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Abstract: Background

Three-dimensional (3D) point cloud is the most direct and effective data form for
studying plant structure and morphology. In point cloud studies, the point cloud
segmentation of individual plants to organs directly determines the accuracy of organ-
level phenotype estimation and the 3D plant reconstruction reliability. However, highly
accurate, automatic, and robust point cloud segmentation approaches for plants are
unavailable. Thus, the high-throughput segmentation of many shoots is challenging.
Although deep learning can feasibly solve this issue, software tools for 3D point cloud
annotation to construct the training dataset are lacking.

Results

In this paper, a top-to-down point cloud segmentation algorithm using optimal
transportation distance for maize shoots is proposed. On this basis, a point cloud
annotation toolkit, Label3DMaize, for maize shoot is developed. Further, the toolkit was
applied to achieve semi-automatic point cloud segmentation and annotation of maize
shoots at different growth stages, through a series of operations, including stem
segmentation, coarse segmentation, fine segmentation, and sample-based
segmentation. The toolkit takes about 4 to 10 minutes to segment a maize shoot, and
consumes 10%-20% of the total time if only coarse segmentation is required. Fine
segmentation is more detailed than coarse segmentation, especially at the organ
connection regions. The accuracy of coarse segmentation can reach 97.2% of the fine
segmentation.

Conclusion

Label3DMaize integrates point cloud segmentation algorithms and manual interactive
operations, realizing semi-automatic point cloud segmentation of maize shoots at
different growth stages. The toolkit provides a practical data annotation tool for further
online segmentation researches based on deep learning and is expected to promote
automatic point cloud processing of various plants.
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 10 

Abstract 11 

Background: Three-dimensional (3D) point cloud is the most direct and effective data form for studying plant 12 

structure and morphology. In point cloud studies, the point cloud segmentation of individual plants to organs 13 

directly determines the accuracy of organ-level phenotype estimation and the 3D plant reconstruction reliability. 14 

However, highly accurate, automatic, and robust point cloud segmentation approaches for plants are unavailable. 15 

Thus, the high-throughput segmentation of many shoots is challenging. Although deep learning can feasibly solve 16 

this issue, software tools for 3D point cloud annotation to construct the training dataset are lacking. Results: In 17 

this paper, a top-to-down point cloud segmentation algorithm using optimal transportation distance for maize 18 

shoots is proposed. On this basis, a point cloud annotation toolkit, Label3DMaize, for maize shoot is developed. 19 

Further, the toolkit was applied to achieve semi-automatic point cloud segmentation and annotation of maize 20 

shoots at different growth stages, through a series of operations, including stem segmentation, coarse segmentation, 21 

fine segmentation, and sample-based segmentation. The toolkit takes about 4 to 10 minutes to segment a maize 22 

shoot, and consumes 10%-20% of the total time if only coarse segmentation is required. Fine segmentation is more 23 

detailed than coarse segmentation, especially at the organ connection regions. The accuracy of coarse segmentation 24 

can reach 97.2% of the fine segmentation. Conclusion: Label3DMaize integrates point cloud segmentation 25 

algorithms and manual interactive operations, realizing semi-automatic point cloud segmentation of maize shoots 26 

at different growth stages. The toolkit provides a practical data annotation tool for further online segmentation 27 

researches based on deep learning and is expected to promote automatic point cloud processing of various plants.  28 

 29 

Key words: Label3DMaize, three-dimensional point cloud, segmentation, maize shoot, data annotation. 30 

 31 

1 Introduction 32 

The plant structure and morphology are important features for expressing growth and development. At 33 

present many research studies underpin the significance of integrating the three-dimensional (3D) 34 

morphological characteristics of plants when conducting genetic mapping, adaptability evaluation, and crop 35 

yield analysis [1, 2]. Using the 3D data acquisition technology to obtain a 3D point cloud is the most effective 36 

way to perceive the plant structure and morphology digitally. However, 3D point clouds are initially obtained 37 

in an unordered, unstructured manner and with little semantic information. Therefore, it is critical to use 38 

computer graphics technologies and plant morphology knowledge to convert the unstructured 3D point 39 

clouds into well-organized and structured data that contains rich morphological features with semantic 40 

information. Therefore, plant morphology research based on measured point clouds forms a critical 41 

Manuscript Click here to access/download;Manuscript;Label3DMaize.docx

mailto:guoxy73@163.com
https://www.editorialmanager.com/giga/download.aspx?id=107352&guid=2fd6845a-e457-4d51-94d0-0e82e7482826&scheme=1
https://www.editorialmanager.com/giga/download.aspx?id=107352&guid=2fd6845a-e457-4d51-94d0-0e82e7482826&scheme=1


 

 

component of 3D plant phenomics [3-5], 3D plant reconstruction [2, 6], and functional-structural plant 42 

models (FSPMs) [7, 8]. 43 

The development of 3D data acquisition technology has significantly enriched approaches for fine-scale 44 

3D data acquisition of individual plants, including 3D scanning [9, 10], LiDAR [11], depth camera [12], time 45 

of flight (ToF) reconstruction [13], and multi-view stereo (MVS) reconstruction [14, 15]. Owing to the low 46 

cost of sensors and better quality of reconstructed point clouds, MVS reconstruction have been widely 47 

adopted in many applications. Recently, multi-view image acquisition platforms that can realize semi-48 

automatic and high-throughput 3D data acquisition for individual plants have been developed [16] and enable 49 

3D data acquisition for the phenotypic analysis of large-scale breeding materials [17, 18]. However, how to 50 

efficiently and automatically process the acquired big data of 3D point clouds is a bottleneck in 3D plant 51 

phenotyping.  52 

The key technologies for 3D point cloud data processing include data registration, the region of interest 53 

extraction, denoising, segmentation, feature extraction, and mesh generation. Among these tasks, point cloud 54 

segmentation is challenging. Therefor, automatic and accurate point cloud segmentation could significantly 55 

impact subsequent results of phenotype extraction and 3D reconstruction. Point cloud segmentation can be 56 

classified as population-shoot or shoot-organ segmentation. Population-shoot segmentation allows for 57 

automatic segmentation of maize population under low density [19] or at early growth stages [20, 21] with 58 

little overlap, which can be realized via the spatial distance between shoots. However, it is difficult to achieve 59 

automatic segmentation of high density populations or with many overlapping organs in late growth stages. 60 

Comparatively, more attention has been paid to shoot-organ segmentation. Though high-quality input point 61 

clouds and restricted connections between organs are required, color-based [22] and point clustering [23-25] 62 

approaches have also been widely used. For instance, Elnashef et al. [14] used the local geometric features 63 

of the organs to segment maize leaves and stems at six-leaf stage. Paulus et al. [26, 27] segmented the grape 64 

shoot organs by integrating fast point feature histograms (FPFH), support vector machine (SVM), and region 65 

growing approaches. However, these methods can only segment plant shoots with clear connection 66 

characteristics between stems and leaves [9] and can hardly solve leaf wrapping stem segmentation problems. 67 

For time-series 3D point clouds, the leaf multi-labeling segmentation method was used for organ 68 

segmentation and plant growth monitoring [28]. While plant organs could also be segmented through skeleton 69 

extraction and hierarchical clustering [29, 30], these methods need interactive manual correction for complex 70 

plants to guarantee the segmentation accuracy. Jin et al. [31] proposed a median normalized vector growth 71 

algorithm that can segment the stems and leaves of maize shoots. On this basis, an annotation dataset of 72 

maize shoots was constructed, and the deep learning method was introduced to improve the automatic 73 

segmentation level [32]. However, few parameter interactions are still needed for different shoot architecture 74 

and cannot meet the needs of high realistic 3D reconstruction. 75 

Due to the complexity of plant morphology and structure, almost all 3D point cloud segmentation 76 

methods for plants need certain manual interaction, which is inconvenient for huge amounts of point cloud 77 

data processing, and substantially decreases the efficiency. Therefore, it is necessary to improve the 78 

automation of segmentation and increase the throughput of 3D point cloud data processing for plants. Deep 79 

learning approaches can effectively solve this problem [33, 34], among which the construction of high-quality 80 

training data set is a prerequisite. For example, LabelMe [35] can realize high-quality data annotation for 81 

image segmentation. However, 3D point cloud tools for data annotation are rare, especially for plants. Besides, 82 

the existing datasets for 3D plant segmentation contain only little data [34, 36, 37], which cannot meet the 83 

data requirements for high-quality deep learning models. 84 

Since point cloud annotation of plants is labor-intensive and time-consuming, deep learning approaches 85 



 

 

can be applied to segment plant point clouds. Hence, how to improve the efficiency of high-quality data 86 

annotation and develop supporting software tools is the key to automatic point cloud segmentation of plants 87 

by deep learning. To meet this data annotation demand, this study used maize as an example and proposes a 88 

top-to-down point cloud segmentation algorithm. Besides, a toolkit for point cloud annotation of maize shoots 89 

is developed, which could provide technical support for automatic and high-throughput processing of plant 90 

point clouds.  91 

2 Materials and Methods 92 

2.1 Field experiment and data acquisition 93 

Three maize cultivars, including MC670, Xianyu 335 (XY335), and NK815, were planted on May 20th, 94 

2019, at the Tongzhou experimental field of Beijing Academy of Agriculture and Forestry Sciences 95 

(116.70°E, 39.71°N). The planting density of all the plots was six plants/m2 with a row spacing of 60 cm. 96 

Morphological representative shoots of each cultivar at 6th leaf (V6), 9th leaf (V9), 13th leaf (V13), and blister 97 

(R2) stages [38], were selected and transplanted into pots. Then multi-view images were acquired using the 98 

MVS-Pheno platform [16], after which 3D point clouds of the shoots were reconstructed.  99 

2.2 Overview of the segmentation pipeline 100 

The point cloud of a maize shoot can be segmented into five kinds of instances: stem, leaf, tassel, ear, 101 

and pot. The stem, tassel, and pot on a shoot can be regarded as an instance for each. For each transplanted 102 

shoot at stage R2, assuming that it contains n1 ears and n2 leaves, the point cloud of this shoot can thus be 103 

segmented into N=3+n1+n2 instances. ∅u  represents the point cloud to be segmented, and ∅s
𝑖  (𝑖 =104 

1, 2,…… ,𝑁) represent the ith point cloud instance. In particular, ∅s
1 and ∅s

𝑁 refer to the stem and pot (if 105 

exists) instance, respectively. Before the segmentation begins, ∅u contains all the points of the shoot, and 106 

∅s
𝑖  are all empty. With the progression of segmentation, the points in ∅u are gradually assigned to ∅s

𝑖 . The 107 

segmentation completes when ∅u is empty. 108 

The segmentation pipeline includes five parts (Figure 1): point cloud down-sampling, stem 109 

segmentation, coarse segmentation, fine segmentation, and sample-based segmentation. (1) Point cloud 110 

down-sampling. The original input point cloud is down sampled to maintain the shoot morphological features, 111 

which improves the segmentation efficiency and quickens the entire segmentation process. (2) Stem 112 

segmentation. The top and bottom points of the stem are interactively selected, and the corresponding radius 113 

parameters are interactively adjusted. Subsequently, the median region growing is applied to segment the 114 

stem points from the shoot automatically. (3) Coarse segmentation. The highest points of each organ instance, 115 

except the stem, are obtained via automatic calculation or manual interaction, after which all organ instances 116 

are segmented automatically based on the optimal transportation distances. (4) Fine segmentation. The 117 

unsatisfactory segmentation point regions are selected interactively, and the seed points of organ instances 118 

are selected. Organs are then segmented by Markov random fields (MRF). (5) Sample-based segmentation. 119 

Maize shoots with high-resolution point clouds are segmented based on the fine segmentation result of low-120 

resolution point clouds.  121 



 

 

 122 

Figure 1: workflow of the segmentation 123 

2.3 Stem segmentation 124 

Two seed points 𝑠0 and 𝑠𝑛 at the bottom and top of each stem, were selected interactively. Then, a 125 

median-based region growing algorithm [31] was applied to segment the stem points. This segmentation 126 

procedure update the seed point iteratively along the direction from 𝑠0 to 𝑠𝑛. Points around the seed points 127 

were classified into stem points. Suppose the algorithm is currently at the kth iteration, and the seed point is 128 

𝑠𝑘, the segmentation process was evaluated as follows:  129 

Step1: Points lying in a sphere were classified as stem points, where 𝑠𝑘 is the center of the sphere, 𝑟1 130 

is its radius, and 𝑟1 is a user-specified parameter. 131 

Step 2: The growth direction 𝑣𝑘⃗⃗⃗⃗  was determined according to: 132 

𝑣𝑘⃗⃗⃗⃗ = (𝛼𝑣1⃗⃗⃗⃗ + β𝑣 )/‖𝛼𝑣1⃗⃗⃗⃗ + β𝑣 ‖2 133 

𝑣1⃗⃗⃗⃗ = 𝑚𝑒𝑑𝑖𝑎𝑛{(𝑝𝐴 − 𝑠𝑘) ‖𝑝𝐴 − 𝑠𝑘‖2⁄ , 𝑝𝐴 ∈ 𝐴} 134 

𝑣 = (𝑠𝑛 − 𝑠𝑘) ‖𝑠𝑛 − 𝑠𝑘‖2⁄  135 

In this formula, ‖ ‖2 is L2 normal form, and median{} represents the median operation. 𝛼 and β 136 

are weight parameters set by users and 𝑣1⃗⃗⃗⃗  is the normalized vector from the median of already segmented 137 

points of the stem to the seed point 𝑠𝑘 . Meanwhile, 𝑣  is the normalized vector from 𝑠𝑘  to 𝑠𝑛 , which 138 



 

 

corrects the growth direction to coincide with the stem. In practice, 𝛼 = 0.2 while β = 0.8. This parameter 139 

setting ensures that the stem points can be correctly segmented under different 𝑟1 values, during the entire 140 

growing process. 141 

Step 3: A new seed point 𝑠𝑘+1 for the next iteration was estimated according to 𝑠𝑘+1 = 𝑠𝑘 + 𝑟1𝑣𝑘⃗⃗⃗⃗ . 142 

Step 4: Region growing finish condition judgement. Supposing L represents the line segment from 𝑠0 143 

to 𝑠𝑛, then project 𝑠𝑘+1 on L. If the projection point was not on L, it indicated that the current regional 144 

growth was beyond the stem region, and the iteration should be stopped. Otherwise, continue the k+1 times 145 

iteration and execute step 1.  146 

Because the maize stem gradually thins from bottom to top, a uniform radius 𝑟1 may generate over 147 

segmentation, i.e., classifying the points of other organs into the stem. Besides, the region growing algorithm 148 

also over segments points in some regions at the bending of the stem. Therefore, a simple median operation 149 

was adopted to eliminate the over segmented points. First, the already segmented stem points were evenly 150 

divided into M segments along the direction of (𝑠𝑛 − 𝑠0) ‖𝑠𝑛 − 𝑠0‖2⁄ , and the median axis of each segment 151 

was fitted using the least squares. The average distance from each point to the central axis was then calculated. 152 

If the distance from a point to the central axis was less than the average distance, it was retained as the stem 153 

point; otherwise it was removed from the stem to the unsegmented point set. Users can perform the median 154 

operation several times in the toolkit to reduce the over-segmentation problem. Although multiple median 155 

operations cause an under segmentation of stem point cloud, the issue is resolved in the subsequent organ 156 

segmentation processes. ∅s
1 represents the segmented stem points, and these points are removed from ∅u. 157 

Subsequent organ segmentation is performed in the remaining point cloud. Stem point cloud segmentation is 158 

illustrated in Figure 2.  159 

 160 

Figure 2: Stem point cloud segmentation. (A) Seed points at the bottom and top of the stem are interactively selected, and an 161 

appropriate segmentation radius is set. (B) Stem segmentation result based on (A). (C) A big radius is set. (D) Segmentation 162 

result based on (C). (E)-(G) Stem segmentation results with 1, 2, and 3 median operations based on (D).  163 

2.4 Shoot alignment 164 

The shoot points were transformed into a regular coordinate system to access the position of each point 165 

in the cloud conveniently. The midpoint of the already segmented stem point cloud was taken as the origin 166 

O of the new shoot coordinate system. In contrast, the Z-axis of the new coordinate system was the middle 167 

axis estimated by the least squares method from the stem point cloud. Then, the shoot point cloud was 168 

projected onto the plane using the Z-axis as its normal vector. The first and second principal component 169 

vectors of the projection points were determined by principal component analysis (PCA) and assigned as the 170 



 

 

X and Y-axis of the new shoot coordinate system, respectively. Subsequently, the original point cloud 171 

coordinates were transformed into the new shoot coordinate system, and the coordinates of their z value 172 

judged the height of points in the shoot. Points are higher with greater z values.  173 

2.5 Coarse segmentation of organs 174 

A top-to-down point cloud segmentation algorithm for maize organs from a shoot was applied. The 175 

highest point of each organ was taken as the seed point of the organ (Figure 3A). The other shoot points after 176 

stem segmentation were classified into corresponding organ instances from top to down by the optimal 177 

transportation distances (Figure 3B). 178 

 179 

Figure 3: Illustration of coarse segmentation. (A) Highest point determination of each organ. (B) Visualization of segmented 180 

shoot from different angles of view.  181 

2.5.1 Organ seed points determination 182 

After stem segmentation, the point cloud of maize shoots was spatially divided into several relatively 183 

discrete organs (excluding the stem). The highest point of each organ was regarded as the seed point (Figure 184 

3A). If a pot was involved in the point cloud, all points with a z value less than the lowest point of the stem 185 

were directly classified as pot points. Usually, the highest point of a new leaf appears at the tip region; the 186 

middle and lower fully unfolded leaves are mostly curved. Meanwhile, the highest point lies in the middle of 187 

the leaf, and the highest points of a tassel or ear are at the top. Therefore, the highest point of each organ was 188 

determined by searching for the point with the maximum z value. 189 

For any point p of an organ, we searched its neighbors within a radius of 𝑟2. If the z value of point p 190 

was greater than that of its neighboring points, the point was regarded as the highest in the organ. The 191 

parameter 𝑟2 actually affects the recognition of the highest point of an organ. Too small 𝑟2 may cause the 192 

highest point found being the local highest point, rather than the global highest point of the current organ. 193 

Therefore, 𝑟2 was set 1.5 times of the leaf width by default, which allows users to set interactively according 194 

to the morphological characteristics of the target shoot.  195 



 

 

Numerical experiments show that the highest points of most organs can be derived by setting the 196 

appropriate 𝑟2. However, the algorithm still has two problems. (1) When the distance between the highest 197 

points of adjacent organs in the shoot vary significantly, it is difficult to find a suitable 𝑟2 to calculate all 198 

complete and accurate highest points. For example, in some shoots, the highest points distance between new 199 

emerging leaves is relatively close, while this distance between other leaves is relatively far. (2) Due to the 200 

tassel branching structure, each branch has the highest point; multiple highest points of a tassel will be 201 

detected using the same algorithm and settings, to ensure the highest points are correctly estimated in other 202 

organs. If to ensure only one highest point is calculated in the tassel, the highest point of other organs may 203 

be lost.  204 

To solve the problem that the calculation of the highest point of organs may not be accurate, 205 

Label3DMaize provides a manual interaction module to modify the highest seed point of each organ. 206 

Simultaneously, this operation can also assign a serial number to each organ for further output. Because the 207 

number of maize organs is relatively small, this interactive correction operation is convenient and acceptable. 208 

The derived seed points of each organ are set into the corresponding instance point cloud ∅s
𝑖 . At this time, 209 

each leaf, tassel, and ear instance point cloud only contains the highest point, and there are multiple points in 210 

the pot and stem instances.  211 

2.5.2 Coarse segmentation based on optimal transportation distances 212 

After obtaining the seed points of all the instances, the left points in ∅u were traversed one by one to 213 

determine the instance to which they belong. For each point to ∅u, the distance between the point and each 214 

other point cloud instance were evaluated, and it was classified into the nearest instance. The classified points 215 

were evaluated from top to bottom; that is, the points with bigger z coordinates were evaluated preferentially. 216 

The process was as follows: 217 

Step 1: The points in the point set ∅u were reordered from big to small according to their z values.  218 

Step 2: For point 𝑝 ∈ ∅u, the organ instance it belongs to was determined. The distance 𝑑𝑖 from point 219 

p to the ith instance was defined as  220 

𝑑𝑖 = 𝐷𝑠(𝑝, 𝑝�̃�) 221 

Where 𝐷𝑠  is the optimal transportation distance between any two points calculated based on the 222 

sinkhorn algorithm [39] . Then point p is assigned into the organ instance with the lowest 𝑑𝑖. 𝑝�̃�, in the ith 223 

instance, is the nearest neighbor of point p under the optimal transportation distance.  224 

Step 3: Move point p from ∅u into the corresponding ∅s
𝑖 . Continue traversing the next point in ∅u, 225 

and perform step 2 until ∅u is empty. 226 

Detailed description of 𝐷𝑠 in step 2 is explained here. The optimal transportation strategy of point 227 

cloud 𝑄 to its identical set 𝑄′ is that transmit all the quality of any point 𝑝 ∈ 𝑄 to the same point 𝑝′ ∈228 

𝑄′. The Sinkhorn algorithm [39] was used here to calculate the optimal transportation distances. It allocates 229 

the quality of any point 𝑝 ∈ 𝑄 to all points in 𝑄′. A point with higher allocation quality suggests the point 230 

is closer to p than any other points under the optimal transportation strategy. Suppose that point cloud 𝑄 231 

contains 𝑁𝑄 points. 𝑄′ represents the same point set of 𝑄. 𝑝𝑢 is the uth point in 𝑄, and 𝑀𝑢 indicates the 232 

quality of point 𝑝𝑢. Similarly, 𝑝𝑣
′  is the vth point in 𝑄′, and 𝑀𝑣

′  indicates the quality of point 𝑝𝑣
′ . 𝑚𝑢𝑣 233 

represents the transported quality from 𝑝𝑢 ∈ 𝑄 to 𝑝𝑣
′ ∈ 𝑄′. Then the optimal transportation energy from 234 

point cloud 𝑄 to point cloud 𝑄′ can be described as:  235 

argmin
𝑚

∑ ∑𝑚𝑢𝑣‖𝑝𝑢 − 𝑝𝑣
′‖ +

𝑁𝑄

𝑣=1

𝑁𝑄

𝑢=1

1

𝜀
∑ ∑𝑚𝑢𝑣 log𝑚𝑢𝑣

𝑁𝑄

𝑣=1

𝑁𝑄

𝑢=1

 236 



 

 

s. t.  𝑚𝑢𝑣 > 0; ∑𝑚𝑢𝑣 = 𝑀𝑢

𝑁𝑄

𝑣=1

;   ∑ 𝑚𝑢𝑣 = 𝑀𝑣
′

𝑁𝑄

𝑢=1

 237 

In this equation, 𝜀 is the adjusting parameter, which was set to 5 in this paper, and ‖ ‖ is the L2 238 

normal form. The above equation can be solved by Sinkhorn's matrix scaling algorithm [40], and the optimal 239 

transportation from 𝑄  to 𝑄′  can be derived, that is, an 𝑁𝑄 × 𝑁𝑄  optimal transportation matrix M is 240 

obtained. The element 𝑚𝑢𝑣 at u row and v column in the matrix is the transported quality from the uth to the 241 

vth point. A larger 𝑚𝑢𝑣 indicates that the two points are closer. After obtaining the optimal transportation 242 

solution, the optimal transportation distance from the uth to the vth point in the point cloud can be defined as 243 

𝐷𝑠(𝑝𝑢, 𝑝𝑣) =
1

𝑚𝑢𝑣
. 244 

In the optimal transportation energy equation, when parameter 𝜀 increases, the transportation strategy 245 

gets closer to the classical optimal transportation, and the segmentation result using optimal transportation 246 

distance 𝐷𝑠 is also closer to that using Euclidean distance. The same results can be derived using the two 247 

distances when the ε is greater than 100. When ε is smaller, the solution becomes smoother, and the nearest 248 

neighbour calculated under the 𝐷𝑠 distance tends to the region with higher point density. Compared with 249 

the Euclidean distance, using the optimal transportation distance to estimate the distance between points can 250 

better deal with the challenge of big leaves wrapping on leaflets than using the Euclidean distance (Figure 251 

4A and B). When the adhesion area of the two organs is not significantly large, the segmentation results using 252 

the optimal transportation distance is better than that of the Euclidean distance (Figure 4C and D). 253 

 254 

Figure 4: Organ segmentation Comparison using optimal transportation distance and Euclidean distance. Point cloud 255 

segmentation result for big leaf wrapping small leaf base case using Euclidean distance (A) and optimal transportation 256 

distance (B). Point cloud segmentation result for close or slight organ adhesion case using Euclidean distance (C) and optimal 257 

transportation distance (D).  258 

2.6 Fine segmentation of organs 259 

Coarse segmentation can provide preliminary results but false segmentation is frequently observed in 260 

the intersecting regions of organs. To obtain more precise segmentation results, this study developed a fine 261 

segmentation module for organs in Label3DMaize, which included the following processes: 262 

Step 1: n (n>1) organ instances to be fine segmented were selected, and ∅s′
𝑖  represents the ith instance.  263 

Step 2: The region of interest was selected among the above instance point cloud, represented by ∅s′
𝑖 .  264 

Step 3: The seed point for the ith instance ∅s′
𝑖  was selected from region ∅u′. The selected points were 265 



 

 

removed from ∅u′ and stored in ∅s′
𝑖 . 266 

Step 4: The points in ∅u′ were re-segmented using Markov Random Fields (MRF).  267 

The re-segment algorithm was detailed using MRF in step 4, as explained in the following. The fine 268 

segmentation of the interest region mentioned above is a multi-classification problem. It allocates 𝑝𝑢 ∈ ∅u′  269 

into n organ instances ∅s′
𝑖 , i.e. search for the right organ tag for point 𝑝𝑢. Hence a mapping function 𝑓𝑛(𝑝𝑢) 270 

is defined for any point 𝑝𝑢. When a point 𝑝𝑢 is mapped to the ith instance, 𝑓𝑛(𝑝𝑢) = 𝑖, the energy function 271 

is defined as: 272 

𝐸(𝑓n) = 𝛾 ∑ 𝐷𝑝𝑢
(𝑓n(𝑝𝑢))

𝑝𝑢∈∅u′

+ ∑ 𝑉(𝑓n(𝑝𝑢), 𝑓n(𝑞𝑢))

(𝑝𝑢,𝑞𝑢)∈ℵ(𝑝𝑢)

 273 

𝐷𝑝𝑢
(𝑖) = 𝐷(𝑝𝑢, ∅s′

𝑖 )  i = [1,2……n] 274 

𝑉(𝑓n(𝑝𝑢), n(𝑞𝑢)) = (
𝑑(𝑝𝑢, 𝑞𝑢)

𝑑′
 )𝜏(

𝑎(𝑛𝑝, 𝑛𝑢)

𝜋
 )𝜑 275 

In this function, ℵ(𝑝𝑢) is the k-neighborhood of 𝑝𝑢 ∈ ∅u′. The data item 𝐷𝑝𝑢
(𝑓n(𝑝𝑢)) measures the 276 

loss of classifying 𝑝𝑢 to n instances ∅s′
𝑖 . 𝐷(𝑝𝑢, ∅s′

𝑖 ) represents the distance from point 𝑝𝑢 to instance ∅s′
𝑖 , 277 

which is the distance from 𝑝𝑢  to the nearest point in ∅s′
𝑖 . 𝛾  is a weight parameter that controls the 278 

proportion of distance term in the energy function. The smooth item 𝑉(𝑓n(𝑝𝑢), 𝑓n(𝑞𝑢)) quantifies the 279 

corresponding loss when assigning the tag 𝑓n(𝑝𝑢) and 𝑓n(𝑞𝑢) for point 𝑝𝑢  and 𝑞𝑢 , respectively. This 280 

smooth term encourages spatial consistency; that is, the probability that adjacent points belong to the same 281 

class is higher. The smooth term is composed of the product of the distance term on the left and the angle 282 

term on the right. Meanwhile, 𝑑(𝑝𝑢, 𝑞𝑢) is the Euclidean distance of the two points and 𝑑′ is the maximum 283 

Euclidean distance between all points and their neighbourhood points, regulating the distance term in the 284 

range of (0, 1]. 𝑛𝑝 and 𝑛𝑢 are the normal vectors of points 𝑝𝑢 and 𝑞𝑢, respectively. 𝑎(𝑛𝑝, 𝑛𝑢) is the 285 

angle between the two normals. 𝜏  and 𝜑  are the weight parameters for the distance and angle term, 286 

respectively, both with a default value of 1.0. The minimum solution of the energy function is solved by α-287 

expansion MRF [41].  288 

2.7 Sample-based segmentation 289 

It is suggested that the number of points per shoot should be less than 15000 to ensure data processing 290 

efficiency. Therefore, Label3DMaize provides point cloud simplification and sample-based segmentation 291 

modules. Voxel-based simplification is adopted in the toolkit. Sample-based segmentation refers to the 292 

automatic segmentation of dense point cloud via the segmentation result of the corresponding simplified 293 

point cloud. Specifically, suppose that point cloud A is the simplification of dense point cloud B, and A has 294 

already been segmented while B is to be segmented. Calculating the k-nearest neighbors in A of any point 295 

𝑝 ∈ 𝐵, and then counts how many points of these k-nearest neighbors belong to each instance. The instance 296 

with the maximum neighbour points is determined as the instance of point p. 297 

3 Results 298 

3.1 Interface and operations of Label3DMaize 299 

The Label3DMaize toolkit interface is composed of the main interface and multiple sub-interfaces, 300 

including stem segmentation, coarse segmentation, fine segmentation, and sample-based segmentation 301 

(Figure 5). Each sub-interface is popped up after the corresponding button on the main interface is triggered. 302 

The main interface and each sub-interface are composed of an embedded dialog and an interactive visual 303 

window (only the embedded dialog in each sub-interface is shown in Figure 5). The interactive visual window 304 

enables the users to rotate, zoom, translate, select interested points in the view, and improve the segmentation 305 



 

 

effect visually and interactively. The input of the toolkit includes point cloud files in text format, such as txt 306 

or ply. According to the operational process shown in Figure 5, segmentation results can be refined step by 307 

step by inputting parameters and manually selecting points. The output of the toolkit is a text file with 308 

annotation information; that is, each 3D coordinate point in the text has a classification identification number, 309 

and the points with the same identification number belong to the same instance. This format files are 310 

applicable for 3D deep learning of maize shoots. The executable program of Label3DMaize can be found in 311 

the attachment. 312 

 313 

Figure 5: Interfaces of Label3DMaize. (A) The main interface of the toolkit, composed of a visualization window and an 314 

embedded dialog. (B)-(E) Dialog of stem segmentation, coarse segmentation, fine segmentation, and sample-based 315 

segmentation. The visualization window is not shown in these sub-interfaces.  316 

3.2 Visualization and accuracy evaluation 317 

To evaluate coarse and fine segmentation accuracy, the point clouds of three varieties in four different 318 

growth stages of maize shoots are segmented using Label3DMaize. Figure 6 shows the visualization results. 319 

According to the visualization results, no significant differences were observed between the coarse and fine 320 

segmentation. Yet, fine segmentation improved the segmentation effect of the details, especially near the 321 

connection region of organs.  322 
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Figure 6 Visualization of maize shoot segmentation results of three cultivars at four growth stages. In each sub-figure, the left 323 

and right are coarse and corresponding fine segmentation results, respectively.  324 

This study has further provided numerical accuracy results to quantitatively evaluate the difference 325 

between coarse and fine segmentation (Table 1). The precision, recall and F1-score of each organ were 326 

estimated based on fine segmentation as the ground truth. The averaged precision and recall of all shoot 327 

organs were taken as the precision and recall. Macro-F1 and micro-F1 are calculated using the precision and 328 

recall of the shoot and organs averaged value, respectively. It can be seen from Table 1 that although the 329 

accuracy of coarse and fine segmentation differed, the overall difference was not significant.  330 

Table 1: Accuracy evaluation of coarse and fine segmentation 331 

 Overall accuracy Precision Recall Micro-F1 Macro-F1 

Mean 0.972099 0.967282 0.956173 0.961458 0.955593 

Min 0.897683 0.91954 0.841063 0.878553 0.853139 

Max 0.993867 0.991753 0.991315 0.991534 0.991175 

3.3 Segmentation efficiency 332 

The efficiency of plant point cloud segmentation is an essential indicator for the practicality for training 333 

data annotation tools for deep learning. Table 2 shows the time consumed in the different steps for maize 334 

shoot segmentation at four growth stages using Label3DMaize on a workstation (Intel Core i7 processor, 335 

3.2GHz CPU, 32GB of memory, Windows 10 operating system), including the interactive manual operations 336 

and segmentation computations. It can be seen that point cloud segmentation takes about 4-10 minutes per 337 

shoot, in which coarse segmentation takes about 10%-20% of the total time. In the whole segmentation 338 

process, the manual interaction time cost is significantly higher than that of automated computation. The 339 

segmentation efficiency is positively related to the number of leaves.  340 

This study also analyzed the detailed time costs. (1) The time cost of stem segmentation. In the early 341 

growth stages of a maize shoot, the stem is relatively upright, so users only need to select the bottom and 342 



 

 

upper points of the stem and specify a suitable radius. However, in the late growth stages, the maize shoot 343 

height becomes higher, and the stem becomes thinner from bottom to top. Meanwhile, the upper part curves, 344 

so interactive median segmentation is needed, which increases the segmentation time. (2) The time cost of 345 

coarse segmentation. The major interactive operation of coarse segmentation is that the user selects or adjusts 346 

the highest organ points. As the maize shoot grows, the number of organs gradually increases, so the time 347 

costs for the interactive operation of picking points also increases. Meanwhile, the growth of shoot organs 348 

significantly increases the occlusion among organs. Thus, the appropriate angles of view for users have to be 349 

found to determine the highest organ points, which is time-consuming. (3) The time cost of fine segmentation. 350 

An increase in the number of organs causes false segmentation of more organs at the connection regions. 351 

Therefore, the fine segmentation of maize shoots with more organs would take more time. Besides, the 352 

segmentation efficiency is related to the shoot architecture; the spatial distances between adjacent organs are 353 

much larger in flattened shoots than that of relatively compact ones, which increases the segmentation 354 

efficiency of flattened shoots.  355 

Table 2: Segmentation time of different steps on maize shoots at four growth stages using Label3DMaize 356 

Growth 

period 

Point number of a 

maize shoot 
Time cost (s) 

Input 
After 

simplification 
t1 t2 t3 t4 t5 t6 t7 t8 t9 T 

V6 45833 13196 10 0.2 16 4 30.2 120 0.05 0.5 100 250.75 

V9 62523 13953 10 0.2 21 4 35.2 220 0.05 0.6 100 355.85 

V13 70873 12102 14 0.2 32 5 51.2 400 0.05 0.6 100 551.85 

R2 71909 13224 14 0.2 35 5 54.2 400 0.05 0.6 100 554.85 

* t1: Time for stem point selection and radius setting. t2: Time for segmentation computation of stem points. t3: Time for seed 357 

points selection of organ instances. t4: Time for organ segment computation. t5: Time for coarse segmentation, where t5= 358 

t1+t2+t3+t4. t6: Time for fine segmentation operations. t7: Time for fine segmentation computation. t8: Time for sample-based 359 

segmentation. t9: Time for other operations, e.g., the alternation between main and sub-interfaces. T: Total time costs.  360 

Underlined and un-underlined identifiers indicates the time cost for manual interactions and automated computation 361 

respectively. 362 

4 Discussion 363 

4.1 Shoot-organ point cloud segmentation 364 

Most non-destructive 3D data acquisition of plants focus on individual plant scale. Thus point cloud 365 

segmentation from shoot to organ is of significance. Representative shoot-organ point cloud segmentation is 366 

realized by region growing combined with adjusting leaf number and stem diameter parameters according to 367 

the shoot architecture and stem morphological features [31]. Leaf overlap challenges shoot segmentation, 368 

especially for upper leaves in compact shoot architecture. Besides, the robustness of the segmentation 369 

algorithm also needs to be verified when processing many point clouds. Once the segmentation is complete, 370 

it is difficult to correct the false segmentation points. Although commercial software, such as Geomagic 371 

Studio, can solve this problem, it is quite complicated and time-consuming. In contrast, the Label3DMaize 372 

toolkit integrates a top-to-down segmentation algorithm and interactive operations according to the 373 

morphological structure of maize shoots, which can realize semi-automatic fine point cloud segmentation. 374 

The top-to-down coarse segmentation ensures topological accuracy, and the interactive operations improve 375 

the segmentation accuracy and details. Although coarse segmentation can meet the basic demand for 376 

phenotype extraction, it is not satisfactory for high-precision phenotypic analysis and 3D reconstruction 377 



 

 

based on point clouds. In contrast, fine segmentation is more satisfactory for the latter demands. The toolkit 378 

can solve the point cloud segmentation problem of compact architecture or organ overlapping shoots. 379 

Although skeleton extraction methods [29, 30] also provide an interactive way to improve the segmentation 380 

accuracy, they offer skeleton interaction, which hardly improves the segmentation point details. 381 

Since 3D point cloud annotation tools for plants are lacking, researchers segment plants through multi-382 

view image labelling, deep learning-based image segmentation, MVS reconstruction, and a voting strategy 383 

[42]. However, these methods cause a lot of organ occlusion from different view angles; thus, it is hard to 384 

segment plants with multiple organs through image labelling and MVS reconstruction. Jin et al. [32] 385 

transformed point cloud data into a voxel format, constructed a training set containing 3000 maize shoots via 386 

data enhancement, and proposed a convolutional neural network (VCNN) to segment stem and leaf point 387 

cloud of maize shoots. Label3DMaize enables researchers to directly handle 3D point cloud segmentation 388 

and data annotation without transforming point cloud data into the voxel form. Meanwhile, using the acquired 389 

data directly improves the diversity of training set data, rather than by data enhancement, and can thus 390 

improve the robustness of the learned model. In addition, label3DMaize can separate the tassel and ear except 391 

for the stem and leaf, facilitating phenotype extraction of the tassel (such as the number of tassel branches, 392 

the compactness of tassel, etc.) and ears (such as the ear height). 393 

4.2 Practicability of Label3DMaize 394 

In our recent works, the MVS-Pheno platform [16] has been used to obtain high-throughput 3D point 395 

cloud data of maize shoots at different ecological sites for various genotypes and growth stages. However, 396 

the underlying knowledge about genotypes and the differences in cultivation management have not been fully 397 

explored, indicating that high-throughput phenotypic acquisition is far from practical application. Therefore, 398 

it is urgent to establish automatic and online data analysis approaches [43]. However, due to the complexity 399 

of plant morphological structure, it is difficult to realize automatic 3D segmentation from the plant 400 

morphological characteristics and regional growth method only. Deep learning is a feasible way to realize 401 

automatic segmentation by mining deep features of plant morphology. The greatest challenge in 3D point 402 

cloud segmentation by deep learning is the lack of high precision and efficient data annotation tools. Most of 403 

the existing 3D data annotation methods are for voxel data [32, 44], not 3D point clouds. Thus, Label3DMaize 404 

provides a practical tool for 3D point cloud data annotation for maize and could be a reference for other 405 

plants. 406 

Unlike RGB image data annotation [35], data enhancement does not that significantly improve the 407 

model robustness of 3D point cloud segmentation models. Thus high-quality data annotation is important. It 408 

takes 4-10 minutes to label a maize shoot point cloud by Label3DMaize, and this labeling efficiency can 409 

meet the needs of constructing a training dataset for deep learning. The fine segmentation module in 410 

Label3DMaize ensures accurate segmentation of detailed features at the organ connections, and is thus 411 

satisfactory for organ-level 3D reconstruction. If high precision of the annotation is not required, coarse 412 

segmentation results can be used as the annotation data, thus saving a lot of time. 413 

Point clouds with less noise are required when using Label3DMaize, so the toolkit is more suitable for 414 

segmenting point clouds derived by MVS reconstruction. For shoots with much random noise obtained by 415 

3D scanners [30], point cloud denoising should be performed first, and then set as input of the toolkit for 416 

segmentation. Compared with image annotation, the data annotation efficiency of Label3DMaize is still 417 

lower, and fine segmentation requires more manual interaction, which has higher requirements for user 418 

experience and concentration. Thus the algorithm for Label3DMaize needs improvement to raise the 419 

automation level of point cloud segmentation. 420 



 

 

4.3 Future work 421 

At present, a large amount of 3D point cloud data of maize shoots has been obtained using MVS-Pheno. 422 

In our future study, representative data will be selected and annotated by Label3DMaize, then a 3D maize 423 

shoot annotation dataset will be constructed. A deep learning-based point cloud segmentation model will then 424 

be developed to realize the automatic segmentation of maize shoots. Subsequently, online phenotypic 425 

extraction and 3D reconstruction of maize shoots algorithms will be studied using the well-segmented point 426 

clouds. The segmentation algorithm and this toolkit will be extended to other crops according to their 427 

morphological characteristics, which will promote the automatic 3D point cloud segmentation of plants. 428 

Additional files 429 

All the additional files can be found at https://github.com/syau-miao/Label3DMaize.git 430 

Supplementary Program. Executable program of Label3DMaize, which requires that Matlab runtime 431 

(Version 9.2 or above) installed.  432 

Supplementary Data S1. The acquired point clouds of maize shoots described in Section “Field experiment 433 

and data acquisition”, also as the input of the program.  434 

Supplementary Data S2. Coarse segmentation results of the input shoots. 435 

Supplementary Data S3. Fine segmentation results, derived based on the coarse ones.  436 

Supplementary Data S4. Sample based segmentation results, derived from the fine segmentation results. 437 
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