. for C₃₄H₃₈O₅S₂K 629.1792, found 629.1785.

Compound 8.1

HO______S_S____ODMTr

Compound **8** (484 mg, 819 μ mol, 1.1 eq) was dissolved in CH₂Cl₂ (10 mL) and triethylamine (156 μ L, 1.12 mmol, 1.5 eq) was added. 6-Mercapto-1-hexanol (102 μ L, 745 μ mol, 1.0 eq) was added and the mixture was stirred for 30 mins at rt. The solvent was then removed under reduced pressure and the residue was subjected to flash column chromatography (1/3 – 1/0 Et₂O/pentane + 1% Et₃N) to give the desired compound (396 mg, 693 μ mol, 93%) as a clear oil.

¹**H** NMR (400 MHz, CD₃CN) $\delta_{\rm H}$ (ppm) 7.42 (d, J = 7.38 Hz, 2H), 7.32-7.26 (m, 6H), 7.21 (t, J = 7.21 Hz, 1H), 6.86 (d, J = 8.86 Hz, 4H), 3.76 (s, 6H), 3.45 (q, J = 5.50 Hz, 2H), 3.00 (t, J = 6.46 Hz, 2H), 2.68 (q, J = 7.45 Hz, 4H), 2.46 (t, J = 5.33 Hz, 1H), 1.69-1.54 (m, 6H), 1.50-1.43 (m, 2H), 1.40-1.27 (m, 8H).

¹³C NMR (100 MHz, CD₃CN) δ_C (ppm) 159.5, 146.7, 137.6, 130.9, 129.0, 128.7, 127.6, 113.9, 86.5, 64.0, 62.5, 55.9, 39.5, 33.5, 30.5, 29.9, 29.8, 29.0, 28.8, 26.6, 26.2.

HRMS (ESI) m/z [M+Na]⁺ calc. for C₃₃H₄₄O₄S₂Na 591.2573, found 591.2570.

Compound 9

Potassium hydroxide (1.77 g, 31.47 mmol, 4.00 eq.) was added portionwise to a cooled (0 °C) solution of triethylene glycol (21.5 mL, 157 mmol, 20.0 eq.) and p-toluenesulfonyl chloride (1.50 g, 7.87 mmol, 1.00 eq.) in CH₂Cl₂ (25 mL). The reaction mixture was stirred for 3 hrs at 0 °C. Water (40 mL) was then added and the aqueous phase was extracted with CH₂Cl₂ (2 × 25 mL) and the organic phase was washed with water (40 mL) and brine (30 mL), dried over Na₂SO₄ and concentrated under reduced pressure to afford a yellow oil. Without further purification, the resulting residue was dissolved in 15 mL *N*,*N*-dimethylformamide and sodium azide (0.72 g, 11.0 mmol, 1.4 equiv.) was added. The resulting mixture was stirred at 80 °C for 16 hours. The solvent was removed under reduced pressure and the residue was subjected to flash column chromatography (0-5% MeOH in CH₂Cl₂) to give the desired product (1.03 g, 5.71 mmol, 73 %) as a colorless oil.

¹H NMR (400 MHz, CD₃CN) $\delta_{\rm H}$ (ppm) 3.66-3.55 (m, 8H), 3.49 (t, *J* = 5.11 Hz, 2H), 3.37 (t, *J* = 4.86 Hz, 2H), 2.78 (s, broad, 1H)

¹³C NMR (101 MHz, CD₃CN) δ_C (ppm) 73.3, 71.1, 71.0, 70.5, 61.9, 51.5

HRMS (ESI) m/z [M+H]⁺ calc. for C₆H₁₃N₃O₃H⁺ 176.1030, found 176.1033

Residence Time Study

The synthetic cycle used for screening of residence times is described in Table S5. The eluate was collected for 6 residence times and concentrated under reduced pressure. The crude mixtures were analysed ¹H and ¹⁹F NMR (if possible) spectroscopy. The yields were calculated by ¹H NMR or ¹⁹F NMR (if possible) integration of non-overlapping signals between starting material and product. If not commercially available, the products were synthesised according to the procedure included here (S79-S83). Results are given in Table S6. It should be noted that for compound **2** the integration from ¹³CHD₂CN overlaps with the starting material giving 0.55% additional integral of the residual solvent peak. This has been subtracted. Furthermore, compound **6** produces the product in 1:2 mixture of the 2 phosphoramidite diastereomers when eluted through the P(III)-loaded resin. When the reference product was synthesized by conventional batch method another ratio was isolated of the diastereomers giving a difference between the stacked NMR spectra.

Cycle step	Reagent(s)	Injection volume	Residence time (flow rate)	Time
Loading	0.1 M PCl, 0.1 M DIPEA in CH ₂ Cl ₂	2.4 mL	1 min (0.89 mL/min)	10 mins
Wash	CH_2Cl_2		1 min (0.89 mL/min)	5 mins
Transfer	0.104 M Alcohol (0.10 mmol), 0.050 M 9AJ in CH ₂ Cl ₂	0.96 mL	Substrate dependent	6 residence times

Table S5. Summary of synthetic cycle.

Below is depicted the proposed reasoning for effect observed by changing protecting group of guanosine. Isobutyryl protection allows internal hydrogen bond to 5'-OH thus changing the ribose conformation to 3'-endo giving an equatorial 3'-OH. Without the hydrogen bond donor the nucleobase would have an anti orientation thus giving a 2'-endo conformation of the ribose and an axial and less nucleophilic 3'-OH.

Equatorial 3'-OH

Axial 3'-OH

			Residen	ce time				
Alcohol	1 min	2 mins	3 mins	4 mins	5 mins	6 mins	³¹ P NMR purity*	³¹ P NMR purity**
Bz-dA	78%	95%	99%	100%			81.0%	96.9%
dT	76%	81%	88%	98%	100%		88.9%	94.9%
iBu-dG	100%						72.1%	93.5%
dmf-dG	69%	90%	96%	100%			72.6%	81.2%
Bz-dC	72%	88%	92%	97%	97%	98%	93.3%	97.6%
1	90%	99%	100%				93.3%	98.0%
2	74%	90%	94%	>99%			90.2%	97.7%
3	71%	88%	99%	100%			92.6%	98.8%
4	72%	86%	92%	95%	98%	99%	93.9%	98.5%
5	59%	90%	91%	95%	98%		94.9%	98.9%
6	100%			• 			91.6%	97.5%
7	100%						92.3%	96.0%
8	100%						91.1%	96.3%
9	100%						91.1%	94.5%

Table S6. Summary of results from residence time study given as distributions between phosphoramidite product and starting material. Values $\ge 98\%$ have been marked light green.

*With lowest residence time where phosphoramidite/starting material distribution ≥ 98% ** Not counting the hydrolysis sideproduct at 13.8 ppm

^{4.80 4.75 4.70 4.65 4.60 4.55 4.50 4.45 4.40 4.35 4.30 4.25 4.20 4.15 4.10 4.05 4.00 3.95 3.90}

Compound 1, ¹⁹F NMR (CD₃CN)

Compound 4, ¹⁹F NMR (CD₃CN)

^{-197.3 -197.5 -197.7 -197.9 -198.1 -198.3 -198.5 -198.7 -198.9 -199.1 -199.3 -199.5 -199.7}

^{.60 1.58 1.56 1.54 1.52 1.50 1.48 1.46 1.44 1.42 1.40 1.38 1.36 1.34 1.32 1.30 1.28}

Compound **5**, ¹⁹F NMR (CD₃CN)

^{-154.5 -155.5 -156.5 -157.5 -158.5 -159.5 -160.5 -161.5 -162.5 -163.5 -164.5 -165.5 -166.5 -167.}

7 3.6 3.5 3.4 3.3 3.2 3.1 3.0 2.9 2.8 2.7 2.6 2.5 2.4 2.3 2.2 2.1 2.0 1.9 1.8 1.7 1.6 1.5 1.4 1.3 1.2 1.1 1.0

Stability of Phosphoramidite 9-P in Solution

Azide linker 9 (0.1 mmol) with 50 mM 9AJ in CH₂Cl₂ were eluted through the P(III)-loaded flow system and collected in a flask. The collected eluate was concentrated under reduced pressure and the residue redissolved in CD₃CN (1.0 mL) to achieve a final concentration of 0.1 M of 9-P. The stability of 9-P was monitored by ¹H NMR and ³¹P NMR over time. The amount of remaining 9-P was determined through the ratio of the ³¹P NMR signal at 147.9 ppm against the total amount of ³¹P NMR signals related to the redox process and not counting the integral of the hydrolysis signal at 13.8 ppm which remained constant throughout this study.

New ³¹P NMR signals appearing during storage: 139.9, 32.3, 31.8, 30.4, 17.4, 15.9, 15.8, 15.7, 15.7, 8.6, 5.7, 1.2.

Stacked ³¹P NMR spectra (CD₃CN)

Remaining phosphoramidite (147.9 ppm)

Stacked ¹H NMR spectra (CD₃CN)

Synthesis and Characterization of Reference Oligonucleotides

Reference oligonucleotides (T₇, T₁₅, T₇AT₇, T₇CT₇, T₇GT₇, 51-mer) were synthesised using standard oligonucleotide synthesis conditions (Table S7). Yields were determined by measuring UV-analysis of collected fractions.

Reaction step	Reagents	Volume	Coupling time
Wash	MeCN	150 μL	
Deblock	3% TCA in CH ₂ Cl ₂ (w/v)	150 µL	60 s
Coupling	0.1 M phosphoramidite, 0.50 M ETT (1/1, v/v)	140 μL	2 x 60 s
Oxidation	0.02 M I ₂ , THF/pyridine/H ₂ O (7/2/1, v/v)	150 μL	60 s
Capping	THF/Ac ₂ O/NMI (18/1/1, v/v)	150 µL	60 s

 Table S7. Conditions for standard oligonucleotide synthesis.

HPLC purification and analysis was performed using the following methods:

Method 1: Solvent A: 0.1 M Triethylammonium acetate, pH = 7 Solvent B: MeCN Gradient: 5% to 20% B over 15 mins, 20% to 70% B 15-20 mins

Method 2: Solvent A: 0.1 M Triethylammonium acetate, pH = 7 Solvent B: MeCN Gradient: 5% to 15% B over 15 mins, 20% to 70% B 15-20 mins

HPLC Method	1
Sequence	5' TTT TTT T 3'
Retention time	10.1 mins
Calculated mass	2067.4
Found mass (LCMS)	2066.7

HPLC chromatogram (260 nm) of crude 5' TTT TTT T3' after cleavage and concentration.

HPLC Method	1	
Sequence	5' TTT TTT TTT TTT TTT 3'	
Retention time	12.2 mins	
Calculated mass	4501.0	
Found mass (LCMS)	4501.5	

HPLC chromatogram (260 nm) of crude 5' TTT TTT TTT TTT TTT 3' after cleavage and concentration.

HPLC Method	1
Sequence	5' TTT TTT TAT TTT TTT 3'
Retention time	12.1 mins
Calculated mass	4510.0
Found mass (LCMS)	4510.5

HPLC chromatogram (260 nm) of crude 5' TTT TTT TAT TTT TTT 3' after cleavage and concentration.

HPLC Method	1	
Sequence	5' TTT TTT TCT TTT TTT 3'	
Retention time	12.0 mins	
Calculated mass	4485.9	
Found mass (LCMS)	4486.5	

HPLC chromatogram (260 nm) of crude 5' TTT TTT TCT TTT 3' after cleavage and concentration.

HPLC Method	1
Sequence	5' TTT TTT TGT TTT TTT 3'
Retention time	11.9 mins
Calculated mass	4526.0
Found mass (LCMS)	4526.7

HPLC chromatogram (260 nm) of crude 5' TTT TTT TGT TTT 3' after cleavage and concentration.

HPLC Method	2
Sequence	5'CCG CTT TCT AGT TCG TCC TCC ATA ATT AAT TTC CTA
1	GAG TCC TAC GTG CTC 3'
Retention time	15.9 mins
Calculated mass	15467.9
Found mass (LCMS)	15467.6
Coupling time	2 x 60 s
Yield	41.8%
Average Cycle Yield	98.3%

HPLC chromatogram (260 nm) of 51-mer after cleavage and concentration.

Single Coupling Reactions

The synthetic cycle described in Table S5 with optimal residence time for the given alcohols according to Table S6 was used for the synthesis of the phosphoramidites. The eluate was collected for 6 void volumes and concentrated under reduced pressure. The residue was redissolved in MeCN (1.0 mL) to reach a final concentration of 0.1 M. Standard coupling conditions (Table S7) were used for phosphoramidites synthesised by conventional methods.

Common Sequence (T₇**B**T₇): 5' TTT TTT T**B**T TTT TTT 3'

For compound 8-P and 9-P, oligonucleotide synthesis was stopped after coupling with 8-P or 9-P and oxidation. The coupling yield was based on integration ratio of absorbance at 260 nm between the truncated oligonucleotide (T₇): 5' TTT TTT T 3' and the desired full-length oligonucleotide (T₇XT₇) on HPLC chromatogram by the formula:

$$Yield = \frac{A_{T_7XT_7}}{A_{Total}} = \frac{A_{T_7XT_7}}{A_{T_7XT_7} + \frac{\varepsilon(T_7XT_7)_{260}}{\varepsilon(T_7)_{260}} \cdot A_{T_7}}$$

Where ε is the molar extinction coefficient for the given oligonucleotide. ε was calculated using <u>http://www.molbiotools.com/dnacalculator.html.</u>

For the nucleotides 1, 3, 5 and 6, thymidine was used in the calculation of ε and for 4, adenosine was used instead. For the calculation of oligonucleotides containing 2 and 7, ε was calculated as 2 times ε_{T_7} .

The oligonucleotides were cleaved directly from the resin by treatment with AMA for 30 mins at 65 °C if G was present in the sequence and otherwise cleaved by treatment with concentrated aqueous NH₃ for 30 mins at 50 °C. The supernatant was concentrated under reduced pressure and the residue subjected to HPLC purification.

Entry	Coupling time	Coupling yield
Т	2 x 60 s	99.7%
Bz-dA	2 x 60 s	99.3%
Bz-dC	2 x 60 s	99.8%
iBu-dG	2 x 60 s	99.3%
1	2 x 60 s	99.7%
2	2 x 60 s	98.3%
3	2 x 60 s	99.2%
3	2 x 240 s	99.7%
4	2 x 60 s	94.8%
4	2 x 240 s	99.6%
5	2 x 60 s	70.9%
5	2 x 240s	98.1%
6	2 x 60 s	99.2%
7	2 x 60 s	98.0%
8	2 x 60 s	99.0%
9	2 x 60 s	99.4%

Table S8. Summary of results from single coupling study

HPLC Method	1		
Sequence	5' TTT TTT T T T T T T TTT 3'		
Retention time	12.0 mins		
Calculated mass	4501.0		
Found mass (LCMS)	4501.4		
$\epsilon(T_7)_{260}$	57300		
ε(T7XT7)260	122100		
Coupling time	2 x 60 s		
A(T ₇)	20		
$A(T_7XT_7)$	13360		
Coupling Yield	99.7%		

HPLC chromatogram (260 nm) of crude 5' TTT TTT TTT TTT TTT 3' after cleavage and concentration.

HPLC Method	1		
Sequence	5' TTT TTT TAT TTT TTT 3'		
Retention time	12.2 mins		
Calculated mass	4510.0		
Found mass (LCMS)	4510.3		
$\epsilon(T_7)_{260}$	57300		
ε(T7XT7)260	128000		
Coupling time	2 x 60 s		
A(T ₇)	35		
$A(T_7XT_7)$	11047		
Coupling Yield	99.3%		

HPLC chromatogram (260 nm) of crude 5' TTT TTT TAT TTT TTT 3' after cleavage and concentration.

HPLC Method	1		
Sequence	5' TTT TTT TCT TTT TTT 3'		
Retention time	11.9 mins		
Calculated mass	4485.9		
Found mass (LCMS)	4486.3		
$\epsilon(T_7)_{260}$	57300		
ε(T7XT7)260	121200		
Coupling time	2 x 60 s		
A(T ₇)	10		
$A(T_7XT_7)$	11254		
Coupling Yield	99.8%		

HPLC chromatogram (260 nm) of crude 5' TTT TTT TCT TTT 3' after cleavage and concentration.

HPLC Method	1		
Sequence	5' TTT TTT TGT TTT TTT 3'		
Retention time	12.0 mins		
Calculated mass	4526.0		
Found mass (LCMS)	4526.4		
$\epsilon(T_7)_{260}$	57300		
ε(T7XT7)260	124700		
Coupling time	2 x 60 s		
A(T ₇)	37		
$A(T_7XT_7)$	11535		
Coupling Yield	99.3%		

HPLC chromatogram (260 nm) of crude 5' TTT TTT TGT TTT TGT TTT 3' after cleavage and concentration.

HPLC Method	1		
Sequence	5' TTT TTT T 1 T TTT TTT 3'		
Retention time	12.2 mins		
Calculated mass	4504.9		
Found mass (LCMS)	4504.1		
$\epsilon(T_7)_{260}$	57300		
ε(T7XT7)260	122100		
Coupling time	2 x 60 s		
A(T ₇)	20		
$A(T_7XT_7)$	13951		
Coupling Yield	99.7%		

HPLC chromatogram (260 nm) of crude 5' TTT TTT TTT TTT TTT 3' after cleavage and concentration.

HPLC Method	1		
Sequence	5' TTT TTT T 2 T TTT TTT 3'		
Retention time	12.1 mins		
Calculated mass	4376.9		
Found mass (LCMS)	4376.4		
$\epsilon(T_7)_{260}$	57300		
ε(T7XT7)260	114600		
Coupling time	2 x 60 s		
A(T ₇)	75		
$A(T_7XT_7)$	9389		
Coupling Yield	98.4%		

HPLC chromatogram (260 nm) of crude 5' TTT TTT T**2**T TTT TTT 3' after cleavage and concentration.

HPLC Method	1		
Sequence	5' TTT TTT T 3 T TTT TTT 3'		
Retention time	12.5 mins		
Calculated mass	4517.0		
Found mass (LCMS)	4516.4		
$\epsilon(T_7)_{260}$	57300		
ε(T7XT7)260	122100		
Coupling time	2 x 60 s	2 x 240 s	
A(T ₇)	52	15	
$A(T_7XT_7)$	13888	12376	
Coupling Yield	99.2%	99.7%	

HPLC chromatograms (260 nm) of crude 5' TTT TTT T**3**T TTT TTT 3' after cleavage and concentration.

Coupling time = $2 \times 60 \text{ s}$

Coupling time = $2 \times 240 \text{ s}$

HPLC Method	1	
Sequence	5' TTT TTT T4T TTT TTT 3'	
Retention time	12.9 mins	
Calculated mass	4562.4	
Found mass (LCMS)	4561.8	
$\epsilon(T_7)_{260}$	57300	
ε(T7XT7)260	128000	
Coupling time	2 x 60 s	2 x 240 s
A(T ₇)	267	20
$A(T_7XT_7)$	10799	11421
Coupling Yield	94.8%	99.6%

HPLC chromatograms (260 nm) of crude 5' TTT TTT T4T TTT T4T TTT 3' after cleavage and concentration.

Coupling time = $2 \times 60 \text{ s}$

Coupling time = $2 \times 240 \text{ s}$

HPLC Method	1	
Sequence	5' TTT TTT T 5 T TTT TTT 3'	
Retention time	12.8 mins	
Calculated mass	4518.9	
Found mass (LCMS)	4518.3	
$\epsilon(T_7)_{260}$	57300	
$\epsilon(T_7XT_7)_{260}$	122100	
Coupling time	2 x 60 s	2 x 240 s
$A(T_7)$	1586	86
$A(T_7XT_7)$	8236	9345
Coupling Yield	70.9%	98.1%

HPLC chromatograms (260 nm) of crude 5' TTT TTT T**5**T TTT TTT 3' after cleavage and concentration.

Coupling time = $2 \times 60 \text{ s}$

Coupling time = $2 \times 240 \text{ s}$

HPLC Method	1
Sequence	5' TTT TTT T6T TTT TTT 3'
Retention time	11.9 mins
Calculated mass	4516.0
Found mass (LCMS)	4515.3
$\epsilon(T_7)_{260}$	57300
ε(T7XT7)260	122100
Coupling time	2 x 60 s
A(T ₇)	49
$A(T_7XT_7)$	12431
Coupling Yield	99.2%

HPLC chromatogram (260 nm) of crude 5' TTT TTT T6T TTT T6T TTT 3' after cleavage and concentration.

HPLC Method	1
Sequence	5' TTT TTT T 7 T TTT TTT 3'
Retention time	12.2 mins
Calculated mass	4408.9
Found mass (LCMS)	4408.5
$\epsilon(T_7)_{260}$	57300
ε(T7XT7)260	114600
Coupling time	2 x 60 s
A(T ₇)	101
$A(T_7XT_7)$	9925
Coupling Yield	98.0%

HPLC chromatogram (260 nm) of crude 5' TTT TTT T7T TTT TTT 3' after cleavage and concentration.

HPLC Method	1
Sequence	5' 8 TT TTT TT 3'
Retention time	18.7 mins
Calculated mass	2395.46
Found mass (LCMS)	2395.41
$\epsilon(T_7)_{260}$	57300
$\epsilon(T_7XT_7)_{260}$	57300
Coupling time	2 x 60 s
A(T ₇)	66
$A(T_7XT_7)$	6426
Coupling Yield	99.0%

HPLC chromatogram (260 nm) of crude 5' 8TT TTT TT 3' after cleavage and concentration.

HPLC Method	1
Sequence	5' 9 TT TTT TT 3'
Retention time	12.8 mins
Calculated mass	2304.6
Found mass (MALDI)	2309.8
$\epsilon(T_7)_{260}$	57300
ε(T7XT7)260	57300
Coupling time	2 x 60 s
A(T ₇)	27
A(T ₇ XT ₇)	4795
Coupling Yield	99.4%

HPLC chromatogram (260 nm) of crude 5' 9TT TTT TT 3' after cleavage and concentration.

Oligonucleotide Synthesis

The synthetic cycle described in Table S5 with optimal residence times for the given alcohols according to Table S6 was used for the synthesis of the phosphoramidites. The eluate was collected for 6 void volumes and concentrated under reduced pressure. The residue was redissolved in MeCN (1.0 mL) to reach a final concentration of 0.1 M. Standard coupling conditions (Table S7) were used for phosphoramidites synthesised by conventional methods.

All phosphoramidites was synthesised by the flow-based method described herein and used for the synthesis of the following sequence:

51-mer Sequence: 5'CCG CTT TCT AGT TCG TCC TCC ATA ATT AAT TTC CTA GAG TCC TAC GTG CTC 3'

It should be noted that 3'C is bound to the resin as the first nucleotide giving a total of 50 cycles. The oligonucleotides were cleaved directly from the resin by treatment with AMA for 30 mins at 65 °C. The supernatant was concentrated under reduced pressure and the residue subjected to HPLC purification.

Sequence	5'CCG CTT TCT AGT TCG TCC TCC ATA ATT AAT TTC CTA GAG TCC TAC GTG CTC 3'
Coupling time	2 x 60 s
Retention time	16.2 mins
Calculated mass	15467.9
Found mass (LCMS)	15467.6
Yield	35.2%
Average Cycle Yield	98.0%

HPLC chromatogram (260 nm) of crude 51mer after cleavage and concentration.

Synthesis of Reference Phosphoramidites

Non-commercial phosphoramidites were synthesised using the following protocol:

Alcohol (1.0 eq, 20 mM) was dissolved in CH_2Cl_2 and DIPEA (2.0 eq) was added along with PCl (1.5 eq) and the mixture was stirred for until full conversion (1-16 hrs) at rt The solvent was then removed under reduced pressure and the residue was subjected to flash column chromatography to give the desired compound.

Compound 1-P

Yield: 106 mg, 0.144 mmol (79 %) from 100 mg, 0.182 mmol

¹**H** NMR (400 MHz, CD₃CN) 7.77 (dd, J = 12.76, 6.74 Hz, 1H), 7.47-7.42 (m, 2H), 7.36-7.28 (m, 6H), 7.27-7.21 (m, 1H), 6.91-6.84 (m, 4H), 6.17 (q, J = 8.70 Hz, 1H), 4.66-4.55 (m, 1H), 4.09 (dq, J = 15.69, 3.69 Hz, 1H), 3.77 (d, J = 1.92 Hz, 1H), 3.72-3.50 (m, 3H), 3.37-3.29 (m, 2H), 2.64 (t, J = 5.93 Hz, 1H), 2.53 (t, J = 5.92 Hz, 1H), 2.49-2.28 (m, 2H), 1.34-1.03 (m, 12H)

¹³C NMR (100 MHz, CD₃CN) δ_C (ppm) 159.8, 158.0, 157.8, 149.7, 145.9, 142.7, 140.4, 136.6, 136.6, 136.5, 136.5, 131.1, 129.0, 128.9, 128.0, 125.4, 125.1, 119.4, 114.2, 114.1, 87.6, 86.2, 86.1, 86.0, 73.5, 73.3, 63.8, 59.6, 59.4, 55.9, 55.9, 44.1, 44.1, 44.0, 44.0, 40.2, 40.1, 24.9, 24.9, 24.9, 24.8, 21.0, 21.0

³¹**P** NMR (162 MHz, CD₃CN) δ_P (ppm) 148.15, 148.08.

¹⁹F NMR (376 MHz, CD₃CN) δ_F (ppm) -167.16, -167.19

HRMS (ESI) *m*/*z* [M+Na]⁺ calc. for C₃₉H₄₇FN₄O₈PNa 749.3110, found 749.3116

Compound 4-P

Yield: 88 mg, 0.102 mmol (90% yield) from 75 mg, 0.114 mmol

¹**H NMR (400 MHz, CD₃CN)** $\delta_{\rm H}$ (ppm) 8.86 (s, 1H), 8.07 (dd, J = 6.85, 4.75 Hz, 1H), 7.45 (t, J = 6.51 Hz, 1H), 7.35-7.19 (m, 7H), 6.86-6.77 (m, 4H), 6.38 (2xdd, J = 4.45, 2.15 Hz 4.49, 1.58 Hz, 1H), 5.34 (2xdt, J = 19.57, 3.45 Hz 19.9, 3.86 Hz, 1H), 4.89-4.86 (m, 1H), 4.24-4.17 (m, 1H), 3.86-3.78 (m, 1H), 3.76-3.72 (m, 6H), 3.69-3.34 (m, 5 or 6H), 3.18 (s, 3H), 3.16 (s, 3H), 2.57 (2xt, J = 6.00 Hz 6.03 Hz, 2H), 1.20-1.02 (m, 12H).

¹³**C** NMR (100 MHz, CD₃CN) δ_C (ppm) 161.7, 159.7, 159.7, 154.3, 154.3, 153.6, 153.6, 146.0, 146.0, 142.6, 142.5, 142.4, 142.4, 136.7, 136.7, 136.7, 136.6, 131.1, 131.0, 131.0, 130.9, 129.0, 128.9, 128.8, 128.8, 127.9, 127.8, 125.6, 125.5, 119.4, 119.3, 114.0, 114.0, 96.9, 96.8, 94.9, 94.9, 87.2, 87.1, 83.4, 83.3, 83.2, 83.0, 82.8, 82.8, 77.5, 77.4, 77.3, 77.1, 76.7, 76.6, 76.5, 76.3, 64.1, 63.8, 59.9, 59.8, 59.8, 59.6, 55.9, 55.9, 44.2, 44.2, 44.1, 44.1, 41.8, 35.5, 24.9, 24.9, 24.8, 24.8, 21.0, 20.9, 20.9.

³¹P NMR (162 MHz, CD₃CN) δ_P (ppm) 150.26, 150.22, 150.18.

¹⁹F NMR (**376** MHz, CD₃CN) δ_F (ppm) -197.52, -197.54, -197.63, -197.64.

HRMS (ESI) m/z [M+Na]⁺ calc. for C₄₃H₅₁ClFN₈O₆PNa 883.3234, found 883.3237.

Compound 5-P

Yield: 50 mg, 0.066 mmol (74%) from 50 mg, 0.089 mmol

¹**H** NMR (400 MHz, CD₃CN) $\delta_{\rm H}$ (ppm) 9.19 (s, 1H), 7.90 (dd, J = 11.48, 8.26 Hz, 1H), 7.43 (d, J = 7.66 Hz, 2H), 7.36-7.24 (m, 6 or 7H), 6.92-6.86 (m, 4H), 6.13 (d, J = 18.93 Hz, 1H), 5.06 (dd, J = 11.52, 8.25 Hz, 1H), 4.50-4.30 (m, 1H), 4.11 (t, J = 9.68 Hz, 1H), 3.89-3.81 (m, 1H), 3.77 (d, J = 2.43 Hz, 6H), 3.72-3.44 (m, 6H), 2.67 (t, J = 5.75 Hz, 1H), 2.44 (t, J = 4.46 Hz, 1H), 1.45 (dd, J = 22.58, 1.98 Hz, 3H), 1.19-0.97 (m, 12H).

¹³C NMR (100 MHz, CD₃CN) δ_C (ppm) 163.6, 159.9, 159.8, 151.5, 145.7, 140.9, 136.4, 136.3, 136.3, 136.2, 131.4, 131.3, 131.3, 129.3, 129.2, 129.0, 129.0, 128.1, 128.1, 119.6, 119.4, 114.2, 114.1, 103.1, 103.1, 102.5, 102.3, 87.8, 7.8, 81.3, 81.2, 81.1, 74.7, 74.6, 74.2, 61.8, 61.4, 59.4, 59.2, 59.0, 58.9, 55.9, 55.9, 44.1, 44.0, 25.0, 24.9, 24.9, 24.8, 24.7, 21.0, 20.9, 20.9, 18.2, 18.1, 17.9, 17.9, 17.6, 17.3.

³¹P NMR (162 MHz, CD₃CN) δ_P (ppm) 150.64, 149.31.

¹⁹F NMR (376 MHz, CD₃CN) δ_F (ppm) -159.72.

HRMS (ESI) *m*/*z* [M+H]⁺ calc. for C₄₀H₄₉FN₄O₈P 763.3267, found 763.3271

Compound 6-P

Yield: 0.95 g, 1.25 mmol (54%) from 1.30 g, 2.33 mmol

¹**H NMR (400 MHz, CD₃CN)** $\delta_{\rm H}$ (ppm) 9.13 (broad s, 1H), 7.42 (d, J = 7.21 Hz, 2H), 7.33-7.27 (m, 7H), 7.23 (tt, J = 7.22 Hz, 1.16 Hz, 1H), 6.86 (d, J = 8.93 Hz, 4H), 6.53 (d, J = 9.12 Hz, 1H), 5.58 (d, J = 7.90 Hz, 1H), 4.38 (d, J = 16.40 Hz, 1H), 4.36 (d, J = 16.43 Hz, 1H), 4.25-4.10 (m, 2H), 3.77 (s, 6H), 3.59-3.45 (m, 4H), 3.15-3.06 (m, 2H), 2.48 (t, J = 5.97 Hz, 2H), 1.16-1.07 (m, 15H)

¹³C NMR (100 MHz, CD₃CN) δ_C (ppm) 167.8, 164.4, 159.6, 151.9, 147.0, 146.9, 146.1, 137.0, 137.0, 131.0, 129.0, 128.8, 128.8, 127.7, 119.6, 114.0, 101.9, 86.8, 69.9, 69.7, 63.9, 59.5, 59.3, 55.9, 55.4, 55.4, 51.0, 43.9, 43.8, 25.0, 24.9, 24.7, 24.6, 21.0, 20.9, 19.5, 19.4

³¹P NMR (162 MHz, CD₃CN) δ_P (ppm) 147.4, 146.9

HRMS (ESI) *m*/*z* [M+Na]⁺ calc. for C₄₀H₅₁N₅O₈P 760.3470, found 760.3471

2-Cyanoethyl N,N-diisopropylphosphonamidate Reference

To a 4 mL flame-dried glass vial containing 2 mL dry MeCN was added PCI (22 μ L, 0.10 mmol, 1.0 eq), Et₃N (70 μ L, 0.50 mmol, 5.0 eq) and H₂O (9 μ L, 0.50 mmol, 5.0 eq). The mixture was stirred 5 minutes at room temperature and then concentrated under reduced pressure to give the desired H-phosphonate and the triethylamine hydrochloride salt.

¹**H** NMR (400 MHz, CD₃CN) $\delta_{\rm H}$ (ppm) 11.75 (s, broad, Et₃N-HCl), 7.65+6.06 (d, $J_{\rm P-H}$ = 636.10 Hz, 1H), 4.15-3.99 (m, 2H), 3.55-3.41 (m, 2H), 3.07-2.99 (m, 2H + Et₃N-HCl), 2.76 (t, J = 5.94 Hz, 2H), 1.28 (t, J = 7.30 Hz, Et₃N-HCl), 1.22 (d, J = 5.36 Hz, 6H), 1.22 (d, J = 5.33 Hz, 6H)

³¹P NMR (162 MHz, CD₃CN) δ_P (ppm) 13.75

9AJ Reference

¹H NMR (400 MHz, CD₃CN) $\delta_{\rm H}$ (ppm) 7.68 (s, 2H), 3.20 (t, J = 5.66 Hz, 4H), 2.62 (t, J = 6.33 Hz, 4H), 1.88 (quintet, J = 6.0 Hz, 4 H)

NMR Spectra of P(III)-loaded Resins

Gel Phase ³¹P NMR (162 MHz, MeCN) of TG-Het3 (after MeOH elution)

Gel Phase ³¹P NMR (162 MHz, MeCN) of TG-Het4 (after MeOH elution)

Gel Phase ³¹P NMR (162 MHz, MeCN) of TG-Het5.1 (after MeOH elution)

NMR Spectra of Synthesized Starting Materials and Reference Products

¹⁹F NMR (CD₃CN) of **1-P**

³¹P NMR (CD₃CN) of 1-P

¹⁹F NMR (CD₃CN) of **4.1**

¹⁹F NMR (CD₃CN) of **4**

¹⁹F NMR (CD₃CN) of **4-P**

210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10

¹³C NMR (CD₃CN) of **9**

NMR Spectra of 9AJ and 2-cyanoethyl N,N-diisopropylphosphonamidate

Thymidine ³¹P NMR (CD₃CN), eluate

0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0

Isobutyryl 2'deoxyguanosine ³¹P NMR (CD₃CN), eluate

dmf 2'deoxyguanosine ³¹P NMR (CD₃CN)

0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0

Benzoyl 2'deoxycytidine ³¹P NMR (CD₃CN), eluate

Compound 1, ³¹P NMR (CD₃CN), eluate

Compound 2, ³¹P NMR (CD₃CN), eluate

Compound **3**, ³¹P NMR (CD₃CN), eluate

0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0

Compound 4, ³¹P NMR (CD₃CN), eluate

Compound 5, ³¹P NMR (CD₃CN), eluate

0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5 0

Compound 6, ³¹P NMR (CD₃CN), eluate

Compound 7, ¹H NMR (CD₃CN)

Compound 7, ³¹P NMR (CD₃CN), eluate

Compound 8, ³¹P NMR (CD₃CN), eluate

).0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5

Compound 9, ³¹P NMR (CD₃CN), eluate

Supplementary References

1. Thomson, C. G. et al. Development of autotaxin inhibitors: A series of zinc binding triazoles, *Bioorg. Med. Chem. Lett.*, **28**, 2279-2284 (2018).

2. Chernyshev, V. M., Chernysheva, A. V., Taranushich, V. A. Optimization of the Synthesis of 5-Amino-1,2,4-triazol-3-ylacetic Acid and Bis(5-amino-1,2,4-triazol-3-yl)methane, *Russ. J. Appl. Chem.*, **82**, 276-281 (2009).

3. Thottempudi, V., Shreeve, J. M. Synthesis and Promising Properties of a New Family of High-Density Energetic Salts of 5-Nitro-3-trinitromethyl-1H-1,2,4-triazole and 5,5'-

Bis(trinitromethyl)-3,3'-azo-1H-1,2,4-triazole, J. Am. Chem. Soc., 133, 19982-19992 (2011).

4. Nguyen, T. J. D., Manuguerra, I., Kumar, V., Gothelf, K. V. Toehold-Mediated Strand

Displacement in a Triplex Forming Nucleic Acid Clamp for Reversible Regulation of

Polymerase Activity and Protein Expression, Chem. Eur. J., 25, 12303-12307 (2019).