Elisabeth MMA Andriessen et al EMBO Molecular Medicine

Expanded View Figures

Figure EV1. Mononuclear phagocyte-resident NRP1 expression in LysM-Cre/Nrp1^{fl/fl}.

A Gating scheme explaining the identification of the Ly6G⁻, F4/80⁺, CD11b⁺, and NRP1⁺ mononuclear phagocytes in retinas and sclera-choroid-RPE cell complexes.

1. Gating of live cells, 2. Removal of doublets, 3. Selection of viable cells, 4. Exclusion of neutrophils, 5. Gating of mononuclear phagocytes, 6. Gating of NRP1⁺ mononuclear macrophages.

- B FACS histogram of APC-conjugated rat IgG2A isotype control (red) versus anti-mNRP1 APC-conjugated rat IgG2A (R&D systems) (blue).
- C FACS histogram of FMO (fluorescence minus one) versus anti-mNRP1 APC-conjugated rat IgG2A.
- D, E Quantification of NRP1-positive microglia (Ly6G⁻, F4/80⁺, CD11b⁺, CX3CR1^{hi}, CD45^{lo}, NRP1⁺) in retinas and sclera-choroid-RPE cell complexes in Naïve (non-burned) mice (D); n = 4 and at D3 (E); n = 4.
- F, G Quantification of mononuclear phagocytes (Ly6G⁻, F4/80⁺, CD11b⁺) in retinas and sclera-choroid-RPE cell complexes in Naïve (non-burned) mice (F); n = 5 (LysM-Cre/Nrp1^{+/+}), 4 (LysM-Cre/Nrp1^{f/f}) and at D3 (G); n = 4.
- H Compilation of representative compressed Z-stack confocal images of FITC–dextran-labeled CNV and IB4-stained laser impact area from LysM-Cre/Nrp1^{+/+} and LysM-Cre/Nrp1^{fl/fl} mice at D7. Scale bar: 20 μm.
- I–K Quantification of area of FITC–dextran-labeled CNV (I), isolectin B4 (IB4)-stained laser impact area (J) and the ratio of FITC/IB4 per laser burn (K) relative to LysM-Cre/ $Nrp1^{1/7}$), n=14 burns (LysM-Cre/ $Nrp1^{1/7}$), n=20 burns (LysM-Cre/ $Nrp1^{1/7}$).

Data information: All comparisons between groups were analyzed using a Student's unpaired t-test; **P < 0.01, ***P < 0.001; error bars represent mean \pm SEM; exact P values listed in Table 2.

© 2021 The Authors *EMBO Molecular Medicine* 13: e11754 | 2021 **EV1**

EMBO Molecular Medicine Elisabeth MMA Andriessen et al

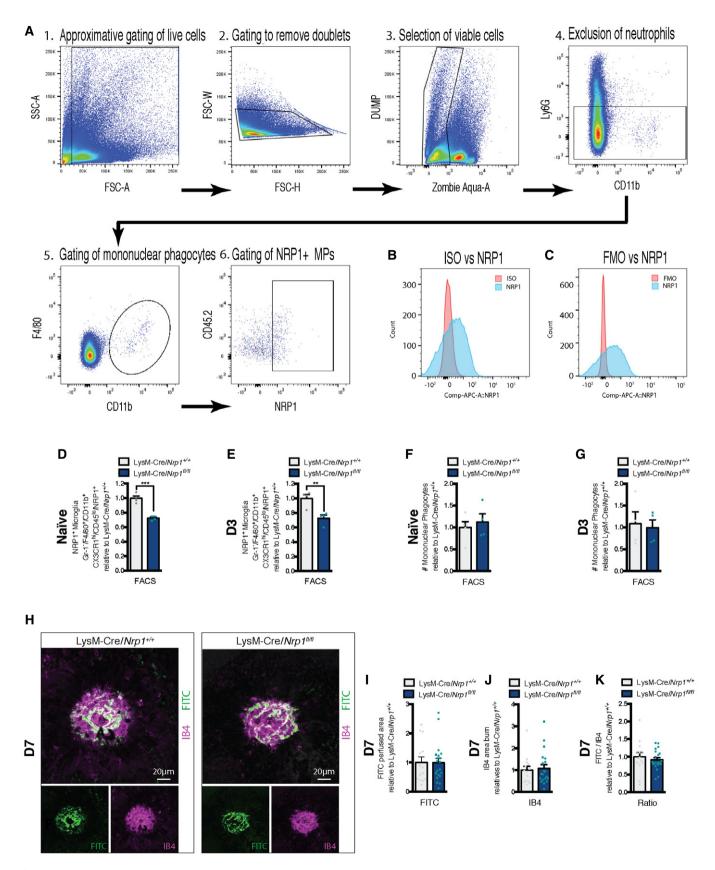


Figure EV1.

EV2

EMBO Molecular Medicine 13: e11754 | 2021 © 2021 The Authors

Elisabeth MMA Andriessen et al EMBO Molecular Medicine

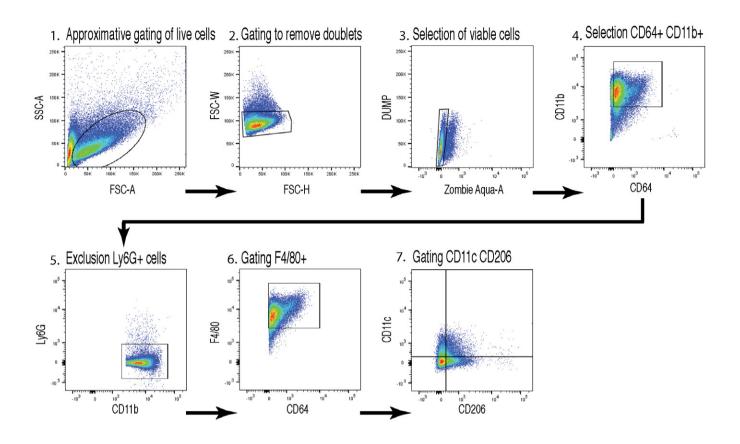


Figure EV2. Gating scheme explaining the identification of the Ly6G⁻, F4/80⁺, CD11b⁺, CD11c⁺, CD206⁻ and Ly6G⁻, F4/80⁺, CD11b⁺, CD11c⁻, CD206⁺ BMDMs.
1. gating of live cells, 2. removal of doublets, 3. selection of viable cells, 4. Selection of myeloid cells (CD64+) 5. exclusion of neutrophils, 6. gating of mononuclear macrophages, 7. Gating on CD11c and CD206.

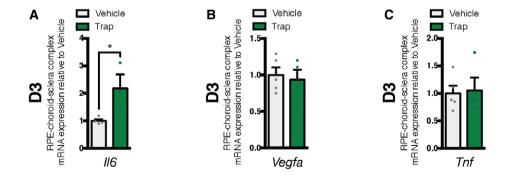


Figure EV3. Inflammatory state of RPE-choroid-sclera complexes following treatment with trap.

A—C mRNA expression of inflammation markers relative to vehicle in mouse RPE-choroid-sclera complexes at D3 for II6 (A); n = 4 (vehicle), n = 4 (trap), Vegfa (B); n = 5 (vehicle), n = 4 (trap), Vegfa (B); n = 5 (vehicle), n = 4 (trap), Vegfa (B); n = 5 (vehicle), n = 4 (trap), Vegfa (B); n = 5 (vehicle), n = 4 (trap), Vegfa (B); n = 5 (vehicle), n = 4 (trap), Vegfa (B); n = 5 (vehicle), n = 4 (trap), Vegfa (B); n = 5 (vehicle), n = 4 (trap), Vegfa (B); n = 5 (vehicle), n = 4 (trap), Vegfa (B); n = 5 (vehicle), n = 4 (trap), Vegfa (B); n = 5 (vehicle), n = 4 (trap), Vegfa (B); n = 5 (vehicle), n = 4 (trap), Vegfa (B); n = 5 (vehicle), n = 4 (trap), Vegfa (B); n = 5 (vehicle), n = 4 (trap), Vegfa (B); n = 5 (vehicle), n = 4 (trap), Vegfa (Vehicle), v = 4 (trap), Vegfa (B); v = 4 (trap), Vegfa (Trap), Vegfa (B); v = 4 (trap), Vegfa (Tr

Data information: All comparisons between groups were analyzed using a Student's unpaired t-test; *P < 0.05; error bars represent mean \pm SEM; exact P values listed in Table 2.