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Abstract: Background

Three-dimensional (3D) point cloud is the most direct and effective data form for
studying plant structure and morphology. In point cloud studies, the point cloud
segmentation of individual plants to organs directly determines the accuracy of organ-
level phenotype estimation and the 3D plant reconstruction reliability. However, highly
accurate, automatic, and robust point cloud segmentation approaches for plants are
unavailable. Thus, the high-throughput segmentation of many shoots is challenging.
Although deep learning can feasibly solve this issue, software tools for 3D point cloud
annotation to construct the training dataset are lacking.

Results

In this paper, a top-to-down point cloud segmentation algorithm using optimal
transportation distance for maize shoots is proposed. On this basis, a point cloud
annotation toolkit, Label3DMaize, for maize shoot is developed. Further, the toolkit was
applied to achieve semi-automatic point cloud segmentation and annotation of maize
shoots at different growth stages, through a series of operations, including stem
segmentation, coarse segmentation, fine segmentation, and sample-based
segmentation. The toolkit takes about 4 to 10 minutes to segment a maize shoot, and
consumes 10%-20% of the total time if only coarse segmentation is required. Fine
segmentation is more detailed than coarse segmentation, especially at the organ
connection regions. The accuracy of coarse segmentation can reach 97.2% of the fine
segmentation.

Conclusion

Label3DMaize integrates point cloud segmentation algorithms and manual interactive
operations, realizing semi-automatic point cloud segmentation of maize shoots at
different growth stages. The toolkit provides a practical data annotation tool for further
online segmentation research based on deep learning and is expected to promote
automatic point cloud processing of various plants.
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Abstract 

Background: Three-dimensional (3D) point cloud is the most direct and effective data form for studying plant 

structure and morphology. In point cloud studies, the point cloud segmentation of individual plants to organs 

directly determines the accuracy of organ-level phenotype estimation and the 3D plant reconstruction reliability. 

However, highly accurate, automatic, and robust point cloud segmentation approaches for plants are unavailable. 

Thus, the high-throughput segmentation of many shoots is challenging. Although deep learning can feasibly solve 

this issue, software tools for 3D point cloud annotation to construct the training dataset are lacking. Results: In 

this paper, a top-to-down point cloud segmentation algorithm using optimal transportation distance for maize 

shoots is proposed. On this basis, a point cloud annotation toolkit, Label3DMaize, for maize shoot is developed. 

Further, the toolkit was applied to achieve semi-automatic point cloud segmentation and annotation of maize 

shoots at different growth stages, through a series of operations, including stem segmentation, coarse segmentation, 

fine segmentation, and sample-based segmentation. The toolkit takes about 4 to 10 minutes to segment a maize 

shoot, and consumes 10%-20% of the total time if only coarse segmentation is required. Fine segmentation is more 

detailed than coarse segmentation, especially at the organ connection regions. The accuracy of coarse segmentation 

can reach 97.2% of the fine segmentation. Conclusion: Label3DMaize integrates point cloud segmentation 

algorithms and manual interactive operations, realizing semi-automatic point cloud segmentation of maize shoots 

at different growth stages. The toolkit provides a practical data annotation tool for further online segmentation 

research based on deep learning and is expected to promote automatic point cloud processing of various plants.  

 

Keywords: Label3DMaize, three-dimensional point cloud, segmentation, maize shoot, data annotation. 

 

1 Introduction 

The plant structure and morphology are important features for expressing growth and development. At 

present many research studies underpin the significance of integrating the three-dimensional (3D) 

morphological characteristics of plants when conducting genetic mapping, adaptability evaluation, and crop 

yield analysis [1, 2]. Using the 3D data acquisition technology to obtain a 3D point cloud is the most effective 

way to perceive the plant structure and morphology digitally. However, 3D point clouds are initially obtained 

in an unordered, unstructured manner and with little semantic information. Therefore, it is critical to use 

computer graphics technologies and plant morphology knowledge to convert the unstructured 3D point 

clouds into well-organized and structured data that contains rich morphological features with semantic 

information. Therefore, plant morphology research based on measured point clouds forms a critical 
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component of 3D plant phenomics [3-6], 3D plant reconstruction [2, 7], and functional-structural plant 

models (FSPMs) [8, 9]. 

The development of 3D data acquisition technology [10] has significantly enriched approaches for fine-

scale 3D data acquisition of individual plants, including 3D scanning [11, 12], LiDAR [13], depth camera 

[14], time of flight (ToF) reconstruction [15], and multi-view stereo (MVS) reconstruction [16, 17]. Owing 

to the low cost of sensors and better quality of reconstructed point clouds, MVS reconstruction have been 

widely adopted in many applications. Recently, multi-view image acquisition platforms that can realize semi-

automatic and high-throughput 3D data acquisition for individual plants have been developed [18-21] and 

enable 3D data acquisition for the phenotypic analysis of large-scale breeding materials [22, 23]. However, 

how to efficiently and automatically process the acquired big data of 3D point clouds is a bottleneck in 3D 

plant phenotyping.  

The key technologies for 3D point cloud data processing include data registration, the region of interest 

extraction, denoising, segmentation, feature extraction, and mesh generation. Among these tasks, point cloud 

segmentation is challenging. Therefore, automatic and accurate point cloud segmentation could significantly 

impact subsequent results of phenotype extraction and 3D reconstruction. Point cloud segmentation can be 

classified as population-shoot or shoot-organ segmentation. Population-shoot segmentation allows for 

automatic segmentation of maize population under low density [24] or at early growth stages [25, 26] with 

little overlap, which can be realized via the spatial distance between shoots. However, it is difficult to achieve 

automatic segmentation of high density populations or with many overlapping organs in late growth stages. 

Comparatively, more attention has been paid to shoot-organ segmentation. Though high-quality input point 

clouds and restricted connections between organs are required, color-based [27] and point clustering [28-30] 

approaches have also been widely used. For instance, Elnashef et al. [16] used the local geometric features 

of the organs to segment maize leaves and stems at six-leaf stage. Paulus et al. [31, 32] segmented the grape 

shoot organs by integrating fast point feature histograms (FPFH), support vector machine (SVM), and region 

growing approaches. However, these methods can only segment plant shoots with clear connection 

characteristics between stems and leaves [11] and can hardly solve leaf wrapping stem segmentation 

problems. For time-series 3D point clouds, the leaf multi-labeling segmentation method was used for organ 

segmentation and plant growth monitoring [33]. While plant organs could also be segmented through skeleton 

extraction and hierarchical clustering [34, 35], these methods need interactive manual correction for complex 

plants to guarantee the segmentation accuracy. Jin et al. [36] proposed a median normalized vector growth 

algorithm that can segment the stems and leaves of maize shoots. On this basis, an annotation dataset of 

maize shoots was constructed, and the deep learning method was introduced to improve the automatic 

segmentation level [37]. However, few parameter interactions are still needed for different shoot architecture 

and cannot meet the needs of high realistic 3D reconstruction. 

Due to the complexity of plant morphology and structure, almost all 3D point cloud segmentation 

methods for plants need certain manual interaction, which is inconvenient for huge amounts of point cloud 

data processing, and substantially decreases the efficiency. Therefore, it is necessary to improve the 

automation of segmentation and increase the throughput of 3D point cloud data processing for plants. Deep 

learning approaches can effectively solve this problem [21, 38, 39], among which the construction of high-

quality training data set is a prerequisite. For example, LabelMe [40] can realize high-quality data annotation 

for image segmentation. However, 3D point cloud tools for data annotation are rare, especially for plants. 

Besides, current datasets used for point cloud segmentation are oriented to general segmentation tasks [41-

44]. The existing datasets for 3D plant segmentation contain only little data [21, 45, 46], which cannot meet 

the data requirements for high-quality deep learning models. 



 

 

Since point cloud annotation of plants is labor-intensive and time-consuming, deep learning approaches 

can be applied to segment plant point clouds. Hence, how to improve the efficiency of high-quality data 

annotation and develop supporting software tools is the key to automatic point cloud segmentation of plants 

by deep learning. To meet this data annotation demand, this study used maize as an example and proposes a 

top-to-down point cloud segmentation algorithm. Besides, a toolkit Label3DMaize (biotoolsID: 

label3dmaize) for point cloud annotation of maize shoots is developed, which could provide technical support 

for automatic and high-throughput processing of plant point clouds. The toolkit integrates clustering 

approaches and computer interactions supported through maize structural knowledge. Optimal transportation 

based coarse segmentation is satisfactory for basic segmentation tasks, and fine segmentation offers users 

way to calibrate the segmentation details. This plant-oriented tool could be used to segment point cloud data 

of various maize growth periods, and provide practical data labeling tool for segmentation research based on 

deep learning. 

2 Materials and Methods 

2.1 Field experiment and data acquisition 

Three maize cultivars, including MC670, Xianyu 335 (XY335), and NK815, were planted on May 20th, 

2019, at the Tongzhou experimental field of Beijing Academy of Agriculture and Forestry Sciences 

(116.70°E, 39.71°N). The planting density of all the plots was six plants/m2 with a row spacing of 60 cm. 

Morphological representative shoots of each cultivar at 6th leaf (V6), 9th leaf (V9), 13th leaf (V13), and blister 

(R2) stages [47], were selected and transplanted into pots. Then multi-view images were acquired using the 

MVS-Pheno platform [18], after which 3D point clouds of the shoots were reconstructed. For validation, 

twelve shoot point clouds at four growth stages (V3, V6, V9, and V12) were acquired using a 3D scanner 

(FreeScan X3, Tianyuan Inc., China), to test the segmentation performance of a different data source. 

2.2 Overview of the segmentation pipeline 

The point cloud of a maize shoot can be segmented into five instances: stem, leaf, tassel, ear, and pot. 

The stem, tassel, and pot on a shoot can be regarded as an instance for each. For each transplanted shoot at 

stage R2, assuming that it contains n1 ears and n2 leaves, the point cloud of this shoot can thus be segmented 

into N=3+n1+n2 instances. ∅u  represents the point cloud to be segmented, and ∅s
𝑖  (𝑖 = 1, 2,…… ,𝑁) 

represent the ith point cloud instance. In particular, ∅s
1 and ∅s

𝑁 refer to the stem and pot (if exists) instance, 

respectively. Before the segmentation begins, ∅u contains all the points of the shoot, and ∅s
𝑖  are all empty. 

With the progression of segmentation, the points in ∅u are gradually assigned to ∅s
𝑖 . The segmentation 

completes when ∅u is empty. 

The segmentation pipeline includes five parts (Figure 1): point cloud down-sampling, stem 

segmentation, coarse segmentation, fine segmentation, and sample-based segmentation. (1) Point cloud 

down-sampling. The original input point cloud is down sampled to maintain the shoot morphological features, 

which improves the segmentation efficiency and quickens the entire segmentation process. (2) Stem 

segmentation. The top and bottom points of the stem are interactively selected, and the corresponding radius 

parameters are interactively adjusted. Subsequently, the median region growing is applied to segment the 

stem points from the shoot automatically. (3) Coarse segmentation. The highest points of each organ instance, 

except the stem, are obtained via manual interaction, after which all organ instances are segmented 

automatically based on the optimal transportation distances. (4) Fine segmentation. The unsatisfactory 

segmentation point regions are selected interactively, and the seed points of organ instances are selected. 

Organs are then segmented by Markov random fields (MRF). (5) Sample-based segmentation. Maize shoots 



 

 

with high-resolution point clouds are segmented based on the fine segmentation result of low-resolution point 

clouds.  

 

Figure 1: workflow of the segmentation 

2.3 Stem segmentation 

Two seed points 𝑠0 and 𝑠𝑛 at the bottom and top of each stem, were selected interactively. Then, a 

median-based region growing algorithm [36] was applied to segment the stem points. This segmentation 

procedure updates the seed point iteratively along the direction from 𝑠0 to 𝑠𝑛. Points around the seed points 

were classified into stem points. Suppose the algorithm is currently at the kth iteration, and the seed point is 

𝑠𝑘, the segmentation process was evaluated as follows:  

Step1: Points lying in a sphere were classified as stem points, where 𝑠𝑘 is the center of the sphere, 𝑟1 

is its radius, and 𝑟1 is a user-specified parameter. 

Step 2: The growth direction 𝑣𝑘⃗⃗⃗⃗  was determined according to: 

𝑣𝑘⃗⃗⃗⃗ = (𝛼𝑣1⃗⃗⃗⃗ + β𝑣 )/‖𝛼𝑣1⃗⃗⃗⃗ + β𝑣 ‖2 

𝑣1⃗⃗⃗⃗ = 𝑚𝑒𝑑𝑖𝑎𝑛{(𝑝𝐴 − 𝑠𝑘) ‖𝑝𝐴 − 𝑠𝑘‖2⁄ , 𝑝𝐴 ∈ 𝐴} 

𝑣 = (𝑠𝑛 − 𝑠𝑘) ‖𝑠𝑛 − 𝑠𝑘‖2⁄  

In this formula, ‖ ‖2 is L2 normal form, and median {} represents the median operation. 𝛼 and β 



 

 

are weight parameters set by users and 𝑣1⃗⃗⃗⃗  is the normalized vector from the median of already segmented 

points of the stem to the seed point 𝑠𝑘 . Meanwhile, 𝑣  is the normalized vector from 𝑠𝑘  to 𝑠𝑛 , which 

corrects the growth direction to coincide with the stem. In practice, 𝛼 = 0.2 while β = 0.8. This parameter 

setting ensures that the stem points can be correctly segmented under different 𝑟1 values, during the entire 

growing process. 

Step 3: A new seed point 𝑠𝑘+1 for the next iteration was estimated according to 𝑠𝑘+1 = 𝑠𝑘 + 𝑟1𝑣𝑘⃗⃗⃗⃗ . 

Step 4: Region growing finish condition judgement. Supposing L represents the line segment from 𝑠0 

to 𝑠𝑛, then project 𝑠𝑘+1 on L. If the projection point was not on L, it indicated that the current regional 

growth was beyond the stem region, and the iteration should be stopped. Otherwise, continue the k+1 times 

iteration and execute step 1.  

Because the maize stem gradually thins from bottom to top, a uniform radius 𝑟1 may generate over 

segmentation, i.e., classifying the points of other organs into the stem. Besides, the region growing algorithm 

also over segments points in some regions at the bending of the stem. Therefore, a simple median operation 

was adopted to eliminate the over segmented points. First, the already segmented stem points were evenly 

divided into M segments along the direction of (𝑠𝑛 − 𝑠0) ‖𝑠𝑛 − 𝑠0‖2⁄ , and the median axis of each segment 

was fitted using the least squares. The average distance from each point to the central axis was then calculated. 

If the distance from a point to the central axis was less than the average distance, it was retained as the stem 

point; otherwise it was removed from the stem to the unsegmented point set. Users can perform the median 

operation several times in the toolkit to reduce the over-segmentation problem. Although multiple median 

operations cause an under segmentation of stem point cloud, the issue is resolved in the subsequent organ 

segmentation processes. ∅s
1 represents the segmented stem points, and these points are removed from ∅u. 

Subsequent organ segmentation is performed in the remaining point cloud. Stem point cloud segmentation is 

illustrated in Figure 2.  

 

Figure 2: Stem point cloud segmentation. (A) Seed points at the bottom and top of the stem are interactively selected, and an 

appropriate segmentation radius is set. (B) Stem segmentation result based on (A). (C) A big radius is set. (D) Segmentation 

result based on (C). (E)-(G) Stem segmentation results with 1, 2, and 3 median operations based on (D).  

2.4 Shoot alignment 

The shoot points were transformed into a regular coordinate system to access the position of each point 

in the cloud conveniently. The midpoint of the already segmented stem point cloud was taken as the origin 

O of the new shoot coordinate system. In contrast, the Z-axis of the new coordinate system was the middle 

axis estimated by the least squares method from the stem point cloud. Then, the shoot point cloud was 



 

 

projected onto the plane using the Z-axis as its normal vector. The first and second principal component 

vectors of the projection points were determined by principal component analysis (PCA) and assigned as the 

X and Y-axis of the new shoot coordinate system, respectively. Subsequently, the original point cloud 

coordinates were transformed into the new shoot coordinate system, and the coordinates of their z value 

judged the height of points in the shoot. Points are higher with greater z values.  

2.5 Coarse segmentation of organs 

A top-to-down point cloud segmentation algorithm for maize organs from a shoot was applied. The 

highest point of each organ was taken as the seed point of the organ (Figure 3A). The other shoot points after 

stem segmentation were classified into corresponding organ instances from top to down by the optimal 

transportation distances (Figure 3B). 

 

Figure 3: Illustration of coarse segmentation. (A) Highest point determination of each organ. (B) Visualization of segmented 

shoot from different angles of view.  

2.5.1 Organ seed points determination 

After stem segmentation, the point cloud of maize shoots was spatially divided into several relatively 

discrete point clouds (excluding the stem). However, the exact organ number is always bigger than the 

discrete point cloud number, due to the spatial organ connection, especially near the upper leaves. Thus, seed 

point for each organ has to be determined for the next step segmentation. The highest point of each organ 

was regarded as the seed point (Figure 3A). If a pot was involved in the point cloud, all points with a z value 

less than the lowest point of the stem were directly classified as pot points. Usually, the highest point of a 

new leaf appears at the tip region; the middle and lower fully unfolded leaves are mostly curved. Meanwhile, 

the highest point lies in the middle of the leaf, and the highest points of a tassel or ear are at the top. Therefore, 

it was assumed that the distance between the highest points of any two organs was more than 5 cm. On this 

basis, the highest point of each organ was determined by searching for the point with the maximum z value 

within the point cloud of the organ. 



 

 

Due to the complicated spatial points at the organ connection areas, automatic estimation of the highest 

points of instances may not be accurate. Label3DMaize provides a manual interaction module to determine 

the highest seed point of each organ. Simultaneously, this operation can also assign a serial number to each 

organ for further output. Because the number of maize organs is relatively small, this interactive correction 

operation is convenient and acceptable. The derived seed points of each organ are set into the corresponding 

instance point cloud ∅s
𝑖 . At this time, each leaf, tassel, and ear instance point cloud only contains the highest 

point, and there are multiple points in the pot and stem instances.  

2.5.2 Coarse segmentation based on optimal transportation distances 

After obtaining the seed points of all the instances, the left points in ∅u were traversed one by one to 

determine the instance to which they belong. For each point to ∅u, the distance between the point and each 

other point cloud instance were evaluated, and it was classified into the nearest instance. The classified points 

were evaluated from top to bottom; that is, the points with bigger z coordinates were evaluated preferentially. 

The process was as follows: 

Step 1: The points in the point set ∅u were reordered from big to small according to their z values.  

Step 2: For point 𝑝 ∈ ∅u, the organ instance it belongs to was determined. The distance 𝑑𝑖 from point 

p to the ith instance was defined as  

𝑑𝑖 = 𝐷𝑠(𝑝, 𝑝𝑖̃) 

Where 𝐷𝑠  is the optimal transportation distance between any two points calculated based on the 

sinkhorn algorithm [48] . Then point p is assigned into the organ instance with the lowest 𝑑𝑖. 𝑝𝑖̃, in the ith 

instance, is the nearest neighbor of point p under the optimal transportation distance.  

Step 3: Move point p from ∅u into the corresponding ∅s
𝑖 . Continue traversing the next point in ∅u, 

and perform step 2 until ∅u is empty. 

Detailed description of 𝐷𝑠 in step 2 is explained here. The optimal transportation strategy of point 

cloud 𝑄 to its identical set 𝑄′ is that transmit all the quality of any point 𝑝 ∈ 𝑄 to the same point 𝑝′ ∈

𝑄′. The Sinkhorn algorithm [48] was used here to calculate the optimal transportation distances. It allocates 

the quality of any point 𝑝 ∈ 𝑄 to all points in 𝑄′. A point with higher allocation quality suggests the point 

is closer to p than any other points under the optimal transportation strategy. Suppose that point cloud 𝑄 

contains 𝑁𝑄 points. 𝑄′ represents the same point set of 𝑄. 𝑝𝑢 is the uth point in 𝑄, and 𝑀𝑢 indicates the 

quality of point 𝑝𝑢. Similarly, 𝑝𝑣
′  is the vth point in 𝑄′, and 𝑀𝑣

′  indicates the quality of point 𝑝𝑣
′ . 𝑚𝑢𝑣 

represents the transported quality from 𝑝𝑢 ∈ 𝑄 to 𝑝𝑣
′ ∈ 𝑄′. Then the optimal transportation energy from 

point cloud 𝑄 to point cloud 𝑄′ can be described as:  

argmin
𝑚

∑ ∑𝑚𝑢𝑣‖𝑝𝑢 − 𝑝𝑣
′‖ +

𝑁𝑄

𝑣=1

𝑁𝑄

𝑢=1

1

𝜀
∑ ∑𝑚𝑢𝑣 log𝑚𝑢𝑣

𝑁𝑄

𝑣=1

𝑁𝑄

𝑢=1

 

s. t.  𝑚𝑢𝑣 > 0; ∑𝑚𝑢𝑣 = 𝑀𝑢

𝑁𝑄

𝑣=1

;   ∑ 𝑚𝑢𝑣 = 𝑀𝑣
′

𝑁𝑄

𝑢=1

 

In this equation, 𝜀 is the adjusting parameter, which was set to 5 in this paper, and ‖ ‖ is the L2 

normal form. The above equation can be solved by Sinkhorn's matrix scaling algorithm [49], and the optimal 

transportation from 𝑄  to 𝑄′  can be derived, that is, an 𝑁𝑄 × 𝑁𝑄  optimal transportation matrix M is 

obtained. The element 𝑚𝑢𝑣 at u row and v column in the matrix is the transported quality from the uth to the 

vth point. A larger 𝑚𝑢𝑣 indicates that the two points are closer. After obtaining the optimal transportation 

solution, the optimal transportation distance from the uth to the vth point in the point cloud can be defined as 



 

 

𝐷𝑠(𝑝𝑢, 𝑝𝑣) =
1

𝑚𝑢𝑣
. The pseudocode for calculating the optimal transportation distance M is shown in Table 1. 

Table 1: The pseudocode for calculating optimal transportation matrix. 

Algorithm 1. Computation of optimal transportation matrix M, using Matlab syntax. 

Input: Parameter ε; Point cloud matrix QNQ×3; % NQ is the point number of the point cloud 

n=NQ; 

Hn×n=pdist2(Q, Q)；H=H./max(H(:));   

Kn×n=exp(-εH); 

Un×n=K.*H; 

an×1=ones(n,1)/ n； 

hn×1=a; 

Jn×n= diag(1./a)*K;     

while h changes or any other relevant stopping criterion do  

h=1./(J*(a./(h'*K)')); 

end while 

z n×1=a./ ((h'*K)'); 

M n×n = diag(h(:,1)) * K * diag(z(:,1)); 

In the optimal transportation energy equation, when parameter 𝜀 increases, the transportation strategy 

gets closer to the classical optimal transportation, and the segmentation result using optimal transportation 

distance 𝐷𝑠 is also closer to that using Euclidean distance. The same results can be derived using the two 

distances when the ε is greater than 100. When ε is smaller, the solution becomes smoother, and the nearest 

neighbour calculated under the 𝐷𝑠 distance tends to the region with higher point density. Compared with 

the Euclidean distance, using the optimal transportation distance to estimate the distance between points can 

better deal with the challenge of big leaves wrapping on leaflets than using the Euclidean distance (Figure 

4A and B). When the adhesion area of the two organs is not significantly large, the segmentation results using 

the optimal transportation distance is better than that of the Euclidean distance (Figure 4C and D). 

 

Figure 4: Organ segmentation Comparison using optimal transportation distance and Euclidean distance. Point cloud 

segmentation result for big leaf wrapping small leaf base case using Euclidean distance (A) and optimal transportation 

distance (B). Point cloud segmentation result for close or slight organ adhesion case using Euclidean distance (C) and optimal 

transportation distance (D).  



 

 

2.6 Fine segmentation of organs 

Coarse segmentation can provide preliminary results but false segmentation is frequently observed in 

the intersecting regions of organs. To obtain more precise segmentation results, this study developed a fine 

segmentation module for organs in Label3DMaize, which included the following processes: 

Step 1: n (n>1) organ instances to be fine segmented were selected, and ∅s′
𝑖  represents the ith instance.  

Step 2: The region of interest was selected among the above instance point cloud, represented by ∅u′
𝑖 .  

Step 3: The seed point for the ith instance ∅s′
𝑖  was selected from region ∅u′. The selected points were 

removed from ∅u′ and stored in ∅s′
𝑖 . 

Step 4: The points in ∅u′ were re-segmented using Markov Random Fields (MRF).  

The re-segment algorithm was detailed using MRF in step 4, as explained in the following. The fine 

segmentation of the interest region mentioned above is a multi-classification problem. It allocates 𝑝𝑢 ∈ ∅u′  

into n organ instances ∅s′
𝑖 , i.e. search for the right organ tag for point 𝑝𝑢. Hence a mapping function 𝑓𝑛(𝑝𝑢) 

is defined for any point 𝑝𝑢. When a point 𝑝𝑢 is mapped to the ith instance, 𝑓𝑛(𝑝𝑢) = 𝑖, the energy function 

is defined as: 

𝐸(𝑓n) = 𝛾 ∑ 𝐷𝑝𝑢
(𝑓n(𝑝𝑢))

𝑝𝑢∈∅u′

+ ∑ 𝑉(𝑓n(𝑝𝑢), 𝑓n(𝑞𝑢))

(𝑝𝑢,𝑞𝑢)∈ℵ(𝑝𝑢)

 

𝐷𝑝𝑢
(𝑖) = 𝐷(𝑝𝑢, ∅s′

𝑖 )  i = [1,2……n] 

𝑉(𝑓n(𝑝𝑢), n(𝑞𝑢)) = (
𝑑(𝑝𝑢, 𝑞𝑢)

𝑑′
 )𝜏(

𝑎(𝑛𝑝, 𝑛𝑢)

𝜋
 )𝜑 

In this function, ℵ(𝑝𝑢) is the k-neighborhood of 𝑝𝑢 ∈ ∅u′. The data item 𝐷𝑝𝑢
(𝑓n(𝑝𝑢)) measures the 

loss of classifying 𝑝𝑢 to n instances ∅s′
𝑖 . 𝐷(𝑝𝑢, ∅s′

𝑖 ) represents the distance from point 𝑝𝑢 to instance ∅s′
𝑖 , 

which is the distance from 𝑝𝑢  to the nearest point in ∅s′
𝑖 . 𝛾  is a weight parameter that controls the 

proportion of distance term in the energy function. The smooth item 𝑉(𝑓n(𝑝𝑢), 𝑓n(𝑞𝑢)) quantifies the 

corresponding loss when assigning the tag 𝑓n(𝑝𝑢) and 𝑓n(𝑞𝑢) for point 𝑝𝑢  and 𝑞𝑢 , respectively. This 

smooth term encourages spatial consistency; that is, the probability that adjacent points belong to the same 

class is higher. The smooth term is composed of the product of the distance term on the left and the angle 

term on the right. Meanwhile, 𝑑(𝑝𝑢, 𝑞𝑢) is the Euclidean distance of the two points and 𝑑′ is the maximum 

Euclidean distance between all points and their neighbourhood points, regulating the distance term in the 

range of (0, 1]. 𝑛𝑝 and 𝑛𝑢 are the normal vectors of points 𝑝𝑢 and 𝑞𝑢, respectively. 𝑎(𝑛𝑝, 𝑛𝑢) is the 

angle between the two normals. 𝜏  and 𝜑  are the weight parameters for the distance and angle term, 

respectively, both with a default value of 1.0. The minimum solution of the energy function is solved by α-

expansion MRF [50].  

In addition, users cloud assign organ label to the region of interest points after the above mentioned step 

2, which offers a more direct way for fine segmentation. 

2.7 Sample-based segmentation 

It is suggested that the number of points per shoot should be less than 15000 to ensure data processing 

efficiency. Therefore, Label3DMaize provides point cloud simplification and sample-based segmentation 

modules. Voxel-based simplification is adopted in the toolkit. Sample-based segmentation refers to the 

automatic segmentation of dense point cloud via the segmentation result of the corresponding simplified 

point cloud. Specifically, suppose that point cloud A is the simplification of dense point cloud B, and A has 

already been segmented while B is to be segmented. Calculating the k-nearest neighbors in A of any point 

𝑝 ∈ 𝐵, and then counts how many points of these k-nearest neighbors belong to each instance. The instance 

with the maximum neighbour points is determined as the instance of point p. 



 

 

3 Results 

3.1 Interface and operations of Label3DMaize 

The Label3DMaize toolkit was developed using Matlab. The interface is composed of the main interface 

and multiple sub-interfaces, including stem segmentation, coarse segmentation, fine segmentation, and 

sample-based segmentation (Figure 5). Each sub-interface is popped up after the corresponding button on the 

main interface is triggered. The main interface and each sub-interface are composed of an embedded dialog 

and an interactive visual window (only the embedded dialog in each sub-interface is shown in Figure 5). The 

interactive visual window enables the users to rotate, zoom, translate, select interested points in the view, and 

improve the segmentation effect visually and interactively. The input of the toolkit includes point cloud files 

in text format, such as txt or ply. According to the operational process shown in Figure 5, segmentation 

results can be refined step by step by inputting parameters and manually selecting points. The output of the 

toolkit is a text file with annotation information; that is, each 3D coordinate point in the text has a 

classification identification number, and the points with the same identification number belong to the same 

instance. This format files are applicable for 3D deep learning of maize shoots. The executable program of 

Label3DMaize can be found in the attachment. 

 

Figure 5: Interfaces of Label3DMaize. (A) The main interface of the toolkit, composed of a visualization window and an 

embedded dialog. (B)-(E) Dialog of stem segmentation, coarse segmentation, fine segmentation, and sample-based 

segmentation. The visualization window is not shown in these sub-interfaces.  

3.2 Visualization and accuracy evaluation 

To evaluate coarse and fine segmentation accuracy, the point clouds of three varieties in four different 

growth stages of maize shoots are segmented using Label3DMaize. Figure 6 shows the visualization results. 

According to the visualization results, no significant differences were observed between the coarse and fine 

segmentation. Yet, fine segmentation improved the segmentation effect of the details, especially near the 

connection region of organs.  
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Figure 6 Visualization of maize shoot segmentation results of three cultivars at four growth stages. In each sub-figure, the left 

and right are coarse and corresponding fine segmentation results, respectively.  

This study has further provided numerical accuracy results to quantitatively evaluate the difference 

between coarse and fine segmentation (Table 2). The precision, recall and F1-score of each organ were 

estimated based on fine segmentation as the ground truth. The averaged precision and recall of all shoot 

organs were taken as the precision and recall. Macro-F1 and micro-F1 are calculated using the precision and 

recall of the shoot and organs averaged value, respectively. It can be seen from Table 2 that although the 

accuracy of coarse and fine segmentation differed, the overall difference was not significant.  

Table 2: Accuracy evaluation of coarse and fine segmentation 

 Overall accuracy Precision Recall Micro-F1 Macro-F1 

Mean 0.972099 0.967282 0.956173 0.961458 0.955593 

Min 0.897683 0.91954 0.841063 0.878553 0.853139 

Max 0.993867 0.991753 0.991315 0.991534 0.991175 

3.3 Segmentation efficiency 

The efficiency of plant point cloud segmentation is an essential indicator for the practicality for training 

data annotation tools for deep learning. Table 3 shows the time consumed in the different steps for maize 



 

 

shoot segmentation at four growth stages using Label3DMaize on a workstation (Intel Core i7 processor, 

3.2GHz CPU, 32GB of memory, Windows 10 operating system), including the interactive manual operations 

and segmentation computations. It can be seen that point cloud segmentation takes about 4-10 minutes per 

shoot, in which coarse segmentation takes about 10%-20% of the total time. In the whole segmentation 

process, the manual interaction time cost is significantly higher than that of automated computation. The 

segmentation efficiency is positively related to the number of leaves.  

This study also analyzed the detailed time costs. (1) The time cost of stem segmentation. In the early 

growth stages of a maize shoot, the stem is relatively upright, so users only need to select the bottom and 

upper points of the stem and specify a suitable radius. However, in the late growth stages, the maize shoot 

height becomes higher, and the stem becomes thinner from bottom to top. Meanwhile, the upper part is curved, 

so interactive median segmentation is needed, which increases the segmentation time. (2) The time cost of 

coarse segmentation. The major interactive operation of coarse segmentation is that the user selects or adjusts 

the highest organ points. As the maize shoot grows, the number of organs gradually increases, so the time 

costs for the interactive operation of picking points also increases. Meanwhile, the growth of shoot organs 

significantly increases the occlusion among organs. Thus, the appropriate angles of view for users have to be 

found to determine the highest organ points, which is time-consuming. (3) The time cost of fine segmentation. 

An increase in the number of organs causes false segmentation of more organs at the connection regions. 

Therefore, the fine segmentation of maize shoots with more organs would take more time. Besides, the 

segmentation efficiency is related to the shoot architecture; the spatial distances between adjacent organs are 

much larger in flattened shoots than that of relatively compact ones, which increases the segmentation 

efficiency of flattened shoots.  

Table 3: Segmentation time of different steps on maize shoots at four growth stages using Label3DMaize 

Growth 

period 

Point number of a 

maize shoot 
Time cost (s) 

Input 
After 

simplification 
t1 t2 t3 t4 t5 t6 t7 t8 t9 T 

V6 45833 13196 10 0.2 16 4 30.2 60 0.05 0.5 100 190.75 

V9 62523 13953 10 0.2 21 4 35.2 140 0.05 0.6 100 275.85 

V13 70873 12102 14 0.2 32 5 51.2 260 0.05 0.6 100 411.85 

R2 71909 13224 14 0.2 35 5 54.2 268 0.05 0.6 100 422.85 

* t1: Time for stem point selection and radius setting. t2: Time for segmentation computation of stem points. t3: Time for seed 

points selection of organ instances. t4: Time for organ segment computation. t5: Time for coarse segmentation, where t5= 

t1+t2+t3+t4. t6: Time for fine segmentation operations. t7: Time for fine segmentation computation. t8: Time for sample-based 

segmentation. t9: Time for other operations, e.g., the alternation between main and sub-interfaces. T: Total time costs.  

Underlined and un-underlined identifiers indicate the time cost for manual interactions and automated computation respectively. 

3.4 Comparison with other methods 

Method comparison PointNet-based segmentation and , was conducted to evaluate the algorithm 

performance in coarse segmentation. The point cloud data used here consisted of twelve shoots obtained from 

the 3D scanner (mentioned in the data acquisition section). Region growing in Point Cloud Library (PCL) 

[51] and PointNet-based segmentation, are considered as the state-of-the-art methods for comparison. The 

best segmentation result was obtained through parameter exhaustion for each shoot using region growing. 

For PointNet-based segmentation [52], a training dataset containing 1000 labeled maize shoots was built 

using Label3DMaize. The PointNet model was then trained, and the segmentation model was derived. The 



 

 

segmentation accuracy is shown in Table 4, and representative results of each growth stage are shown in 

Figure 7. The fine segmentation results derived using Label3DMaize were regarded as the well-segmented 

reference for comparison. Results showed that Label3DMaize could deal with MVS reconstructed point 

clouds and also handle the point cloud derived using 3D scanner. Region growing is oriented to solve general 

segmentation problems; the segmentation effect is obviously different from the other two methods in maize 

point cloud segmentation. Thus, the efficiency of region growing is less than that of PointNet and coarse 

segmentation. The segmentation result of coarse segmentation presented in this paper is more accurate than 

that of PointNet. Although the PointNet model can realize automatic segmentation compared with the rough 

segmentation containing interaction in this paper, dealing with many details could be challenging. For 

instance, it is difficult to accurately extract the point cloud at the stem and leaf boundary, segmenting big leaf 

wrapping small leaf at the shoot top could be challenging, and it always ignores the newly emerged leaves.  

Table 4: Accuracy comparison of region growing, PointNet, and coarse segmentation. 

 Overall accuracy Precision Recall Micro-F1 Macro-F1 

Region growing 0.7910 0.7472 0.7530 0.7679 0.8053 

PointNet 0.9264 0.9261 0.9261 0.9186 0.9074 

Coarse segmentation 0.9924 0.9896 0.9906 0.9901 0.9898 
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Figure 7 Visualization of segmentation results using region growing, PointNet, coarse segmentation, and fine segmentation. 

3.5 Performance on other plants 

This study determined the performance of Label3DMaize in segmenting other plants with only one main 

stem, including tomato, cucumber, and wheat.  

Two types of segmentation have been conducted on tomato in literature [11]; the first (Type I) treats a 

big leaf with several small leaves as a cluster leaf, while the second (Type II) treats each big or small leaf as 

independent. This study aimed to realize these two type forms using Label3DMaize. The type I segmentation 

result (Figure 8B) was derived by selecting the highest point of each leaf cluster (Figure 8A) in the coarse 

segmentation procedure and details were enhanced by fine segmentation (Figure 8C). For type II 

segmentation, the highest points of all the leaves have to be specified (Figure 8D). Consequently, coarse and 

fine segmentation could be derived (Figure 8E and F). The segmentation method used in [11] is based on a 

machine learning model; thus, it can only segment trained plants. In contrast, Label3DMaize has better 

generality. 

 

Figure 8 Performance evaluation of Label3DMaize on tomato for two types of segmentation. Type I: leaf 

file:///F:/ThirdTools/PCL/share/doc/pcl-1.8/tutorials/html/region_growing_segmentation.html#region-growing-segmentation
file:///F:/ThirdTools/PCL/share/doc/pcl-1.8/tutorials/html/region_growing_segmentation.html#region-growing-segmentation


 

 

cluster segmentation (A-C). Type II: individual leaf segmentation (D-F). A and D illustrate the highest point 

selection in the two forms of coarse segmentation. B and E show the coarse segmentation results. C and F 

are fine segmentation results. 

Cucumber was selected as a plant representative to test the segmentation performance of Label3DMaize 

on plants with a soft stem. Different from the topological structure of maize, cucumber has larger stem 

curvature and has leaf petioles. Thus, the interactive endpoints selection for stem segmentation of cucumber 

differs from maize. Selection of the highest point of cucumber stem is similar to maize. When selecting the 

other stem endpoint, we could find the lowest point that coincides with the straight-line direction from the 

stem top to bottom (Figure 9A). Although the unselected stem part will be missing, it can be completed in 

the subsequent coarse segmentation (Figure 9B). The coarse segmentation and directly fine segmentation 

tend to segment each leaf and corresponding petiole into an individual organ (Figure 9C). Separated petiole 

and leaf can be obtained by fine segmentation, which segments all the petioles and a single stem as a whole 

(Figure 9D).  

 

Figure 9 Visualization of cucumber point cloud segmentation. A: Illustration of the lowest and highest selection points in 

stem segmentation. B: Coarse segmentation result. C: Fine segmentation. Each leaf and corresponding petiole are classified 

as an instance. D: Fine segmentation. All the petioles and the main stem are classified as an instance. 

A point cloud of wheat shoot at the early growth stage was acquired using the MVS-Pheno platform. 

Because the wheat shoot is small with a thin stem, the tiller points are fused together near the shoot base. 

However, the tiller tops could be identified, which enables segmentation of the wheat shoot by Label3DMaize. 

For plants with tillers, only one stem is selected in the stem segmentation procedure (Figure 10A). When 

selecting the organ’s highest points in coarse segmentation, not only the highest point of each leaf but also 

the highest point of each tiller has to be selected (Figure 10B). Coarse segmentation can ensure a better effect 

of leaf segmentation (Figure 10C). However, tillers and stem are prone to under segmentation, which need 

to be adjusted by fine segmentation (Figure 10D). 



 

 

 

Figure 10 Visualization of wheat shoot segmentation using Label3DMaize. A: Stem points selection. B: Selection of highest 

points in leaves and tillers. C: Coarse segmentation. D: Fine segmentation.  

4 Discussion 

4.1 Shoot-organ point cloud segmentation 

In representative shoot-organ segmentation approaches [36], leaf overlap challenges shoot segmentation, 

especially for upper leaves in compact shoot architecture. Once the segmentation is complete, it is difficult 

to correct the false segmentation points. Although commercial software, such as Geomagic Studio, can solve 

this problem, it is quite complicated and time-consuming. In contrast, the Label3DMaize toolkit integrates a 

top-to-down segmentation algorithm and interactive operations according to the morphological structure of 

maize shoots, which can realize semi-automatic fine point cloud segmentation. The top-to-down coarse 

segmentation ensures topological accuracy, and the interactive operations improve the segmentation accuracy 

and details. Although coarse segmentation can meet the basic demand for phenotype extraction, it is not 

satisfactory for high-precision phenotypic analysis and 3D reconstruction based on point clouds. In contrast, 

fine segmentation is more satisfactory for the latter demands. The toolkit can solve the point cloud 

segmentation problem of compact architecture or organ overlapping shoots. Although skeleton extraction 

methods [34, 35] also provide an interactive way to improve the segmentation accuracy, they offer skeleton 

interaction, which hardly improves the segmentation point details. 

Since 3D point cloud annotation tools for plants are lacking, researchers segment plants through multi-

view image labeling, deep learning-based image segmentation, MVS reconstruction, and a voting strategy 

[53]. However, these methods cause a lot of organ occlusion from different view angles; thus, it is hard to 

segment plants with multiple organs through image labeling and MVS reconstruction. Jin et al. [37] 

transformed point cloud data into a voxel format, constructed a training set containing 3000 maize shoots via 

data enhancement, and proposed a voxel-based convolutional neural network (VCNN) to segment stem and 

leaf point cloud of maize shoots. Label3DMaize enables researchers to directly handle 3D point cloud 

segmentation and data annotation without transforming point cloud data into the voxel form. Meanwhile, 

using the acquired data directly improves the diversity of training set data, rather than by data enhancement, 

and can thus improve the robustness of the learned model. In addition, label3DMaize can separate the tassel 

and ear except for the stem and leaf, facilitating phenotype extraction of the tassel (such as the number of 

tassel branches, the compactness of tassel, etc.) and ears (such as the ear height). 

4.2 Practicability of Label3DMaize 

In our recent works, the MVS-Pheno platform [18] was used to obtain high-throughput 3D point cloud 

data of maize shoots at different ecological sites for various genotypes and growth stages. However, the 

underlying knowledge about genotypes and the differences in cultivation management have not been fully 

explored, indicating that high-throughput phenotypic acquisition is far from practical application. Therefore, 

it is urgent to establish automatic and online data analysis approaches [54]. However, due to the complexity 



 

 

of plant morphological structure, it is difficult to realize automatic 3D segmentation from the plant 

morphological characteristics and regional growth method only. Deep learning is a feasible way to realize 

automatic segmentation by mining deep features of plant morphology. The greatest challenge in 3D point 

cloud segmentation by deep learning is the lack of high precision and efficient data annotation tools. Most of 

the existing 3D data annotation methods are for voxel data [37, 55], not 3D point clouds. Thus, Label3DMaize 

provides a practical tool for 3D point cloud data annotation for maize and could be a reference for other 

plants. It has been demonstrated that the toolkit can segment or label other plants, such as tomato, cucumber, 

and wheat. Coarse segmentation, i.e., the top-to-down point cloud segmentation algorithm using optimal 

transportation distance, suits plants with a single stem. Meanwhile, if a plant has too many organs, selecting 

all the highest points of each organ is rather complicated. Above all, interactive operations in fine 

segmentation enable extension of the toolkit to other specific plants. Specifically, Label3DMaize does not 

depend on data generated through MVS-Pheno. Any point cloud of maize shoot can be the toolkit input, 

including data acquired using 3D scanners (Figure 7), or reconstructed from multi-view images acquired by 

handheld cameras. 

Unlike RGB image data annotation [40], data enhancement does not significantly improve the model 

robustness of 3D point cloud segmentation models. Thus high-quality data annotation is important. It takes 

4-10 minutes to label a maize shoot point cloud by Label3DMaize, and this labeling efficiency can meet the 

needs of constructing a training dataset for deep learning. The fine segmentation module in Label3DMaize 

ensures accurate segmentation of detailed features at the organ connections, and is thus satisfactory for organ-

level 3D reconstruction. Of note, coarse segmentation results can be used as the annotation data if high 

precision of the annotation is not required, thus saving a lot of time. 

Label3DMaize is designed for individual shoots and does not support segmentation of multiple maize 

shoots. Thus, point clouds containing multiple shoots have to be preprocessed into individual shoot point 

clouds first, through spatial connection property of points, or interactively separated using commercial 

software (such as CloudCompare, Geomagic Studio, etc.). This shoot separation preprocess is easy for 

scenarios without cross organs. Thus, point cloud data acquisition is important for subsequent segmentation. 

Point clouds with less noise are required when using Label3DMaize. For shoots with much random noise 

[35], point cloud denoising should be performed first and then set as the toolkit input for segmentation. 

Compared with image annotation, the data annotation efficiency of Label3DMaize is still lower, and fine 

segmentation requires more manual interaction, which has higher requirements for user experience and 

concentration. Thus the algorithm for Label3DMaize needs improvement to raise the automation level of 

point cloud segmentation. 

4.3 Future work 

At present, a large amount of 3D point cloud data of maize shoots has been obtained using MVS-Pheno. 

In our future study, representative data will be selected and annotated by Label3DMaize, then a 3D maize 

shoot annotation dataset will be constructed. A deep learning-based point cloud segmentation model will then 

be developed to realize the automatic segmentation of maize shoots. What’s more, well segmented maize 

organ data could be used to build a 3D shape model of maize. All the above technologies or data will 

conversely simplify the segmentation and labeling processes of the toolkit. Subsequently, online phenotypic 

extraction and 3D reconstruction of maize shoot algorithms will be studied using the well-segmented point 

clouds. The segmentation algorithm and this toolkit will be extended to other crops according to their 

morphological characteristics, which will promote the automatic 3D point cloud segmentation of plants. 



 

 

Availability of Supporting Source Code and Requirements 

The Label3DMaize Toolkit: 

 Source code and executable program: https://github.com/syau-miao/Label3DMaize.git 

 Operating systems: Windows 

 Programming languages: Matlab 

 License: GNU General Public License (GPL) 

 RRID: SCR_021029, scicrunch.org/browse/resources/SCR_021029 

 biotools ID: label3dmaize 

Data Availability 

The data underlying this article and snapshots of our code are available in the GigaDB repository [56]. 
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Additional files 

Supplementary Program. Executable program of Label3DMaize, which requires that Matlab runtime 

(Version 9.2 or above) installed. 

Supplementary Data S1. The point clouds of maize shoots described in Figure 6, including the point clouds 

acquired using MVS-Pheno, coarse segmentation results, fine segmentation results, and sample-based 

segmentation results.  

Supplementary Data S2. Point cloud data described in Figure 7. These point clouds are acquired using a 3D 

scanner.  

Supplementary Data S3. Segmentation results on other plants, including tomato data described in Figure 8, 

cucumber data described in Figure 9, and wheat data described in Figure 10.  
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