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Abstract: 
 

Background: Genetic variant landscape of coronary artery disease (CAD) is dominated by non-

coding variants among which many occur within putative enhancers regulating the expression 

levels of relevant genes. It is crucial to assign the genetic variants to their correct genes both to 

gain insights into perturbed functions and better assess the risk of disease.  

Methods: In this study, we generated high-resolution genomic interaction maps (~750 bases) in 

aortic endothelial, smooth muscle cells and THP-1 macrophages stimulated with 

lipopolysaccharide using Hi-C coupled with sequence capture targeting 25,429 features 

including variants associated with CAD. We also sequenced their transcriptomes and mapped 

putative enhancers using chromatin immunoprecipitation with an antibody against H3K27Ac.  

Results: The regions interacting with promoters showed strong enrichment for enhancer 

elements and validated several previously known interactions and enhancers. We detected 

interactions for 727 risk variants obtained by genome-wide association studies (GWAS) and 

identified novel as well as established genes and functions associated with cardiovascular 

diseases. We were able to assign potential target genes for additional 398 GWAS variants using 

haplotype information, thereby identifying additional relevant genes and functions. Importantly, 

we discover that a subset of risk variants interact with multiple promoters and their expression 

levels were strongly correlated.  

Conclusions: In summary, we present a catalogue of candidate genes regulated by coronary 

artery disease related variants and believe that it will be an invaluable resource to further the 

investigation of cardiovascular pathologies and disease. 

 
 
 
 
 
 
 
Key words: gene regulation; genome-wide analysis; cardiovascular genomics; linkage 
disequilibrium  
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Introduction 

Coronary artery disease (CAD) labels medical problems of the circulatory system (heart, blood 

vessels and arteries) often due to build-up of fatty cell debris (plaques) deposited inside the blood 

vessels. It is the leading cause of disability and death globally 1. Atherosclerosis, the main 

underlying mechanism leading to the acute events of CAD, is characterized by a lipid driven 

chronic inflammation of the arterial intima, a process that includes all major cells in the vascular 

wall, i.e. endothelial, smooth muscle and inflammatory cells. The acute complication of 

atherosclerosis such as myocardial infarction and stroke is due to rupture of the fibrous cap with 

subsequent thrombus formation that totally or partially occludes the vessel and thereby stops the 

nutrient-rich blood flow. Traditional risk assessment methods based on age, gender, smoking, 

diabetes, hypertension and dyslipidemia tracks the disease incidence well but underestimates its 

occurrence since almost half the population classified as low or intermediate risk end up 

developing cardiovascular disease 2-4 as these methods fail to inform on the underlying 

pathological processes that may have been going on for years 5. In addition, ethnic differences in 

cholesterol and blood lipid levels complicate the assessment of the individual risk of disease 6. 

Heritability for CAD is estimated between 40 to 60% based on twin and family studies, therefore 

genetic risk contributors at play can be utilized in its early diagnosis and treatment 7. 

Genome-wide association studies (GWAS) have emerged as an important tool in the 

search for disease causing genomic variants 8. Coronary artery disease-specific and other 

atherosclerosis related indications have been addressed by large GWAS meta-analyses enabled 

by consortia such as the CARDIoGRAMplusC4D 9 and the MEGASTROKE consortium 10. At 

its current state, just over 300 independent variants explain 21% of coronary artery disease 

heritability 11. According to GWAS, a locus on chromosome 9p21 has the strongest association 
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signal 12, 13. Although it is established that the risk allele is associated with formation and 

progression of plaques but not with their rupture 14, 15, the mechanistic understanding of the 

conferred risk by these loci remains elusive 16-18. Pathways such as cholesterol and triglyceride 

metabolism, blood pressure, inflammation, vascular proliferation and remodeling, nitric oxide 

signaling, vascular tone, extracellular matrix integrity and axon guidance and signaling are also 

enriched for target genes of GWAS variants 17-20.  

GWAS studies do not in themselves provide functional insight for the large subset of hits 

that are non-coding 21, 22: only one-third of the time a variant affects the expression level of its 

nearest gene, highlighting the limitations of the nearest-gene assignment approach 23, 24. The 

target gene mappings can be refined using various layers of genome annotation information as 

well as gene expression profiles. To alleviate the problem of complex linkage structures between 

variants, vast amounts of public datasets of epigenetic marks and transcription factor binding 

profiles employed to help prioritize the causal/functional variant 25-27. Expression quantitative 

trait loci (eQTL) analyses based on gene expression and genotype datasets are also used to locate 

potentially functional variants that are in linkage disequilibrium (LD) with top association 

variants 28-30.  

Pathway or gene-set based approaches using canonical pathways and gene ontology (GO) 

terms goes beyond single variant-based analyses and investigate the combined effect of multiple 

disease/trait variants on biological functions in terms of the perturbations on pathways or cellular 

processes 31-35. Such pathway based analyses revealed the functional GWAS variants in cases 

such as Crohn’s disease 36, multiple sclerosis 37, schizophrenia 38  and breast cancer39 .  

Functional gene sets built using co-expression and protein-protein interaction datasets are also 

used successfully to interpret the GWAS variants 40-42.  



5 

Many promoters require regulatory elements called enhancers, to drive and regulate gene 

expression. Enhancers can be located at long distances from their cognate promoters and brought 

into contact via chromatin looping.  Many enhancers carry tissue specific epigenetic marks such 

as H3K4me1 or H3K27Ac, facilitating their discovery, however not providing information on 

gene(s) they act upon.  Studies of the chromatin interaction landscape were revolutionized by the 

invention of chromosome conformation capture coupled with next-generation sequencing (Hi-C) 

enabling the study of genome structure and folding. Combining Hi-C with sequence capture 

(HiCap), the improvement in resolution required to study of individual promoter-enhancer 

interactions can be obtained. A recent study also employed high-resolution chromatin 

conformation capture to obtain promoter-anchored regulatory landscape of induced pluripotent 

stem cells (iPSCs) and iPSC-derived cardiomyocytes (CM), providing a valuable resource for the 

cardiovascular biology 43.  

In this study, we employed HiCap on three cell types relevant for vascular diseases, 

particularly atherosclerosis and aortic diseases, to discover novel biological processes and 

pathways related to onset and pathology of the disease. We utilized chromatin contacts of 

promoters to GWAS variants or those that are in linkage disequilibrium (LD) to assign potential 

target genes.  

 

Methods 

The authors declare that all supporting process data are available within its online supplementary 

files. The raw data files (fastq and bam files) that support the findings of this study are available 

from the corresponding author upon reasonable request. This study does not involve animal 

studies. The study was approved by the Human Research Ethics Committee at Karolinska 
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Institutet (application number 2006/784-31/1 and 2012/1633-31/4), Stockholm, Sweden; written 

informed consent was obtained from all the patients according to the Declaration of Helsinki, 

and methods were carried out in accordance with relevant guidelines. Please see supplementary 

material for detailed method descriptions. 

 

Results 

Using high-resolution chromatin interactions, we mapped genomic interaction of promoters and 

variants associated with traits and conditions related to cardiovascular diseases in particular 

coronary artery and aortic diseases. Three cell types for the investigation are human aortic 

endothelial cells (AEC), human aortic smooth muscle cells (ASMC) and macrophage-THP-1 

cells (mTHP-1-LPS) stimulated with lipopolysaccharide (LPS) for two hours. For AEC, we 

obtained two technical replicates from two individuals; the technical replicates were pooled, and 

the two individuals were held separate and constituted biological replicates. For ASMC and 

mTHP-1-LPS cells, two technical replicates were obtained. We employed HiCap using a probe 

set targeting 21,479 promoters and 3,950 variants (suppl. table 1). There were 199, 300 and 289 

million read pairs uniquely mapped to probes in AEC, ASMC and mTHP-1-LPS experiments, 

respectively (suppl. table 2). We made a distinction between interactions between promoters 

(promoter-promoter or Prom-Prom) and those between promoters and elsewhere in the genome 

(promoter-distal or Prom-Dist). For the sake of clarity, we also defined interactions between 

disease/trait associated variants and promoters (GWAS-Promoter or GWAS-Prom) (figure 1a).  

We called interactions using HiCapTools requiring each interaction present in both 

replicates, and p-value cutoffs deployed yielded interaction sets of sizes 69,753 (AEC Prom-

Dist), 38,759 (ASMC Prom-Dist), 19,920 (mTHP-1-LPS Prom-Distal), and 5,671 (AEC Prom-
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Prom) and 4,293 (ASMC Prom-Prom) and 1,698 (mTHP-1-LPS Prom-Prom), respectively 

(suppl. table 3A, 3B and 3C, suppl. methods). Importantly, we were able to detect many long-

range (>500Kb) interactions across the three cell-types (suppl. figure 1). Equally important, the 

distal elements (DEs) as well as the interacting promoters were short; average length being 749 

and 776 bases, respectively. In total, the interaction datasets covered around 3.4% of the genome. 

Most promoters (65%) were found to interact with less than five distal regions, whereas the 

interactome of extreme hub-promoters contain several hundred DEs (suppl. fig. 1b-d). We 

identified several interconnected units of promoters and enhancers, figure 1b displays the largest 

connected subsection of chromosome 9 (i.e. giant component). Interestingly, two CVD 

associated GWAS SNPs in chr9p21 region (rs1333042 and rs944797) were part of this network.  

We profiled expression levels of genes in AEC, ASMC and mTHP-1-LPS cell lines using 

RNA sequencing (Suppl. Table 4). Utilizing principal component analysis, we show that the 

promoter-interaction profiles of individual cell types are specific and can separate individual cell 

types independent of gene expression information (figure 1c, suppl. figure 3).  

Promoter-interacting distal elements were enriched for functional elements  

Promoter-interacting DEs were previously shown to be highly enriched for enhancer marking 

features. To confirm that is also the case for this study, we overlapped DEs with H3K27ac 

enriched regions obtained through ChIP-seq in the same cells, as well as relevant DNaseI and 

transcription factor binding datasets from the ChipAtlas (list of public datasets can be found in 

suppl.  table 5 and www.chip-atlas.org). Our interactor sets were indeed enriched relative to size- 

and genomic context controlled random sets and the enrichment was stronger for the better 

matching cell types (figure 1d, suppl. figure 4a-d, supplementary material section 7). 

Interestingly, enrichment levels for the GWAS-Prom set was much higher in AECs and ASMCs 
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(figure 1d, suppl. figure 4a-d). Further, promoters interacting with DEs carrying H3K27ac marks 

were expressed at higher levels as expected (suppl. fig 4e).  

Figure 1e and 1f shows two examples of promoter interactions (MTAP-rs944797 and 

BMP6-rs9328448) where the interactor overlaps with both CVD GWAS variants and cell-

specific H3K27Ac enhancer marks. 

Promoter interacting GWAS-variants were often contained within regulatory elements 

We next turned our attention to variants associated with vascular disease phenotypes according 

to GWA studies and asked if any variants or in LD with those are contained within DEs found in 

this study. First, we took all single nucleotide variants associated with “cardiovascular disease” 

resulting in 3,814 SNPs (minimum p value for association is 10ି), which we called 

CVD_GWAS (cardiovascular disease GWAS) (suppl. table 6A). As previously shown, a 

substantial portion of GWAS variants are themselves located within potential regulatory regions. 

We therefore targeted a subset (723, 19%) of these variants using probes to increase the 

probability of obtaining a signal without the need for deep sequencing (suppl. table 6B). Of those 

723 targeted GWAS variants, 295 (41%) interacted with at least one promoter in at least one cell 

type, constituting the GWAS-Prom dataset. We assigned 423 target genes to 295 variants (54% 

interacting with only one promoter).  To rule out the possibility that GWAS-Prom hits occur 

merely as result of the probing of variants we investigated the corresponding Prom-Dist set, i.e. 

we studied the same promoters and their interactions with non-probed distal regions. There 

should be vastly more Prom-Dist hits close to the variant site, than to a site on the same distance 

from the promoter but at the other side of it (hence keeping the distance from the probed feature 

the same). This is indeed the case as shown in figure 2a (supplementary material section 8).  
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A large fraction of GWAS-Prom interactions spanned distances above 500 kb (Figure 

S1). Consequently, many of the GWAS variants (68%) are found to interact with non-closest 

genes thus ‘jumped over’ by the interaction loop formed (figure 2b). On the other hand, only 

43% of the Prom-Dist interactions involved non-closest gene.  

Whole groups of genes frequently interact with the same GWAS variant. Promoters of 

genes USP24, PLPP3, PRKAA2 and FYB2 thus share a putative enhancer containing variant 

rs12239436. The rs12239436-PLPP3 interaction is particularly interesting due to its large 1.3Mb 

distance as well as the fact that PLPP3 was already identified as a CAD disease risk gene (figure 

2c). 

The GWAS variant rs9349379, associated with five vascular diseases, was recently 

shown to regulate expression of the Endothelin-1 gene. We see this interaction in one of the two 

AEC investigated individuals. Interestingly, the individual with the stronger interaction is 

heterozygous for rs9349379 (A/G), whereas the other individual is homozygous reference (A/A). 

In ASMC, where there is no interaction, rs9349379 variant is homozygous alternative (G/G) 

(figure 2d). 

Discovery of target genes of GWAS variants using shared haplotype and interaction 

information 

To detect further interactions of CVD_GWAS variants with promoters, we looked at the fraction 

of DEs containing such variants. Of the 3,814 associated variants in the CVD_GWAS, there 

were 216 (5.7%) variants within unique DEs. One complication of GWA studies is that the 

association signal many GWAS variants possess are due to their sharing of haplotype with the 

functional variants. If the functional variant can indeed modulate a distal promoter via looping, it 

should also be possible to locate it in our DE datasets. We therefore looked at the fraction of DEs 
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that contain variants that are in LD with those in CVD_GWAS. Due to the sheer number of 

SNPs in LD, we devised a double randomization scheme to assign statistical significance to the 

observed overlap between LD SNPs and DE datasets using both size- and context-matched 

random interaction datasets and random SNP datasets matched with respect to allele frequencies 

and surrounding LD structure of the real set (Supplementary Material section 9). We obtained 

LD and allele frequencies from 1000 Genomes (Phase 3 v5) using European population and set 

LD threshold of 0.8. Figure 2e shows that the DE dataset is enriched for SNPs in LD with 

CVD_GWAS that are within 80 kb, 20 kb and 30 kb in AEC, ASMC and mTHP-1-LPS cells 

respectively, beyond which no enrichment can be seen (suppl. figure 5a and b). There were 559 

SNPs in LD with variants in CVD_GWAS located within DE fragments (Prom-Dist_LD). DEs 

carrying either the GWAS variant themselves or those in LD showed higher enrichments for 

open chromatin, transcription factor binding sites and enhancer marks compared to the entire DE 

set, supporting their potential for expression modulation (suppl. figure 6).  

The eQTL technique was deployed to examine the expression modulation capacity of 

variants contained in DEs. The GWAS-Prom set was extended with Prom-Dist hits and likewise 

selected hits in linkage disequilibrium with those (Prom-Dist_LD). The comparison was 

performed relative to the afore mentioned size- and distance controlled random set and yielded 

the Q-Q plot presented in figure 3b (merged set) and suppl. figure 7a-c (GWAS-Prom, Prom-Dist 

and Prom-Dist_LD separate). The deviation from the diagonal is striking and concerns not only 

extreme cases but large fractions of the entire sets. 

Only 30% of the DEs containing these variants interacted with the closest gene and the 

average interaction distance is 301 kb (suppl. table 6).  In terms of trait categorization, variants 

for 167 of the 247 traits (0.67) related to CVD in EBI GWAS catalogue was found, figure 3c lists 
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overrepresented traits in our dataset. We also compared enrichment of promoter-interacting 

GWAS variants for enhancer marks with respect to trait they belong. We chose an CVD-related 

trait (“coronary artery disease”) and compared to five variant size-matched non-CVD traits to 

demonstrate the specificity of such enrichments for the disease, and found that the enrichment 

for enhancer marks was significantly higher in CVD-related trait (supplementary material section 

10).  

Gene enrichment analysis of target genes of GWAS variants for discovery of disease 

associated cellular processes 

We next asked if genes interacting with fragments carrying disease associated variants are 

enriched for particular functions or pathways. To discover cell context dependent signal, we 

performed a gene set enrichment analysis using genes interacting with GWAS variants 

themselves and those in LD for each cell type. We only included LD SNPs up to 80 kb, 20 kb 

and 30 kb to the proxy SNP in AEC, ASMC and mTHP-1-LPS cells. In order to assess the 

success of discovering novel processes or functions, we input the DEs containing these variants 

to GREAT software package to retrieve the gene sets independent of interaction information to 

perform the same enrichment analysis for comparison (supplementary material section 11). We 

performed enrichment analysis separately for each cell and also combined to assess the specific 

contribution of each cell type. Comparison of the enriched terms by interacting or closest gene 

information (GREAT package) using a GO term semantic similarity measure revealed little 

overlap in between (suppl. Methods section 11, suppl. table 8). Figure 3d shows enriched 

biological processes when target genes from all cell types are merged. We located novel genes 

associated with known CVD complications including “response to lipopolysaccharide” 

(GO:0032496, in AEC and mTHP1-LPS), “phosphatidylinositol-3-kinase signaling” 
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(GO:0014065, in AEC) and “SMAD protein signal transduction” (GO:0060395, in AEC and 

ASMC). Moreover, we discovered genes and functions not previously associated with CVD 

onset and or progress such as “cilium assembly” (GO:0060271, in AEC, 14 genes). 

Ectopic deposition of calcium in arterial vessel walls leading to vascular calcification is a 

main feature of atherosclerosis and similar to the ossification process. Concordantly, terms such 

as “endochondral ossification”, “regulation of chondrocyte differentiation”, “regulation of 

osteoblast differentiation”, “positive regulation of ossification” were among the enriched 

functions. Eleven genes (BMP6, SMAD3, JAG1, PDLIM7, SLC8A1, DLX5, TEK, HOXA2, 

EFEMP1, RARB and IL6) responsible for the above enrichments and only four (BMP6, TEK, 

SMAD3 and JAG1) interacted with lead SNPs, while the rest interacted with variants in LD with 

lead SNPs. 

Fourteen target genes were involved in cilium assembly, including IFT74, a component 

of endothelial intraflagellar transport, which interacts with a CVD associated variant in the 

chr9p21 region (rs944797). It has been shown that endothelial cells can sense and respond to 

shear stress levels using their cilia and endothelial cilia were shown to deflect in response to 

blood flow rates. The deflection angle is regulated by calcium levels. Moreover, endothelial cilia 

inhibit onset of atherosclerosis in mouse models. 

We identified several genes involved in leukocyte adhesion and vascular inflammation, 

key processes of atherosclerotic development. Examples of target genes include Cadherin 13 

(CDH13 interacting with rs8055236) which has previously been shown to protect against 

atherosclerosis in experimental models, AMP-activated protein kinase (PRKAA2 interacting 

with rs12239436) whose activity inhibits cell migration via phosphorylation of Pdlim5 and 
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BACH1 (interacting with rs2832227), a transcriptional regulator which has been shown to be 

involved in atherosclerosis development in apolipoprotein E deficient mice. 

Other examples of plausible candidate genes for inflammatory cardiovascular disease 

include CD86 (interacting with rs13083990), a receptor involved in the costimulatory signal 

essential for T-lymphocyte proliferation and interleukin-2 production and AKIRIN2 (interacting 

with rs6900057) a gene that has been shown to stimulate a pro-inflammatory gene in 

macrophages during innate immune responses.  

Expression levels of interacting promoters sharing enhancers are correlated 

Sometimes variants are contained within enhancers controlling multiple genes, suggesting such 

gene sets to be group- and pairwise co-expressed. Using data from the ASAP-Heart study we 

were able to test 75 AEC gene pairs sharing enhancers and could conclude that 34 (45.3%) are 

co-expressed at p-value level	10ିଷ; 18 of 75 (24.0%) also at p-value level 10ିଵ	and there is a 

strong enrichment over random background of gene-pairs where only 23% are co-expressed 

(P=9.6e-06 by chi-square test). Excluding a large cluster of genes all interacted upon by the same 

variant rs13083990, these percentages rises to 64.1% (p < 10ିଷ) and 38.4% (p <	10ିଵ), 

respectively. 

In figure 4a this is exemplified with co-expression plots for the MTAP and IFT74 genes, 

both interacted upon by the chr9p21 locus variant rs944797 in AEC. The genomic distance 

between the two gene promoters is in excess of 5 million bases. Even more extreme is the co-

expression of genes SMARCAD1 and BMP2K both located on chromosome 4 more than 15 Mb 

apart in AEC (figure 4b). Both genes also interact a GWAS variant associated with diastolic 

blood pressure (rs16998073, p value =	10ିଶଵ), which itself interacts two other genes 

(LINC01094 and PAQR3) and 27 DEs (11 overlapping with H3K27ac marks) (figure 4c). Most 
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of these interactions were specific to AEC (figure 4d). LINC01094 is a non-coding RNA and its 

expression levels are correlated with serum albumin (p value =	10ିଽሻ and co-expressed with 

BMP2K (p value =	1.26 ∗ 10ିଽଷሻ. Serum albumin levels are positively correlated with blood 

pressure. Moreover, PAQR3 levels modulates leptin signaling in mouse models and leptin is 

found to mediate the increase in blood pressure associated with obesity.   

 

Discussion 

Our aim in this study was to evaluate the contribution of high-resolution promoter-anchored 

regulatory interaction maps to locate the target genes of noncoding GWAS variants associated 

with vascular diseases. Although many GWAS variants are merely tags for the functional SNP 

within the same haplotype, some may still be or be very close to the “functional” variant as 

suggested by their enrichment for enhancer marks and re-sequencing studies. Here we show that 

targeting GWAS variants in capture Hi-C experiments can be a useful strategy in conquest for 

target gene associations due to lesser need for sequencing. We also uncover several enhancers 

regulating multiple genes and a strong correlation signal between such sharing enhancers, 

implying the underlying complexity of regulatory networks. A recent study showed the implicit 

wiring of enhancer redundancy in regulatory networks, where the system can tolerate loss of 

enhancers by connecting promoters to multiple enhancers 45. However, the case when multiple 

genes connected to the same enhancer could negatively affect the resilience of the network in the 

case of enhancer malfunction, potentially disturbing the co-regulation of multiple genes. 

We tackle the difficulty of locating the “functional” variant using LD information. When 

a GWAS SNP is associated with a trait, essentially any other variant on the same haplotype 

could be responsible for the association. However, due to sheer number of variants in LD, it is 



15 

not straightforward to locate the “functional” one. The resolution in this study was around 750 

bases, which allowed us to locate DEs containing variants in LD with CVD GWAS variants. 

Extending the genomic window around the DEs to 250 kb, we found that, it is possible to 

discriminate between functional and tagged variants using a double randomization procedure. 

DEs containing variants in LD with CVD GWAS variants showed better enrichments for histone 

enhancer marks and TF binding sites.  We found that HiCap-identified loci are strongly enriched 

for genes identified by eQTL-based investigations of GWAS hits. While the two methods are 

conceptually different, this overlap supports the idea that a diverse set of methods for functional 

genetics is advantageous when identifying causal genes from GWAS disease loci. 

We confirm that it is only one-third of the time the enhancer is connected to the 

promoters of its nearest gene. We take on the challenge of assigning the correct genes to GWAS 

variants using promoter- and variant-anchored regulatory maps produced in two cell types. 

Indeed, we discover multiple biological processes and cellular structures that are associated with 

vascular disease pathology not by genomic but by functional studies. We were able to suggest 

variants that could be responsible for the perturbations of such processes or structures. Here it is 

important to note that by only mining the variants associated with vascular disease trait, we will 

be able to discover the genes that are perturbed in a given pathway, process or structure. 

Discovery of the full network of genes within such processes or structure is beyond the scope of 

this study.  

In summary, we provide high-resolution promoter-anchored regulatory networks of three 

cell types and list novel genes, processes and cellular structures relevant for vascular disease 

pathologies, in particular coronary artery and aortic diseases. We hope that the data and the 
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methodologies in this study will aid us in our mission to further understand the contribution of 

non-coding genomic variation to complex disease biology. 
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Figure Legends: 

 

Figure 1 (A) Three types of HiCap-established interactions; Prom-Dist, Prom-Prom and GWAS-

Prom, respectively; for the Gene A promoter. In Prom-Dist is analyzed probed promoters’ 

interaction with distal element (DEs); the latter separated by restriction sites. In Prom-Prom and 

GWAS-Prom both ends of the interaction are probed.  (B) The largest connected subgraph in 

chr9 in AEC cells. There are 22 promoters, three GWAS SNPs and 271 DE (only those 

overlapping with H3K27ac marks are included). The blue track represents gene expression 

levels, gray boxes represents transcripts, innermost layers represent H3K27Ac marks (two 
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replicates). Purple arcs represent GWAS-Prom or Prom-Prom, orange arcs represent Prom-Dist 

interactions respectively. (C) Principal component analysis (PCA) of Prom-Dist interaction of 

genes not expressed in none of the cell types (D) Overlap enrichment relative to a segment-

length and distance-from-promoter controlled random set. The AEC Prom-Dist and GWAS-

Prom datasets were overlapped with general Cardiovascular, HUVEC and HAEC transcription 

factor marker data from ChipAtlas.  (E) 357kb region containing MTAP-rs944797 interaction 

and (F) 393 kb region containing BMP6-rs9328448 interaction visualized using Gviz package 44. 

Overlap with H3K27Ac marks are shown in the lower panes as well as the signal from the input 

chromatin. Prom-distal (including Prom-GWAS) and prom-prom interactions are colored as 

green and purple respectively. 

 

Figure 2: (A) The AEC Prom-Dist set was searched for interactions between the promoter and 

distal elements close to a variant interacting with the same promoter (green curve). The 

comparison was made relative to a site at the same distance from the promoter it but located at 

the other side of it (light blue curve). The latter is nearly a horizontal line as expected whereas 

the blue curve strongly deviates from that at distances not too far from the variant site. The bin 

size used to count interactions is 5 kb. (B) Variants in the AEC, ASMC and mTHP-1-LPS 

merged GWAS-Prom set and their interaction preferences with genes at distance 0 (no gene-

jumping), 1 (nearest gene is jumped-over) etc. Distal regions in the corresponding Prom-Dist set 

are shown for reference. The GWAS-Prom interaction set is further split in equally sized halves 

depending the variants distance to its nearest gene (GWAS-Prom without- and with a nearby 

gene, respectively). (C) The CAD-related variant rs12239436 (red box) interacts with 62 kb 

distant gene USP24 (grey box) in AEC (dotted line), ASMC (dashed) and mTHP-1-LPS (solid). 
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Strengths of interactions are represented with the p-value recorded and indicated by arrow 

thickness. Our result set further include very strong interactions with the 1,3Mb distant 

previously CAD associated gene PLPP3 (also known as PPAP2B). Less significant interactions 

with nearby FYB2 (ASMC) and PRKAA2 (mTHP-1-LPS) are potentially bystanders. (D) Earlier 

reported interaction between variant rs934937 and the EDN1 gene is, to a varying degree, 

present in both AEC patients. Not so in less relevant tissues ASMC and mTHP-1-LPS. (E) 

Comparison of overlaps between Prom-Dist dataset (AEC) vs 100 matched random datasets and 

CVD_GWAS and matched SNP datasets (see methods) shows that there is an enrichment for 

variants in LD with CVD_GWAS found in Prom-Dist dataset when the genomic distance 

between SNP and its LD proxy is <= 80 kb. No such enrichment was seen for random Prom-Dist 

datasets vs real or random SNP sets. 

 

Figure  3. (A) eQTLs contained in the merged CVD GWAS-Prom, Prom-Dist and Prom-

Dist_LD datasets plotted versus a size and distance-corrected random set. Deviation from 

diagonal is present among approximately 30% of the data. (B) GWAS traits that are 

overrepresented in the interaction datasets. Only traits containing at least 14 variants were taken 

forward. Fold enrichment is calculated by dividing the actual number of trait variants in the 

interaction dataset to that of expected (fraction of trait variants in the full trait set). The bar labels 

denote the fraction of variants found in the interaction datasets. (C) GO Term enrichment 

analysis of genes interacting with variants or those in LD with CVD_GWAS set using TopGO 

package. GO terms enriched using only nearest genes to the variants are not reported. Terms 

with less than five genes and enrichment score less than 0.05 were not included. 
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Figure 4. Expression correlation between (A) genes MTAP and IFT74 (p-value 4.2*10ିଵ) and 

(B) genes SMARCAD1 and BMP2K (p-value 2.1*10ିସହ) using aortic intima media expression 

from 131 individuals. The values on axes are RPKM values and each dot corresponds to each 

individual where both expression information are obtained from. C,D) Circos plot representation 

of interactions between rs16998073 and rest of the genome in c) AEC and d) ASMC for 

comparison. The plot spans chr4:73000000-103000000. The blue track represents gene 

expression levels, gray boxes represents transcripts, innermost layers represent H3K27Ac marks 

in AEC cells (two replicates). Purple arcs represent GWAS-Prom or Prom-Prom and orange arcs 

represent Prom-Dist interactions.  
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