Supporting Information

Structure Property Relationships of N-Acylsulfonamides and Related Bioisosteres

Karol R. Francisco,^a Carmine Varricchio,^b Thomas J. Paniak,^c Marisa C. Kozlowski,^c Andrea Brancale,^b and Carlo Ballatore^{d,*}

^aDepartment of Chemistry & Biochemistry, University of California San Diego, 9500 Gilman Drive, La Jolla, CA, 92093, USA; ^bCardiff School of Pharmacy and Pharmaceutical Sciences, Cardiff, King Edward VII Avenue, Cardiff CF103NB, UK; ^cDepartment of Chemistry, School of Arts and Sciences, University of Pennsylvania, 231 South 34th St., Philadelphia, PA 19104-6323; ^dSkaggs School of Pharmacy and Pharmaceutical Sciences, University of California, San Diego, 9500 Gilman Drive, La Jolla, CA 92093

*Corresponding Author.

Table of Contents

S2. Figures S1–S3

S5. NMR (¹H, ¹³C) of compounds **11-32**

- S49. Potentiometric acidity (pKa) reports of compounds 9-13, 15-18, 20-32
- S71. Potentiometric lipophilicity (logP_{octanol} and logD_{7.4}) reports of compounds 9-13, 15, 21, 24, 26, 27-32; logP_{hydrocarbon} (cyclohexane, heptane, toluene) of compounds 9, 12, 13, 15
- S100. Experimental details on PAMPA Analyses
- S101. Experimental details on shake-flask logD_{7.4} determinations

S102. High Performance Liquid Chromatograph (HPLC) traces of representative compounds

S112. Figure S4 Lipophilicity, Permeability, and Acidity graph of acidic isosteres and structures

S113. Crystallography reports of compounds 15, 16, 18, 19, 21

Figure S1. (*A*) comparison of Gaussian-optimized geometry and electrostatic potential maps of *N*-acylsulfonamide 9 and its derivatives 15, 18, 21, 24, 27 and 30. Compounds that based on pK_a determinations are expected to be mostly charged at physiological pH are shown both in their neutral (*i.e.*, 9, 27 and 30) and deprotonated (*i.e.*, 9*, 27* and 30*) forms. (*B*) Average electrostatic potential values of the gaussian-optimized structure showing positive and negative average ESP values of each compound.

Figure S2. (*A*) comparison of Gaussian-optimized geometry and electrostatic potential maps of *N*-acylsulfonamide 11 and its derivatives 16, 19, 22, 25, 28 and 31. Compounds that based on pK_a determinations are expected to be mostly charged at physiological pH are shown both in their neutral (*i.e.*, 11, 28 and 31) and deprotonated (*i.e.*, 11*, 28* and 31*) forms. (*B*) Average electrostatic potential values of the gaussian-optimized structure showing positive and negative average ESP values of each compound.

Figure S3. (*A*) comparison of Gaussian-optimized geometry and electrostatic potential maps of *N*-acylsulfonamide 10 and its derivatives 17, 20, 23, 26, 29 and 32. Compounds that based on pK_a determinations are expected to be mostly charged at physiological pH are shown both in their neutral (*i.e.*, 10, 29 and 32) and deprotonated (*i.e.*, 10*, 29* and 32*) forms. (*B*) Average electrostatic potential values of the gaussian-optimized structure showing positive and negative average ESP values of each compound.

Sample name: BL-0 Assay name: pH-r Assay ID: 20D Filename:	0393 (Cpd 9) netric pKa -20005	Experiment start time: Analyst: Instrument ID:	4/20/2020 2:05:41 PM T317135
pH-metric Resul	t		
Acid pKa 1 4.75 ± RMSD 0.102	±0.01 (n=50)		
Warnings and er	rors) N Ì	
Errors None Warnings None		9	
Graphs			
loni	c strength Bample	e BL-0393 (Cpd 9) Ionisation Graph	Distribution of species for sample BL-0393 (Cpd 9)
t) the 0.170 see 0.160	5 7 9 11 3		i 0.8 i 0.4 i 0.0 i 3 i 5 i 7 i 9 i 11
pH	(Concentration scale)	pH (Concentration scale)	pH (Concentration scale)

Sample name:BL-0344 (Cpd 10)Assay name:pH-metric pKaAssay ID:20D-20006Filename:	Experiment start time: Analyst: Instrument ID:	4/20/2020 3:02:57 PM T317135
pH-metric Result		
Acid pKa 1 5.79 ±0.01 (n=49) RMSD 0.168		
Warnings and errors		
Errors None Warnings None	10	
Graphs		
lonic strength 1000	Sample BL-0344 (Cpd 10) Ionisation Graph 0	Distribution of species for sample BL-0344 (Cpd 10)
pH (Concentration scale)	pH (Concentration scale)	pH (Concentration scale)

Sample name:BL-0664 (Cpd 11)Assay name:pH-metric pKaAssay ID:19B-19008Filename:	Experiment start time: Analyst: Instrument ID:	2/19/2019 1:57:00 PM T317135
pH-metric Result		
Acid pKa 1 4.49 ±0.04 (n=49) RMSD 0.605		
Warnings and errors	H H	
Errors None Warnings None	č 11 č	
Graphs		
lonic strength 0.175 0.170 0.165 0.165 3 5 7 9 11 pH (Concentration scale)	Sample BL-0664 (Cpd 11) Ionisation Graph	Distribution of species for sample BL-0664 (Cpd 11) 0.8 0.4 0.0 3 5 7 9 11 pH (Concentration scale)

Sample name:BL-0822 (Cpd 12)Assay name:pH-metric pKaAssay ID:20C-23007Filename:	Experiment start time: Analyst: Instrument ID:	3/23/2020 1:19:23 PM T317135
pH-metric Result		
Acid pKa 1 4.91 ±0.01 (n=50) RMSD 0.174		
Warnings and errors		
Errors None Warnings None	12	
Graphs		
Ionic strength	ల్ల Sample KKF-II-090 Ionisation Graph	Distribution of species for sample KKF-II-090
(x) 0.180 10 10 10 10 10 10 10 10 10 1	$r_{\rm eff}$ -0.2 -0.6 -0.6 -0.6 -0.6 -0.6 -0.6 -0.6 -0.6	50 0.8 51 0.4 52 0.4 53 0.4 53 5 7 9 11 pH (Concentration scale)

Sample name: BL-0789 (Cpd 13) Assay name: pH-metric pKa Assay ID: 20A-31002 Filename:	Experiment start time: Analyst: Instrument ID:	1/31/2020 8:34:52 AM T317135
pH-metric Result		
Acid pKa 1 10.45 ±0.01 (n=50) RMSD 0.252		
Warnings and errors	✓ ^S -N´ ∖ H	
Errors None Warnings None	13	
Graphs		
Ionic strength B Sample Ion	isation Graph	Distribution of species for sample
(W) the state of the state of	A A MARAN A A A A A A A A A A A A A A A A A A	8.0 800 800 800 800 800 800 800 800 800
3 5 7 9 11 ≥ 5 6 7 pH (Concentration scale) pH (Co	8 9 10 11 oncentration scale)	3 5 7 9 11 pH (Concentration scale)

Sample name:BL-0650 (Cpd 15)Assay name:pH-metric pKaAssay ID:18I-12002Filename:	Experiment start time: 9/12/2018 2:55:21 PM Analyst: Instrument ID: T317135
pH-metric Result	
Acid pKa 1 10.05 ±0.01 (n=49) RMSD 0.100	
Warnings and errors	─∕ N~S H
Errors None Warnings None	15
Graphs	
Ionic strength g, Sample BL-065	0 (Cpd 15) Ionisation Graph Distribution of species for sample BL-0650 (Cpd 15)
(\$) 0.19 tb 0.18 0.17 0.16 0.0 -0.5	
3 5 / 9 11 – 3 pH (Concentration scale) pl	5 7 9 11 3 5 7 9 11 H (Concentration scale) pH (Concentration scale)

Sample name: Assay name: Assay ID: Filename:	BL-0658 (Cpd pH-metric ps 19B-19012	d 16) Ka				Experiment sta Analyst: Instrument ID:	irt time:	2/19/2019 6:35:49 T317135	€ PM
Yasuda-Shec	llovsky res	ult							
Extrapolation ty Yasuda-Shedlov	/pe pKa 0%	SD +0 12	Intercept	Slope	R ² 0 7880	lonic strength	Tempe	erature	

Warnings and errors

Errors None Warnings None

Graphs

pH-metric Result

RMSD 0.440

Warnings and errors

Errors None Warnings None

Graphs

Sample name:BL-0663 (Cpd 17)Assay name:pH-metric pKaAssay ID:19C-06002Filename:	Experiment start time: 3/6/2019 12:17:05 PM Analyst: Instrument ID: T317135
pH-metric Result	0
Acid pKa 1 11.02 ±0.01 (n=50) RMSD 0.567	
Warnings and errors	
Errors None Warnings None	17
Graphs	
Ionic strength	Sample BL-0663 (Cpd 17) Ionisation Graph Distribution of species for sample BL-0663 (Cpd 17)
5 0.175 5 0.175	
	5 § 0.4
	5 Å 0.0
3 5 7 9 11 [≥] pH (Concentration scale)	3 5 7 9 11 3 5 7 9 11 pH (Concentration scale) pH (Concentration scale)

Multiset name: **BL-0667 (Cpd 18)** Filename:

Acid pKa 1 10.45 ±0.02 (n=50)

0.126

Instrument ID: T317135

pH-metric Result

Warnings and errors

Errors None Warnings None

Graphs

RMSD

Multiset assays

Assay 1 of 2

Sample name	pH-metric pKa
Assay name	pH-metric pKa
Assay ID	19B-04002
Instrument ID	T317135
Imported from	
Imported on	10/5/2019 3:29:09 PM
Analyst name	
Experiment start time	2/4/2019 6:02:03 PM
A	
Assay 2 of 2	
Sample name	pH-metric pKa
Assay name	pH-metric pKa
Assay ID	19B-07002
Instrument ID	T317135

Assay fame primetic pra Assay ID 19B-07002 Instrument ID T317135 Imported from Imported on 10/5/2019 3:29:17 PM Analyst name Experiment start time 2/7/2019 10:46:12 AM

pH-metric Result				
Acid pKa 1 11.93 ±0.05 (n=50) RMSD 0.214 <				
Warnings and errors	N ^S N			
Errors None Warnings None	20			
Graphs				
lonic strength g Sample BL-0668 (Cp	d 20) Ionisation Graph	Distribution of spe	ecies for sample BL-06	68 (Cpd 20)
동 0.5 둘 0.170 분 0.0		8.0 Laction		
		ගි 0.0	1 1	
3 5 7 9 11 2 5 7 pH (Concentration scale) pH (Co	9 11 oncentration scale)	3	5 7 9 pH (Concentration sca	ale)

Sample name:BL-0679 (Cpd 21)Assay name:pH-metric pKaAssay ID:19I-28008Filename:	Experiment start time: 9/28/2019 5:22:55 PM Analyst: Instrument ID: T317135
pH-metric Result	O
Acid pKa 1 9.87 ±0.01 (n=50) RMSD 0.537	
Warnings and errors	<u>NS<</u>
Errors None Warnings None	H 21
Graphs	
lonic strength على Sample BL-0679 (0	Cpd 21) Ionisation Graph Distribution of species for sample BL-0679 (Cpd 21)
3 5 7 9 11 [≥] 4 5 6 pH (Concentration scale) pH (7 8 9 10 11 3 5 7 9 11 Concentration scale) pH (Concentration scale) pH (Concentration scale)

Multiset name: **BL-0688 (Cpd 22)** Filename: Instrument ID: T317135

Multiset assays

Assay	1	of	2	
-------	---	----	---	--

rioouy rorm	
Sample name	pH-metric pKa
Assay name	pH-metric pKa
Assay ID	19I-11003
Instrument ID	T317135
Imported from	
Imported on	10/5/2019 3:52:40 PM
Analyst name	
Experiment start time	9/11/2019 9:26:10 AM
Assav 2 of 2	
Sample name	pH-metric pKa
Assav name	pH-metric pKa
Assav ID	191-11006
NOT A DESCRIPTION OF THE STATE OF THE STAT	STAR PERCENT CONTRACTOR STRATEGY AND STRAT

Instrument ID T317135 Imported from Imported on 10/5/2019 3:52:40 PM Analyst name Experiment start time 9/11/2019 12:59:56 PM

Sample name:BL-0749 (Cpd 23)Assay name:pH-metric pKaAssay ID:19I-29005Filename:	Experiment start time: 9/29/2019 1:25:58 PM Analyst: Instrument ID: T317135
pH-metric Result	0
Acid pKa 1 10.33 ±0.02 (n=50) RMSD 0.484	
Warnings and errors	$\sim N - \tilde{S}'_{N}$
Errors None Warnings None	H] 23
Graphs	
Ionic strength g, Sample BL-0749	Cpd 23) Ionisation Graph Distribution of species for sample BL-0749 (Cpd 23)
 ② 0.180 ● 1.180 ● 1.180	8.0 gg
	මී 0.0
3 5 7 9 11 [≤] 3 5 pH (Concentration scale) pH	7 9 11 3 5 7 9 11 Concentration scale) pH (Concentration scale)

Multiset name: **BL-0750 (Cpd 25)** Filename: Instrument ID: T317135

Yasuda-Shedlovsky result

Extrapolation type	pKa 0%	SD	Intercept	Slope	R ²	lonic strength	Temperature
Yasuda-Shedlovsky	10.22	±0.15	14.12	-169.1780	0.9673	0.158 M	25.0°C

Warnings and errors

Errors None Warnings None

Graphs

pH-metric Result

RMSD 0.508

Warnings and errors

Errors None Warnings None

Graphs

Multiset assays

Assav 1 of 2 Sample name 490 pKa Assay name pH-metric psKa Assay ID 191-12005 Instrument ID T317135 Imported from Imported on 10/5/2019 3:54:52 PM Analyst name Experiment start time 9/12/2019 2:14:23 PM Assay 2 of 2 KKF-I-494 pska Sample name Assay name pH-metric psKa 191-28005 Assay ID Ins

Instrument ID	131/135
Imported from	
Imported on	10/5/2019 3:54:52 PM
Analyst name	

Sample name:BL-0689 (Cpd 26)Assay name:pH-metric pKaAssay ID:19J-05005Filename:	Experiment start time: Analyst: Instrument ID:	10/5/2019 12:16:57 PM T317135
pH-metric Result	0.0	
Acid pKa 1 9.58 ±0.01 (n=50) RMSD 0.202	Š o _{LO}	
Warnings and errors	N-S N	
Errors None Warnings None	26	
Graphs		
lonic strength	து Sample BL-0689 (Cpd 26) Ionisation Graph	Distribution of species for sample BL-0689 (Cpd 26)
 (\$) 0.180 (\$) 0.170 (\$) 0.170 		8.0 ge
		\$ 0.0
3 5 7 9 11 pH (Concentration scale)	≥ 4 5 6 7 8 9 10 11 pH (Concentration scale)	3 5 7 9 11 pH (Concentration scale)

Sample name:BL-0792 (Cpd 27)Assay name:pH-metric pKaAssay ID:20A-21002Filename:	Experiment start time: 1/21/2020 4:32:00 PM Analyst: Instrument ID: T317135
pH-metric Result	0
Acid pKa 1 5.22 ±0.01 (n=50) RMSD 0.281	
Warnings and errors	
Errors None Warnings None	27
Graphs	
lonic strength bio bio bio bio bio bio bio bio	pd 27) lonisation Graph Distribution of species for sample BL-0792 (Cpd 27)

0-N

28

0,0

Multiset name: **BL-0793 (Cpd 28)** Filename:

Instrument ID: T317135

pH-metric Result

Warnings and errors

Errors None Warnings None

Graphs

Multiset assays

Assay	1	of 3	
-------	---	------	--

-334y 1 01 5	
Sample name	KKF-II-028
Assay name	pH-metric pKa
Assay ID	20A-28003
nstrument ID	T317135
mported from	
mported on	1/29/2020 6:18:41 PM
Analyst name	
Experiment start time	1/28/2020 10:08:17 AM
Assav 2 of 3	
Sample name	KKF-II-028 pka
Assav name	pH-metric pKa
Assav ID	20A-29002
nstrument ID	T317135
mported from	
mported on	1/29/2020 6:18:44 PM
Analyst name	
Experiment start time	1/29/2020 10:41:37 AM
Assav 3 of 3	
Sample name	KKF-II-028 pka
Assav name	pH-metric pKa
Assav ID	20A-29005
Instrument ID	T317135
mported from	
mported on	1/29/2020 6:18:45 PM
Analyst name	

Experiment start time 1/29/2020 4:45:17 PM

0-N

29

Multiset name: **BL-0797 (Cpd 29)** Filename:

Instrument ID: T317135

0,0

pH-metric Result

Warnings and errors

Errors None Warnings None

Graphs

Multiset assays

Assay	1	of 2	
-------	---	------	--

ASSUY I OIL	
Sample name	KKF-II-031 pka
Assay name	pH-metric pKa
Assay ID	20A-27003
Instrument ID	T317135
Imported from	
Imported on	1/27/2020 5:16:57 PM
Analyst name	
Experiment start time	1/27/2020 3:59:26 PM
Assay 2 of 2	
Sample name	KKF-II-031 pka
Assay name	pH-metric pKa
AssaulD	204 27002

Assay name	ph-metric pha
Assay ID	20A-27002
Instrument ID	T317135
Imported from	
Imported on	1/27/2020 5:17:02 PM
Analyst name	
Experiment start time	1/27/2020 3:16:05 PM

Sample name:BL-0771 (Cpd 30)Assay name:pH-metric pKaAssay ID:19J-25002Filename:	Experiment start time: Analyst: Instrument ID:	10/25/2019 2:43:03 PM T317135
pH-metric Result	2	
Acid pKa 1 6.34 ±0.01 (n=50) RMSD 0.104		
Warnings and errors	N N	
Errors None Warnings None	30	
Graphs		
lonic strength ខ្ញុ	Sample BL-0771 (Cpd 30) Ionisation Graph	Distribution of species for sample BL-0771 (Cpd 30)
(W) U.170 (W) U.		La cione de la cio
	-1.5	
3 5 7 9 11 pH (Concentration scale)	4 5 6 7 8 9 pH (Concentration scale)	3 5 7 9 11 pH (Concentration scale)

N=N

Multiset name: **BL-0772 (Cpd 31)** Filename: Instrument ID: T317135

0,0

31

Warnings and errors

Errors None Warnings None

Graphs

Multiset assays

Assay	1	of	2	
-------	---	----	---	--

About 1 of L	
Sample name	KKF-I-535
Assay name	pH-metric pKa
Assay ID	19J-26003
Instrument ID	T317135
Imported from	
Imported on	10/26/2019 12:47:21 PM
Analyst name	
Experiment start time	10/26/2019 11:57:30 AM
Assav 2 of 2	
Sample name	KKF-I-535

Sample name	KKF-1-535
Assay name	pH-metric pKa
Assay ID	19J-19005
Instrument ID	T317135
Imported from	
Imported on	10/26/2019 12:47:33 PM
Analyst name	
Experiment start time	10/19/2019 2:00:20 PM
5	

Sample name:BL-0773 (Cpd 32)Assay name:pH-metric pKaAssay ID:19J-20005Filename:Filename:	Experiment start time: 10/20/2019 12:36:44 PM Analyst: Instrument ID: T317135
pH-metric Result	
Acid pKa 1 6.42 ±0.01 (n=50) RMSD 0.174	$N = N \qquad O \qquad J'' \qquad S = N$
Warnings and errors	Ň NH
Errors None Warnings None	32
Graphs	
lonic strength 0.180 0.170 3 5 7 9 11 pH (Concentration scale) Sample BL-0773 (C 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.	pd 32) Ionisation Graph Distribution of species for sample BL-0773 (Cpd 32)

0 0 0

9

Sample name:	BL-0393 (Cpd 9)	Experiment start time:	4/21/2020 3:53:14 PM
Assay name: Assay ID: Filename:	pH-metric medium logP 20D-21010	Analyst: Instrument ID:	T317135

pH-metric Result

logP (neutral XH)	1.10	±0.01 (n=50)
logP (X -)	-0.69	±0.08 (n=50)
RMSD	0.199	

Warnings and errors

Errors	None
Warnings	None

Sample logD values

рН	BL-0393 (Cpd 9) logD	Comment
1.000	1.10	
1.200	1.10	Stomach pH
2.000	1.10	•
3.000	1.10	
4.000	1.03	
5.000	0.67	
6.000	-0.06	
6.500	-0.38	
7.000	-0.56	
7.400	-0.64	Blood pH
8.000	-0.68	-
9.000	-0.69	
10.000	-0.69	
11.000	-0.69	
12.000	-0.69	

Graphs

Report by: Carlo Ballatore 4/21/2020 5:56:32 PM

Page 1 of 1

0

9

00

Multiset name: **BL-0393 (Cpd 9) CYCLOHEXANE** Filename:

pH-metric Result

Warnings and errors

Errors None Warnings None

Sample logD values

рН	BL-0393 (Cpd 9) logD	Comment
1.000	-1.03	
1.200	-1.03	Stomach pH
2.000	-1.03	
3.000	-1.04	
4.000	-1.10	
5.000	-1.47	
6.000	-2.30	
6.500	-2.79	
7.000	-3.28	
7.400	-3.68	Blood pH
8.000	-4.28	
9.000	-5.28	
10.000	-6.28	
11.000	-7.27	
12.000	-8.20	

Report by: Carlo Ballatore 11/19/2020 10:03:58 AM

Multiset name: **BL-0393 (Cpd 9) HEPTANE** Filename:

pH-metric Result

Warnings and errors

Errors None Warnings None

Sample logD values

рН	BL-0393 (Cpd 9) logD	Comment
1.000	-0.53	
1.200	-0.53	Stomach pH
2.000	-0.53	
3.000	-0.54	
4.000	-0.60	
5.000	-0.97	
6.000	-1.80	
6.500	-2.29	
7.000	-2.78	
7.400	-3.18	Blood pH
8.000	-3.78	
9.000	-4.78	
10.000	-5.78	
11.000	-6.75	
12.000	-7.55	

Graphs

Report by: Carlo Ballatore 11/19/2020 10:56:13 AM

 $\cap \cap$

Ĥ

9

Sample name:	BL-0393 (Cpd 9) TOLUENE
Assay name:	pH-metric medium logP
Assay ID:	20J-27003
Filename:	

pH-metric Result

logP (neutral XH)	0.21	±0.02 (n=50)
logP (X -)	-0.81	±0.08 (n=50)
RMSD	0.249	

Warnings and errors

Errors	None
Warnings	None

Sample logD values

рН	BL-0393 (Cpd 9) logD	Comment
1.000	0.21	
1.200	0.21	Stomach pH
2.000	0.21	
3.000	0.21	
4.000	0.15	
5.000	-0.16	
6.000	-0.63	
6.500	-0.74	
7.000	-0.79	
7.400	-0.80	Blood pH
8.000	-0.81	203
9.000	-0.81	
10.000	-0.81	
11.000	-0.81	
12.000	-0.81	

Graphs

Report by: Carlo Ballatore 11/19/2020 10:57:29 AM

0,0

10

Multiset name: **BL-0344 (Cpd 10)** Quality: **Good** Filename:

pH-metric Result

logP (neutral XH) 1.66 ±0.02 (n=50) logP (X -) -0.66 ±0.09 (n=50) RMSD 0.129

Warnings and errors

Errors None Warnings None

Sample logD values

рН	BL-0344 (Cpd 10) logD	Comment
1.000	1.66	
1.200	1.66	Stomach pH
2.000	1.66	•
3.000	1.66	
4.000	1.65	
5.000	1.60	
6.000	1.25	
6.500	0.88	
7.000	0.46	
7.400	0.12	Blood pH
8.000	-0.30	
9.000	-0.61	
10.000	-0.65	
11.000	-0.66	
12.000	-0.66	

Graphs

Report by: Carlo Ballatore 4/21/2020 3:38:12 PM

0,0

0

11

Sample name:	BL-0664 (Cpd 11)	Experiment start time:	2/21/2019 1:38:13 PM
Assav name:	pH-metric high logP	Analyst:	
Assay ID: Filename:	19B-21007	Instrument ID:	T317135

pH-metric Result

logP (neutral XH)	2.67	±0.01	(n=50)
logP (X -)	-0.61	±0.11	(n=50)
RMSD	0.428		

Warnings and errors

Errors None Warnings None

Sample logD values

рН	BL-0664 (Cpd 11)	Comment
	logu	
1.000	2.67	
1.200	2.67	Stomach pH
2.000	2.67	
3.000	2.66	
4.000	2.55	
5.000	2.04	
6.000	1.15	
6.500	0.67	
7.000	0.22	
7.400	-0.09	Blood pH
8.000	-0.41	
9.000	-0.59	
10.000	-0.61	
11.000	-0.61	
12.000	-0.61	

Report by: Carlo Ballatore 4/20/2020 2:33:46 PM

Sample name:	BL-0822 (Cpd 12)	Experiment start time:	3/24/2020 10:17:38 AM
Assay name:	pH-metric medium logP	Analyst:	T047405
Assay ID: Filename:	20C-24004	Instrument ID:	131/135

pH-metric Result

logP (neutral XH)	1.04	±0.01 (n=50)
logP (X -)	-1.00	±0.10 (n=50)
RMSD	0.139	

Warnings and errors

Errors	None
Warnings	None

Sample logD values

рН	KKf-II-090	Comment
	logD	
1.000	1.04	
1.200	1.04	Stomach pH
2.000	1.03	
3.000	1.03	
4.000	0.99	
5.000	0.69	
6.000	-0.04	
6.500	-0.43	
7.000	-0.73	
7.400	-0.87	Blood pH
8.000	-0.96	
9.000	-0.99	
10.000	-1.00	
11.000	-1.00	
12.000	-1.00	

Graphs

Multiset name: **BL-0822 (Cpd 12) CYCLOHEXANE** Instrument ID: **T317135** Filename:

pH-metric Result

pri-metric Res	suit		
logP (neutral XH) logP (X -) RMSD	-0.59 -8.86 0.217	±0.04 (n=50) ±0.80 (n=50)	
Assav 20J-280	007 -		12

0.995

0.1136 mM

0.05528 mM

Assay 20J-28007 -

BL-0822 (Cpd 12) Carbonate Acidity error

Warnings and errors

Errors None Warnings None

Sample logD values

рH	BL-0822 (Cpd 12) logD	Comment	
1.000	-0.59		
1.200	-0.59	Stomach pH	
2.000	-0.59		
3.000	-0.60		
4.000	-0.64		
5.000	-0.94		
6.000	-1.72		
6.500	-2.19		
7.000	-2.68		
7.400	-3.08	Blood pH	
8.000	-3.68	100000 - 100000 - 10000	
9.000	-4.68		
10.000	-5.68		
11.000	-6.68		
12.000	-7.65		

Graphs

Multiset name: **BL-0822 (Cpd 12) CYCLOHEXANE** Instrument ID: **T317135** Filename:

Graphs (continued)

 \cap

12

Multiset name: **BL-0822 (Cpd 12) HEPTANE** Filename:

pH-metric Result

logP (neutral XH) -0.44 ±0.03 (n=50) logP (X -) -9.50 ±0.52 (n=50) RMSD 0.274

Warnings and errors

Errors None Warnings None

Sample logD values

pH BL-0822 (Cpd 12) logD		Comment
1.000	-0.44	
1.200	-0.44	Stomach pH
2.000	-0.44	
3.000	-0.44	
4.000	-0.49	
5.000	-0.79	
6.000	-1.56	
6.500	-2.04	
7.000	-2.53	
7.400	-2.93	Blood pH
8.000	-3.53	
9.000	-4.53	
10.000	-5.53	
11.000	-6.53	
12.000	-7.52	

Report by: Carlo Ballatore 11/19/2020 11:01:03 AM

Ő Ö

12

Multiset name: **BL-0822 (Cpd 12) TOLUENE** Filename:

pH-metric Result

 logP (neutral XH)
 0.64
 ±0.05 (n=50)

 logP (X -)
 0.20
 ±0.07 (n=50)

 RMSD
 0.073
 ±0.07 (n=50)

Warnings and errors

Errors None Warnings None

Sample logD values

рН	BL-0822 (Cpd 12) logD	Comment
1.000	0.64	
1.200	0.64	Stomach pH
2.000	0.64	
3.000	0.63	
4.000	0.61	
5.000	0.45	
6.000	0.25	
6.500	0.22	
7.000	0.21	
7.400	0.20	Blood pH
8.000	0.20	
9.000	0.20	
10.000	0.20	
11.000	0.20	
12.000	0.20	

Graphs

Report by: Carlo Ballatore 11/19/2020 11:03:45 AM

Multiset name: **BL-0789 (Cpd 13)** Filename:

pH-metric Result

logP (neutral XH)	1.58	±0.06 (n=50)
logP (X -)	0.65	±0.10 (n=50)
RMSD	0.289	and a second second

Warnings and errors

Errors None Warnings None

Sample logD values

pН		Comment
	logD	
1.000	1.58	
1.200	1.58	Stomach pH
2.000	1.58	
3.000	1.58	
4.000	1.58	
5.000	1.58	
6.000	1.58	
6.500	1.58	
7.000	1.58	
7.400	1.58	Blood pH
8.000	1.58	ο.
9.000	1.57	
10.000	1.47	
11.000	1.07	
12.000	0.73	

Graphs

Report by: Carlo Ballatore 12/16/2020 2:46:19 PM

13

Multiset name: **BL-0789 (Cpd 13) CYCLOHEXANE** Filename:

pH-metric Result

 logP (neutral XH)
 -0.43
 ±0.03 (n=50)

 logP (X -)
 -9.04
 ±0.55 (n=50)

 RMSD
 0.532
 ±0.55 (n=50)

Warnings and errors

Errors None Warnings None

Sample logD values

рН	BL-0789 (Cpd 13) logD	Comment
1.000	-0.43	
1.200	-0.43	Stomach pH
2.000	-0.43	
3.000	-0.43	
4.000	-0.43	
5.000	-0.43	
6.000	-0.43	
6.500	-0.43	
7.000	-0.43	
7.400	-0.43	Blood pH
8.000	-0.43	n.
9.000	-0.44	
10.000	-0.56	
11.000	-1.09	
12.000	-1.99	

Graphs

Report by: Carlo Ballatore 12/16/2020 12:59:05 PM

Multiset name: **BL-0789 (Cpd 13) HEPTANE** Filename: Instrument ID: T317135

13

pH-metric Result

logP (neutral XH)	-0.14	±0.07 (n=50)
logP(X-)	-6.00	±0.54 (n=50)
RMSD	0.470	

Warnings and errors

Errors None Warnings None

Sample logD values

рH	BL-0789 (Cpd 13) logD	Comment
1.000	-0.14	
1.200	-0.14	Stomach pH
2.000	-0.14	
3.000	-0.14	
4.000	-0.14	
5.000	-0.14	
6.000	-0.14	
6.500	-0.14	
7.000	-0.14	
7.400	-0.14	Blood pH
8.000	-0.14	
9.000	-0.16	
10.000	-0.27	
11.000	-0.80	
12.000	-1.70	

Graphs

Report by: Carlo Ballatore 12/16/2020 1:01:39 PM

Multiset name: **BL-0789 (Cpd 13) TOLUENE** Filename:

pH-metric Result

 logP (neutral XH)
 1.06
 ±0.01 (n=50)

 logP (X -)
 -9.00
 ±0.77 (n=50)

 RMSD
 0.365

Warnings and errors

Errors None Warnings None

Sample logD values

рН	BL-0789 (Cpd 13) logD	Comment
1.000	1.06	
1.200	1.06	Stomach pH
2.000	1.06	
3.000	1.06	
4.000	1.06	
5.000	1.06	
6.000	1.06	
6.500	1.06	
7.000	1.06	
7.400	1.06	Blood pH
8.000	1.06	63
9.000	1.04	
10.000	0.92	
11.000	0.40	
12 000	-0.51	

0,0 ,,,, S-N H 13

15

Sample name: Assay name: Assay ID: Filename:	BL-0650 (Cpd 15) pH-metric high logP 18I-12003	Experiment start time: Analyst: Instrument ID:	9/12/2018 5:19:42 PM T317135	

pH-metric Result

logP (neutral XH)	1.61	±0.03 (n=50)
logP (X -)	-4.54	±1.16 (n=50)
RMSD	56.408	

Warnings and errors

Errors	None
Warnings	None

Sample logD values

рН	BL-0650 (Cpd 15) logD	Comment
1.000	1.61	
1.200	1.61	Stomach pH
2.000	1.61	
3.000	1.61	
4.000	1.61	
5.000	1.61	
6.000	1.61	
6.500	1.61	
7.000	1.61	
7.400	1.61	Blood pH
8.000	1.61	
9.000	1.57	
10.000	1.33	
11.000	0.61	
12.000	-0.34	

Graphs

Report by: Carlo Ballatore 4/20/2020 2:30:27 PM

Multiset name: **BL-0650 (Cpd 15) CYCLOHEXANE** Filename:

pH-metric Result

logP (neutral XH)	-0.26	±0.01 (n=48)
logP (X -)	-7.76	±0.99 (n=48)
RMSD	0.346	

Warnings and errors

Errors None Warnings None

Sample logD values

pН	BL-0650 (Cpd 15) CYCLOHEXANE logD	Comment
1.000	-0.26	
1.200	-0.26	Stomach pH
2.000	-0.26	
3.000	-0.26	
4.000	-0.26	
5.000	-0.26	
6.000	-0.26	
6.500	-0.26	
7.000	-0.26	
7.400	-0.26	Blood pH
8.000	-0.26	10
9.000	-0.30	
10.000	-0.54	
11.000	-1.26	
12.000	-2.22	

Graphs

Report by: Carlo Ballatore 11/19/2020 9:48:18 AM

Multiset name: **BL-0650 (Cpd 15) CYCLOHEXANE** Filename:

Instrument ID: T317135

Graphs (continued)

Multiset name: **BL-0650 (Cpd 15) HEPTANE** Filename:

pH-metric Result

logP (neutral XH) 0.01 ±0.02 (n=50) logP (X -) -8.00 ±0.92 (n=50) RMSD 0.260 ±0.92 (n=50)

Warnings and errors

Errors None Warnings None

Sample logD values

pН	BL-0650 (Cpd 15) HEPTANE logD	Comment
1.000	0.01	
1.200	0.01	Stomach pH
2.000	0.01	75
3.000	0.01	
4.000	0.01	
5.000	0.01	
6.000	0.01	
6.500	0.01	
7.000	0.01	
7.400	0.01	Blood pH
8.000	0.01	87
9.000	-0.02	
10.000	-0.26	
11.000	-0.98	
12 000	-1.94	

Graphs

Report by: Carlo Ballatore 11/19/2020 10:54:29 AM

Sample name:	BL-0650 (Cpd 15) TOLUENE
Assay name:	pH-metric medium logP
Assay ID:	20K-10004
Filename:	

pH-metric Result

logP (neutral XH)	1.18	±0.01 (n=50)
logP (X -)	-9.50	±0.89 (n=50)
RMSD	0.401	and a second

Warnings and errors

Errors	None
Warnings	None

Sample logD values

рН	BL-0650 (Cpd 15)	Comment
	TOLUENE logD	
1.000	1.18	
1.200	1.18	Stomach pH
2.000	1.18	
3.000	1.18	
4.000	1.18	
5.000	1.18	
6.000	1.18	
6.500	1.18	
7.000	1.18	
7.400	1.18	Blood pH
8.000	1.18	80
9.000	1.15	
10.000	0.91	
11.000	0.19	
12.000	-0.77	

Graphs

Report by: Carlo Ballatore 11/19/2020 9:54:10 AM

Experiment start time: 11/10/2020 9:32:21 AM Analyst: Instrument ID: T317135

0

15

N H

21

pH-metric R	esult	-		
Assay name: Assay ID: Filename:	pH-metric medium logP 19I-28009	Analyst: Instrument ID:	T317135	
Sample name:	BL-0679 (Cpd 21)	Experiment start time:	9/28/2019 6:43:19 PM	

logP (neutral XH) 0.88 ±0.02 (n=50) logP (X -) -5.73 ±2.18 (n=50) RMSD 0.870

Warnings and errors

Errors None Warnings None

Sample logD values

рН	BL-0679 (Cpd 21) logD	Comment
1.000	0.88	
1.200	0.88	Stomach pH
2.000	0.88	
3.000	0.88	
4.000	0.88	
5.000	0.88	
6.000	0.88	
6.500	0.88	
7.000	0.88	
7.400	0.87	Blood pH
8.000	0.87	
9.000	0.82	
10.000	0.49	
11.000	-0.30	
12.000	-1.28	

Report by: Carlo Ballatore 4/20/2020 2:54:52 PM

Multiset name:	BL-0672	(Cpd	24)
Filename:			

pH-metric Result

 logP (neutral XH)
 1.03
 ±0.01 (n=50)

 logP (X -)
 -8.50
 ±1.54 (n=50)

 RMSD
 0.429

Warnings and errors

Errors None Warnings None

Sample logD values

рН	KKF-I-493	Comment
1 000	1.02	
1.000	1.05	
1.200	1.03	Stomach pH
2.000	1.03	
3.000	1.03	
4.000	1.03	
5.000	1.03	
6.000	1.03	
6.500	1.03	
7.000	1.03	
7.400	1.03	Blood pH
8.000	1.02	
9.000	0.90	
10.000	0.37	
11.000	-0.53	
12.000	-1.52	

Graphs

Report by: Carlo Ballatore 12/14/2020 4:29:42 PM

Page 1 of 1

0

Instrument ID: T317135

0,0

0,0

Multiset name: **BL-0689 (Cpd 26)** Filename:

pH-metric Result

logP (neutral XH)	1.83	±0.05 (n=50)
logP (X -)	-8.49	±0.69 (n=50)
RMSD	0.456	a a

Warnings and errors

Errors None Warnings None

Sample logD values

рН	BL-0689 (Cpd 26) logD	Comment
1.000	1.83	
1.200	1.83	Stomach pH
2.000	1.83	
3.000	1.83	
4.000	1.83	
5.000	1.83	
6.000	1.83	
6.500	1.83	
7.000	1.83	
7.400	1.82	Blood pH
8.000	1.81	
9.000	1.71	
10.000	1.21	
11.000	0.31	
12.000	-0.67	

Graphs

Report by: Carlo Ballatore 4/20/2020 3:00:03 PM

Instrument ID: T317135

0

ọ−Ŋ

27

Sample name:	BL-0792 (Cpd 27)
Assay name:	pH-metric medium logP
Assay ID:	20A-21003
Filename:	

pH-metric Result

logP (neutral XH)	0.58	±0.02 (n=50)
logP (X -)	-9.45	±0.85 (n=50)
RMSD	0.155	• • • • • • • • • • • • • • • • • • • •

Warnings and errors

Errors	None
Warnings	None

Sample logD values

рН	BL-0792 (Cpd 27)	Comment
	logD	
1.000	0.58	
1.200	0.58	Stomach pH
2.000	0.58	
3.000	0.58	
4.000	0.58	
5.000	0.57	
6.000	0.45	
6.500	0.25	
7.000	-0.08	
7.400	-0.42	Blood pH
8.000	-0.99	•
9.000	-1.98	
10.000	-2.98	
11.000	-3.98	
12.000	-4.98	

Experiment start time: 1/21/2020 5:35:07 PM Analyst: Instrument ID: T317135

S94

Page 1 of 1

Assay name: Assay ID:

Filename:

0.0

BL-0793 (Cpd 28)	Experiment start time:	1/29/2020 12:17:42 PM
pH-metric medium logP	Analyst:	
20A-29003	Instrument ID:	T317135

0-

28

pH-metric Result

Sample name: BL-079

logP (neutral XH)	1.76	±0.03 (n=50)
logP (X -)	0.26	±0.06 (n=50)
RMSD	0.211	

Warnings and errors

Errors	None
Warnings	None

Sample logD values

рН	BL-0793 (Cpd 28)	Comment
	logD	
1.000	1.76	
1.200	1.76	Stomach pH
2.000	1.76	
3.000	1.76	
4.000	1.76	
5.000	1.75	
6.000	1.67	
6.500	1.52	
7.000	1.26	
7.400	0.99	Blood pH
8.000	0.60	
9.000	0.31	
10.000	0.26	
11.000	0.26	
12.000	0.26	

Graphs

Report by: Carlo Ballatore 4/20/2020 3:13:14 PM

Filename:

ρ−Ň

29

0,0

Sample name:	BL-0797 (Cpd 29)	Experiment start time:	1/27/2020 5:30:43 PM
Assay name:	pH-metric medium logP	Analyst:	
Assay ID:	20A-27004	Instrument ID:	T317135
Filename [.]			

pH-metric Result

logP (neutral XH)	0.85	±0.01	(n=50)
logP (X -)	-9.98	±0.71	(n=50)
RMSD	0.176		

Warnings and errors

Errors	None
Warnings	None

Sample logD values

рН	BL-0797 (Cpd 29)	Comment
	logD	
1.000	0.85	
1.200	0.85	Stomach pH
2.000	0.85	
3.000	0.85	
4.000	0.85	
5.000	0.84	
6.000	0.82	
6.500	0.76	
7.000	0.62	
7.400	0.42	Blood pH
8.000	-0.04	• • •
9.000	-0.99	
10.000	-1.98	
11.000	-2.98	
12.000	-3.98	

Graphs

Report by: Carlo Ballatore 4/20/2020 3:15:07 PM

Sample name:	BL-0771 (Cpd 30)	Experiment start time:	10/25/2019 4:14:54 H
Assay ID: Filename:	19J-25003	Instrument ID:	T317135

pH-metric Result

logP (neutral XH) 1.16 logP (X -) -10.0 RMSD 0.141 ±0.03 (n=50) -10.00 ±0.61 (n=50) 0.141

Warnings and errors

Errors None Warnings None

Sample logD values

рН	BL-0771 (Cpd 30) logD	Comment
1.000	1.16	
1.200	1.16	Stomach pH
2.000	1.16	
3.000	1.16	
4.000	1.16	
5.000	1.14	
6.000	1.00	
6.500	0.77	
7.000	0.41	
7.400	0.06	Blood pH
8.000	-0.51	
9.000	-1.50	
10.000	-2.50	
11.000	-3.50	
12.000	-4.50	

Report by: Carlo Ballatore 4/20/2020 3:09:04 PM

PM

0<u>0</u> Ņ=N 30

Sample name:	BL-0772 (Cpd 31)	Experiment start time:	10/19/2019 3:18:57 PM
Assay name:	pH-metric medium logP	Analyst:	
Assay ID: Filename:	19J-19006	Instrument ID:	T317135

0,0

31

Ņ=N

pH-metric Result

logP (neutral XH) 2.55 logP (X -) -8.00 RMSD 0.133 ±0.04 (n=50) ±3.75 (n=50) -8.00 0.133

Warnings and errors

Errors None Warnings None

Sample logD values

рН	BL-0772 (Cpd 31) logD	Comment
1.000	2.55	
1.200	2.55	Stomach pH
2.000	2.55	
3.000	2.54	
4.000	2.54	
5.000	2.50	
6.000	2.21	
6.500	1.87	
7.000	1.44	
7.400	1.06	Blood pH
8.000	0.47	
9.000	-0.53	
10.000	-1.52	
11.000	-2.52	
12.000	-3.52	

Sample name:	BL-0773 (Cpd 32)	Experiment start time:	10/20/2019 1:32:14 PM
Assay name: Assay ID:	pH-metric medium logP 19J-20006	Analyst: Instrument ID:	T317135
Filename:			

pH-metric Result

logP (neutral XH) 1.72 logP (X -) -9.50 RMSD 0.216 ±0.01 (n=49) -9.50 ±0.59 (n=49) 0.216

Warnings and errors

Errors None Warnings None

Sample logD values

рН	BL-0773 (Cpd 32)	Comment
1 000	1 72	
1 200	1.72	Stomach pH
2 000	1 72	otomaon pri
3.000	1.72	
4.000	1.72	
5.000	1.70	
6.000	1.58	
6.500	1.38	
7.000	1.04	
7.400	0.69	Blood pH
8.000	0.13	
9.000	-0.86	
10.000	-1.86	
11.000	-2.86	
12.000	-3.86	

Report by: Carlo Ballatore 4/20/2020 3:07:32 PM

Experimental Details on PAMPA Analysis: these determinations were carried out by Analiza Inc. (Cleveland, OH).

Assay Summary: Parallel Artificial Membrane Permeability Assay (PAMPA) using the Corning GentestTM pre-coated PAMPA plate system with quantitation by HPLC-UV.

Sample Preparation: Upon arrival at Analiza samples will be prepared as DMSO stock solutions and sonicated in a 40°C water bath to facilitate dissolution.

Assay Setup: Dilutions (50-fold) of the DMSO stocks are prepared in PBS, 7.4 for a dose concentration of 200 μ M in a volume of 300 μ L directly in the Donor compartment of the Corning GentestTM Pre-coated PAMPA plate. After preparation of the Donor plate, any precipitation is noted. The Acceptor compartment is filled with 1xPBS (200 μ L), pH 7.4. After careful assembly of the PAMPA plate, it is left to incubate for five hours in the dark at ambient temperature. A sister plate is created (50x dilution of 10mM test articles are prepared in 1xPBS, pH 7.4) directly in a Millipore solubility filter plate to measure the initial concentration of the sample in buffer (C0). Following incubation, the PAMPA plate is disassembled, and the samples are transferred from the Donor and Acceptor plates to 96-well plates for analysis. The C0 plate is filtered prior to analysis.

- 1. HPLC-UV: a. The filtrates are injected onto an AQUASIL C18, 50x2.1mM column and eluted using a fast generic gradient program.
 - a. A standard calibration curve (STD) is prepared for each compound. The DMSO stock is diluted in DMSO (or other suitable solvent) spanning the concentration range of the assay and instrument
 - b. The filtrates are quantified with respect to this calibration curve.
 - c. A comments field will contain notes pertinent to the assay of each compound.
 - d. Chromatograms are reported for each compound

Calculation of Results: The concentration values from the Donor and Acceptor compartment are used in the calculation of the effective permeability (Pe) of the compound. A mass balance equation is used to calculate the amount of compound retained in the membrane (%R). A high %R indicates either that the compound is bound to the PAMPA membrane, or that the compound is precipitating in the donor compartment. The equations for permeability and membrane retention are shown below. Note that we experimentally determine Co, instead of assuming the full solubility of the compound. Pe values less than 1.5E-6 cm/s correlate with human fraction absorbed (%FA) less than 80%, a generally accepted cutoff for low permeability.

PAMPA Effective Permeability

Membrane Retention (R)

$$P_{e} = \frac{-\ln(1 - \frac{C_{A}(t)}{C_{eq}})}{A * \left(\frac{1}{V_{D}} + \frac{1}{V_{A}}\right) * t}$$

$$R = 1 - (C_D(t) * V_D + C_A(t) * V_A) / (C_0 * V_D))$$

- CA(t) = compound concentration in acceptor well at time t (mM)
- CD(t) = compound concentration in acceptor well at time t (mM)
- C0 = initial compound concentration in donor well (mM)
- VD = donor well volume = 0.3mL
- VA = acceptor well volume = 0.2mL
- A = filter area = 0.3cm2

t = incubation time =
$$5hr = 18000s$$

Ceq = compound concentration at equilibrium

$$==(C_{D}(t)*V_{D}+C_{A}(t)*V_{A})/(V_{D}*V_{A})$$

Experimental Details on Shake-Flask logD determination: these determinations were carried out by Analiza Inc. (Cleveland, OH).

Assay Summary: Analiza measures LogD directly, using its thermodynamic definition: the partition coefficient in buffer-octanol system in equilibrium using a novel, automated and miniaturized version of the gold standard shake-flask method.

Partitioning: For octanol/buffer partitioning, Analiza's standard two phase system plates will be used. Octanol in equilibrium with 1X-PBS, 7.4 is used to prepare partitioning plates for the assay. DMSO stock solutions will be added to each partitioning plate to a final concentration of 10% DMSO. The plates are sealed, vortexed on our specially designed deepwell plate mixer, and centrifuged to aid in phase settling. The assay will be conducted on the ADW workstation using chemiluminescent nitrogen detection.

Calculation of Results: The equimolar nitrogen response of the detector is calibrated using standards which span the dynamic range of the instrument from 0.08 to 4500 μ g/ml nitrogen. Both the top and bottom phases are quantified with respect to this calibration curve and the logarithm of the ratio of the concentration in the top phase to the concentration in the bottom phase is calculated as LogD. In addition to reporting the directly observed LogD value, the observed LogD value will be adjusted to a corrected LogD* based upon our previous work correlating LogD in the presence and absence of DMSO in the partitioning system.

The calculated LogD and LogD* values are corrected for background nitrogen in the DMSO and octanol-buffer 2-phase systems. A comments field contains notes pertinent to the assay of each compound, such as solid residue in the source plate, or aggregation of compound in the two phase system.

Quality: Each sample submission includes a series of on-board performance indicating standards (with LogD values spanning the range of the assay) which are prepared and assayed in duplicate in each media. The LogD results for these standards are control charted and monitored.

ΙΟΥΡαρρ							
Cpd ID	Structure	Cpd ID	Structure	Cpd ID	Structure	Cpd ID	Structure
50	OH N O	57	O NH O O	64	N N N N N N N N N N N N N N N N N N N	71	HO O
51		58		65	O SO O SO	72	С С С С С С С С С С С С С С С С С С С
52	0,0 S NH ₂	59	O H O H	66		73	ОН
53	ОН	60	ON OH	67	OH OH	74	F H
54	O OH	61	O=00 O=00	68		75	Р ОН
55	N.O.S	62	° N°	69	S S S S S S S S S S S S S S S S S S S		
56	N,O HN V	63	O NH S O	70	N H H		

X-ray Structure Determination for BL-0650 (Cpd 15, CCDC 1998391)

Experimental:

Crystals of BL-0650 (Cpd 15) were grown from dichloromethane/hexanes. The single crystal X-ray diffraction studies were carried out on a Bruker APEX-II CCD diffractometer equipped with with Mo K α radiation ($\lambda = 0.71073$). A $0.20 \times 0.06 \times 0.04$ mm colorless block was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using ϕ and ϖ scans. Crystal-to-detector distance was 60 mm with 5.00 s exposure time. A total of 5531 reflections were collected covering the indices $-10 \le h \le 10$, $-7 \le k \le 7$, $-11 \le 1 \le 16$. 2529 reflections were found to be symmetry independent, with a Rint of 0.0256. The space group was found to be P2₁. Crystallographic data are summarized in Table 1.

Identification code	BL-0650
Empirical formula	C12H17NO3S
Formula weight	255.32
Temperature/K	100.0
Crystal system	monoclinic
Space group	P21
a/Å	8.0972(6)
b/Å	5.7922(5)
c/Å	13.2864(11)
$\alpha/^{\circ}$	90
β/°	95.043(3)
γ/°	90
Volume/Å3	620.73(9)
Z	2
pcalcg/cm3	1.366
μ/mm-1	0.257
F(000)	272.0
Crystal size/mm3	$0.20\times0.06\times0.04$
Radiation	MoKa ($\lambda = 0.71073$)
2 Θ range for data collection/°	3.078 to 52.784
Index ranges	$-10 \le h \le 10, -7 \le k \le 7, -11 \le l \le 16$
Reflections collected	5531
Independent reflections	2529 [Rint = 0.0256, Rsigma = 0.0302]
Data/restraints/parameters	2529/1/155
Goodness-of-fit on F2	1.046
Final R indexes [I>= 2σ (I)]	R1 = 0.0269, wR2 = 0.0662
Final R indexes [all data]	R1 = 0.0283, wR2 = 0.0673
Largest diff. peak/hole / e Å-3	0.32/-0.24

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for BL-0650 (Cpd 15) U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	X	У	Z	U(eq)
S1	3055.3(6)	5772.7(10)	5217.6(4)	12.36(13)
N1	3619(2)	5297(3)	4096.8(14)	14.6(4)
O2	1992(2)	7771(3)	5180.0(13)	18.3(4)
03	4565.7(17)	5847(4)	5884.2(11)	17.2(3)
01	477(2)	7568(4)	2550.9(13)	26.0(4)
C2	2681(2)	5818(5)	3125.0(15)	15.1(4)
C4	1930(3)	3359(4)	5576.5(19)	18.1(5)
C7	6389(3)	4764(4)	1474.9(18)	18.6(5)
C6	5411(3)	5824(7)	2280.8(18)	24.4(5)
C5	3669(3)	4791(4)	2298.1(17)	16.2(5)
C1	2143(3)	8335(4)	2909.7(18)	20.5(5)
C8	6563(3)	5908(6)	571.2(17)	19.9(5)
C10	8344(3)	2885(5)	41.8(19)	22.2(5)
C12	7166(3)	2636(5)	1641.0(19)	21.9(5)
C11	8143(3)	1698(5)	931(2)	22.4(5)
C9	7550(3)	4981(5)	-136.2(18)	22.4(5)
C3	808(3)	5259(4)	2952.0(19)	19.9(6)

Table 3 Anisotropic Displacement Parameters (Å2×103) for BL-0650 (Cpd 15). The Anisotropic displacement factor exponent takes the form: $-2\pi 2[h2a*2U11+2hka*b*U12+...]$.

Atom	U_{11}	\mathbf{U}_{22}	U_{33}	U_{23}	U ₁₃	U_{12}
S1	11.2(2)	11.7(2)	14.2(2)	-0.4(2)	1.52(17)	-0.9(2)
N1	15.1(9)	13.0(11)	15.8(9)	-1.0(7)	2.7(7)	3.3(7)
O2	19.0(8)	16.5(9)	19.8(9)	-1.0(7)	3.8(7)	3.9(7)
03	15.5(7)	18.5(7)	17.2(7)	-1.6(9)	-0.9(6)	-3.0(9)
01	22.4(9)	31.6(10)	23.5(9)	6.4(8)	-1.0(7)	8.0(8)
C2	15.8(9)	14.6(10)	14.7(10)	0.0(12)	1.2(8)	-1.8(12)
C4	16.5(11)	16.8(12)	20.7(12)	2.4(10)	0.7(10)	-5.1(10)
C7	15.6(10)	21.4(12)	19.2(12)	-6.0(10)	3.6(9)	-7.5(11)
C6	23.3(11)	26.7(12)	24.4(12)	-8.9(14)	9.5(9)	-9.6(14)
C5	16.0(10)	17.0(11)	15.7(11)	-1.7(9)	1.5(8)	-0.1(10)
C1	26.2(13)	18.9(13)	16.4(11)	0.5(10)	1.1(10)	4.8(11)
C8	19.1(10)	18.4(11)	22.1(11)	-0.6(12)	1.5(8)	-0.4(12)
C10	16.3(11)	29.5(15)	21.4(12)	-10.9(11)	5.1(9)	-3.4(10)
C12	22.6(12)	24.4(13)	18.3(12)	2.3(11)	0.4(10)	-6.0(11)
C11	18.0(12)	18.7(11)	29.8(14)	-2.2(11)	-1.1(10)	-0.8(9)
C9	23.3(12)	27.9(14)	16.2(12)	2.1(10)	3.4(9)	-5.3(11)
C3	15.9(11)	24.2(16)	19.6(11)	-0.6(10)	1.3(9)	2.6(9)

Table 4 Bond Lengths for BL-0650 (Cpd 15)

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S 1	N1	1.6189(19)	C2	C3	1.549(3)
S 1	O2	1.4407(18)	C7	C6	1.516(3)
S 1	O3	1.4462(14)	C7	C8	1.389(4)
S 1	C4	1.757(3)	C7	C12	1.393(4)
N1	C2	1.471(3)	C6	C5	1.534(3)
01	C1	1.460(3)	C8	C9	1.394(3)
01	C3	1.456(3)	C10	C11	1.390(4)
C2	C5	1.534(3)	C10	C9	1.384(4)
C2	C1	1.541(4)	C12	C11	1.393(4)

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
N1	S 1	C4	107.98(11)	C1	C2	C3	85.01(17)
O2	S 1	N1	108.71(10)	C8	C7	C6	121.1(3)
O2	S 1	03	117.91(11)	C8	C7	C12	118.7(2)
O2	S 1	C4	109.02(11)	C12	C7	C6	120.2(2)
03	S 1	N1	106.07(9)	C7	C6	C5	113.0(2)
03	S 1	C4	106.74(12)	C2	C5	C6	113.4(2)
C2	N1	S 1	127.39(15)	01	C1	C2	90.62(18)
C3	01	C1	91.44(16)	C7	C8	C9	120.5(3)
N1	C2	C5	106.72(18)	C9	C10	C11	119.5(2)
N1	C2	C1	118.2(2)	C11	C12	C7	120.9(2)
N1	C2	C3	120.70(19)	C10	C11	C12	119.9(2)
C5	C2	C1	113.0(2)	C10	C9	C8	120.5(2)
C5	C2	C3	112.20(19)	01	C3	C2	90.47(19)

Table 5 Bond Angles for BL-0650 (Cpd 15)

Table 6 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for BL-0650 (Cpd 15)

Atom	X	У	Z	U(eq)
H1	3975.34	3863.72	4075.74	17
H4a	899.58	3229.13	5135.07	27
H4b	1668.27	3541.48	6278.29	27
H4c	2596.22	1961.09	5516.36	27
Нба	5312.85	7507.57	2161.5	29
H6b	6027.9	5590.8	2949.96	29
H5a	3046.2	5052.31	1632.69	19
H5b	3767.89	3102.99	2402.35	19
H1a	2175.38	9308.59	3523.53	25
H1b	2743.21	9086.69	2380.57	25
H8	6005.25	7331.04	434.43	24
H10	9021.23	2264.15	-440.46	27
H12	7028.48	1812.38	2246.36	26
H11	8670.29	247.78	1055.55	27
H9	7678.68	5793.91	-745.42	27
H3a	547.52	4017.24	2450.88	24
H3b	283.81	4946.04	3583.84	24

X-ray Structure Determination for BL-0658 (Cpd 16, CCDC 1995771)

Experimental:

Crystals of BL-0658 (Cpd 16) were grown from ethyl acetate. The single crystal X-ray diffraction studies were carried out on a Bruker APEX-II CCD diffractometer equipped with Cu K α radiation (1 = 1.54178). A $0.28 \times 0.03 \times 0.03$ mm colorless needle was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using ϕ and ϖ scans. Crystal-to-detector distance was 40 mm with 5.00 s exposure time. A total of 9057 reflections were collected covering the indices $-20 \le h \le 21$, $-9 \le k \le 9$, $-13 \le 1 \le 12$. 2727 reflections were found to be symmetry independent, with a Rint of 0.0770. The space group was found to be P2₁/c. Crystallographic data are summarized in Table 1.

Table 1 Crystal data and structure refinement for BL-0658 (Cpd 15, CCDC 1995771)

Identification code	BL-0658
Empirical formula	C17H19NO3S
Formula weight	317.41
Temperature/K	100.0
Crystal system	monoclinic
Space group	P21/c
a/Å	18.180(2)
b/Å	7.6435(12)
c/Å	11.3056(15)
$\alpha^{\prime \circ}$	90
β/°	96.444(9)
$\gamma^{/\circ}$	90
Volume/Å3	1561.1(4)
Z	4
pcalcg/cm3	1.3504
μ/mm-1	1.947
F(000)	675.3
Crystal size/mm3	$0.28 \times 0.03 \times 0.03$
Radiation	Cu Kα (λ = 1.54178)
2Θ range for data collection/°	4.9 to 133.16
Index ranges	$-20 \le h \le 21, -9 \le k \le 9, -13 \le l \le 12$
Reflections collected	9057
Independent reflections	2727 [Rint = 0.0770, Rsigma = 0.0822]
Data/restraints/parameters	2727/0/213
Goodness-of-fit on F2	1.016
Final R indexes [I>= 2σ (I)]	R1 = 0.0632, $wR2 = 0.1566$
Final R indexes [all data]	R1 = 0.1035, wR2 = 0.1837
Largest diff. peak/hole / e Å-3	0.46/-0.58

Table 2 Fractional Atomic Coordinates (×10 ⁴) and Equivalent Isotropic Displacement Parameters	5
$(Å^2 \times 10^3)$ for BL-0658 (Cpd 15) U _{eq} is defined as 1/3 of of the trace of the orthogonalised U _{IJ} tensor	•

Atom	X	У	Z	U(eq)
S1	3576.2(5)	6736.0(15)	5299.9(8)	39.9(3)
O2	3998.4(17)	8268(5)	5089(3)	54.4(8)
03	3534.4(17)	5305(4)	4477(2)	52.1(8)
C4	2656(2)	7464(5)	5378(3)	32.5(8)
C9	2503(2)	8635(5)	6254(3)	39.1(9)
C5	2110(2)	6938(5)	4506(3)	36.8(9)
C12	1901(2)	3742(5)	7882(3)	34.6(8)
C11	2683(2)	4384(6)	7914(3)	37.4(9)
C13	1687(2)	2621(5)	8761(3)	38.1(9)
C17	1376(2)	4229(5)	6965(3)	38.9(9)
C10	3103(2)	3487(5)	6986(3)	34.1(8)
C7	1242(2)	8762(6)	5379(4)	47.7(11)
C8	1791(3)	9275(6)	6253(4)	44.0(10)
C6	1394(2)	7599(6)	4505(3)	41.9(10)
C15	448(2)	2525(6)	7783(4)	41.9(9)
C16	657(2)	3640(6)	6914(3)	42.6(10)
C14	965(2)	2040(6)	8704(3)	41.1(10)
N1	3872.5(19)	6056(5)	6628(3)	38.8(8)
Ola	4738(8)	2418(18)	7526(8)	46(3)
C2	3878(2)	4205(5)	6950(3)	37.2(9)
C1	4404(2)	3839(6)	8087(3)	41.2(10)
C3	4414(2)	3045(6)	6326(3)	45.6(11)
O1b	4999(11)	3200(40)	7337(9)	53(6)

Table 3 Anisotropic Displacement Parameters (Å2×103) for BL-0658 (Cpd 15). The Anisotropicdisplacement factor exponent takes the form: $-2\pi 2$ [h2a*2U11+2hka*b*U12+...].

Atom	U11	U22	U33	U12	U13	U23
S 1	35.4(5)	51.3(6)	34.2(5)	-0.4(5)	9.0(4)	6.7(5)
02	39.9(16)	68(2)	56.4(18)	-7.9(15)	9.2(13)	23.0(17)
03	54.5(18)	69(2)	34.5(14)	13.9(16)	13.6(12)	1.4(15)
C4	33.5(19)	32.6(19)	32.8(18)	-4.6(16)	10.1(15)	6.4(16)
C9	46(2)	39(2)	31.4(18)	-1.5(18)	0.4(16)	2.4(17)
C5	45(2)	38(2)	27.5(17)	-3.1(18)	5.3(15)	4.6(17)
C12	41(2)	33(2)	31.0(17)	-0.7(16)	12.4(15)	-2.4(15)
C11	39(2)	44(2)	28.7(17)	-3.5(18)	3.5(15)	-6.2(17)
C13	47(2)	40(2)	27.8(17)	0.1(18)	4.4(16)	5.0(17)
C17	44(2)	41(2)	34.0(18)	3.8(18)	12.6(16)	9.0(17)
C10	35.4(19)	35(2)	31.8(18)	0.1(16)	4.5(15)	-2.0(16)
C7	43(2)	54(3)	46(2)	9(2)	7.5(18)	21(2)
C8	54(3)	39(2)	39(2)	9(2)	11.3(18)	0.7(18)
C6	41(2)	49(2)	34.3(19)	-6.1(19)	-1.2(17)	10.8(18)
C15	36(2)	51(2)	41(2)	-2.1(19)	11.8(16)	3.8(19)
C16	40(2)	54(3)	35.1(19)	7.6(19)	7.2(16)	9.2(19)
C14	44(2)	49(2)	32.8(18)	-4.8(19)	16.2(16)	7.9(18)
N1	30.3(17)	43(2)	41.0(18)	-4.0(16)	-2.7(14)	1.8(16)
Ola	37(5)	55(5)	46(3)	11(4)	6(3)	0(4)
C2	37(2)	40(2)	35.2(19)	2.6(18)	8.3(16)	-3.6(17)
C1	48(2)	42(2)	33.9(19)	4.5(19)	5.9(17)	-7.4(17)
C3	45(2)	57(3)	35(2)	11(2)	4.1(17)	-6.2(19)
O1b	42(7)	92(12)	26(4)	25(8)	5(4)	-12(5)

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S1	O2	1.434(3)	C17	C16	1.377(6)
S1	03	1.432(3)	C10	C2	1.517(5)
S1	C4	1.775(4)	C7	C8	1.381(6)
S1	N1	1.622(3)	C7	C6	1.380(6)
C4	C9	1.386(5)	C15	C16	1.386(6)
C4	C5	1.378(5)	C15	C14	1.373(6)
C9	C8	1.384(6)	N1	C2	1.461(5)
C5	C6	1.395(6)	Ola	C1	1.426(8)
C12	C11	1.501(5)	Ola	C3	1.496(10)
C12	C13	1.400(5)	C2	C1	1.539(5)
C12	C17	1.379(6)	C2	C3	1.545(6)
C11	C10	1.528(5)	C1	Olb	1.527(13)
C13	C14	1.380(6)	C3	O1b	1.476(12)

Table 4 Bond Lengths for BL-0658 (Cpd 15)

Table 5 Bond Angles for BL-0658 (Cpd 15)

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
03	S 1	O2	120.3(2)	C2	C10	C11	113.2(3)
C4	S 1	O2	106.10(19)	C6	C7	C8	120.5(4)
C4	S 1	03	106.87(18)	C7	C8	C9	120.2(4)
N1	S 1	O2	106.67(19)	C7	C6	C5	119.7(4)
N1	S 1	03	110.16(19)	C14	C15	C16	119.0(4)
N1	S 1	C4	105.75(18)	C15	C16	C17	120.4(4)
С9	C4	S 1	120.2(3)	C15	C14	C13	121.0(4)
C5	C4	S 1	118.7(3)	C2	N1	S 1	122.3(3)
C5	C4	C9	120.9(4)	C3	Ola	C1	90.9(5)
C8	C9	C4	119.3(4)	N1	C2	C10	112.1(3)
C6	C5	C4	119.4(4)	C1	C2	C10	113.8(3)
C13	C12	C11	121.4(4)	C1	C2	N1	111.8(3)
C17	C12	C11	120.3(4)	C3	C2	C10	116.1(3)
C17	C12	C13	118.4(4)	C3	C2	N1	115.4(3)
C10	C11	C12	112.4(3)	C3	C2	C1	85.0(3)
C14	C13	C12	120.1(4)	C3	O1b	C1	87.8(8)
C16	C17	C12	121.1(4)				

Table 6 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for BL-0658 (Cpd 15)

Atom	X	У	Z	U(eq)
H9	2884(2)	8995(5)	6850(3)	46.9(11)
Н5	2219(2)	6131(5)	3911(3)	44.1(11)
H11a	2678(2)	5662(6)	7772(3)	44.8(11)
H11b	2946(2)	4170(6)	8716(3)	44.8(11)
H13	2039(2)	2260(5)	9398(3)	45.7(11)
H17	1512(2)	4984(5)	6359(3)	46.7(11)
H10a	3136(2)	2219(5)	7162(3)	40.9(10)
H10b	2821(2)	3631(5)	6191(3)	40.9(10)
H7	755(2)	9212(6)	5380(4)	57.2(13)
H8	1680(3)	10068(6)	6855(4)	52.8(12)
H6	1014(2)	7251(6)	3906(3)	50.3(12)
H15	-46(2)	2102(6)	7743(4)	50.2(11)
H16	303(2)	3999(6)	6279(3)	51.1(12)
H14	824(2)	1294(6)	9311(3)	49.3(12)
H1a	4145(2)	3475(6)	8771(3)	49.4(12)
H1d	4751(2)	4812(6)	8314(3)	49.4(12)
H1b	4548(2)	4903(6)	8557(3)	49.4(12)
H1c	4223(2)	2918(6)	8598(3)	49.4(12)
НЗа	4765(2)	3713(6)	5892(3)	54.8(13)
H3d	4165(2)	2118(6)	5817(3)	54.8(13)
H3b	4233(2)	1832(6)	6187(3)	54.8(13)
НЗс	4554(2)	3563(6)	5581(3)	54.8(13)
H1	4200(20)	6590(50)	6940(30)	17(9)

Table 7 Atomic Occupancy for BL-0658 (Cpd 15)

Atom	Occupancy	Atom	Occupancy
Ola	0.56(4)	H1a	0.56(4)
H1b	0.44(4)	H1c	0.44(4)
H3d	0.56(4)	H3b	0.44(4)
O1b	0.44(4)		

X-ray Structure Determination for BL-0667 (Cpd 18, CCDC 1995773)

Experimental:

Crystals of BL-0667 (Cpd 18) were grown from ethyl acetate. The single crystal X-ray diffraction studies were carried out on a Bruker APEX-II CCD diffractometer equipped with Cu K α radiation (1 = 1.54178). A 0.230 × 0.05 × 0.05 mm colorless rod was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using ϕ and ϖ scans. Crystal-to-detector distance was 40 mm with 5.00 s exposure time. A total of 5101 reflections were collected covering the indices $-9 \le h \le 9$, $-6 \le k \le 6$, $-16 \le 1 \le 16$. 2275 reflections were found to be symmetry independent, with a Rint of 0.0334. The space group was found to be P2₁. Crystallographic data are summarized in Table 1.

Table 1 Crystal data and structure refinement for BL-0667 (Cpd 18)

Identification code	BL-0667
Empirical formula	C12H17NO2S2
Formula weight	271.38
Temperature/K	100.0
Crystal system	monoclinic
Space group	P21
a/Å	8.1251(5)
b/Å	5.7879(4)
c/Å	13.8802(9)
$\alpha/^{\circ}$	90
$\beta^{\prime \circ}$	95.521(4)
$\gamma^{/\circ}$	90
Volume/Å3	649.72(7)
Z	2
pcalcg/cm3	1.387
μ/mm-1	3.636
F(000)	288.0
Crystal size/mm3	$0.23 \times 0.05 \times 0.05$
Radiation	$CuK\alpha$ ($\lambda = 1.54178$)
29 range for data collection/°	6.398 to 139.872
Index ranges	$-9 \le h \le 9, -6 \le k \le 6, -16 \le l \le 16$
Reflections collected	5101
Independent reflections	2275 [Rint = 0.0334, Rsigma = 0.0465]
Data/restraints/parameters	2275/1/155
Goodness-of-fit on F2	0.719
Final R indexes [I>= 2σ (I)]	R1 = 0.0316, $wR2 = 0.0827$
Final R indexes [all data]	R1 = 0.0324, $wR2 = 0.0837$
Largest diff. peak/hole / e Å-3	0.40/-0.27

Table 2 Fractional Atomic	Coordinates (×10 ⁴)	and Equivalent Is	otropic Displacement	t Parameters
(Å ² ×10 ³) for BL-0667 (Cpd	18) U _{eq} is defined a	s 1/3 of of the trac	e of the orthogonalise	ed U _{IJ} tensor.

Atom	X	У	Ζ	U(eq)
S2	6968.4(7)	5467.7(10)	4864.8(4)	17.55(17)
S 1	9880.4(9)	7271.9(14)	7622.6(5)	30.1(2)
O2	8185(2)	7261(4)	4908.4(14)	25.2(4)
01	5492(2)	5753(4)	4210.0(13)	24.8(4)
N1	6356(3)	5140(4)	5937.2(15)	19.9(5)
C4	7864(3)	2847(5)	4554.6(19)	22.0(5)
C2	7357(3)	5594(6)	6860.1(18)	20.8(5)
C1	7840(4)	8141(5)	7047(2)	27.3(6)
C7	3702(4)	4787(6)	8491(2)	26.1(6)
C8	3622(4)	6049(6)	9339(2)	31.1(7)
C12	2879(4)	2693(6)	8397(2)	29.7(7)
C10	1861(4)	3184(7)	9950(2)	32.7(7)
C6	4626(4)	5683(8)	7672(2)	39.9(8)
C11	1961(4)	1890(6)	9119(2)	33.2(7)
C5	6359(4)	4652(5)	7662(2)	24.0(6)
C9	2698(4)	5246(7)	10053(2)	33.9(7)
C3	9148(3)	4626(6)	6989.8(19)	24.4(6)

Table 3 Anisotropic Displacement Parameters (Å2×103) for BL-0667 (Cpd 18). The Anisotropic displacement factor exponent takes the form: $-2\pi 2$ [h2a*2U11+2hka*b*U12+...].

Atom	U ₁₁	U_{22}	U ₃₃	U_{23}	U ₁₃	U_{12}
S2	17.4(3)	15.5(3)	19.7(3)	0.7(2)	1.86(19)	1.6(2)
S 1	29.9(4)	37.9(5)	22.3(3)	-6.8(3)	1.4(2)	-9.1(3)
O2	27.6(10)	23.0(11)	25.3(9)	2.1(8)	4.9(7)	-2.4(8)
01	23.1(9)	25.8(11)	24.4(8)	1.2(8)	-2.6(7)	4.5(8)
N1	20.9(10)	17.2(13)	21.7(10)	0.0(8)	2.6(8)	-2.5(8)
C4	20.5(12)	20.9(14)	24.3(12)	-3.9(10)	1.5(9)	4.1(10)
C2	23.6(13)	16.8(13)	21.5(11)	0.3(11)	0.0(9)	1.5(12)
C1	35.6(16)	22.1(15)	24.1(13)	-3.3(10)	2.7(11)	-3.8(12)
C7	24.1(14)	28.5(16)	26.0(13)	7.9(11)	4.1(10)	9.1(11)
C8	29.6(15)	23.5(17)	39.7(16)	-3.1(12)	0.7(12)	0.1(11)
C12	34.3(16)	29.0(18)	25.2(12)	-4.8(12)	0.3(11)	5.6(13)
C10	28.7(16)	41(2)	29.0(14)	12.3(13)	7.8(12)	4.4(12)
C6	35.9(17)	44(2)	42.2(17)	21.8(17)	16.7(13)	15.9(16)
C11	29.2(15)	26.6(17)	42.7(17)	3.8(14)	-1.5(12)	-4.0(13)
C5	26.9(14)	22.1(14)	23.2(12)	4.2(10)	3.2(10)	2.8(11)
C9	38.2(16)	41(2)	22.7(12)	-4.0(13)	2.0(11)	11.1(16)
C3	23.6(14)	25.6(14)	23.5(12)	-1.5(11)	-0.6(10)	0.4(11)

Table 4 Bond Lengths for BL-0667 (Cpd 18)

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S2	O2	1.431(2)	C2	C3	1.554(4)
S2	01	1.4432(19)	C7	C8	1.392(5)
S2	N1	1.625(2)	C7	C12	1.385(5)
S2	C4	1.754(3)	C7	C6	1.513(4)
S1	C1	1.840(3)	C8	C9	1.381(5)
S1	C3	1.836(3)	C12	C11	1.385(5)
N1	C2	1.474(3)	C10	C11	1.384(5)
C2	C1	1.541(4)	C10	C9	1.374(6)
C2	C5	1.539(4)	C6	C5	1.531(4)

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
O2	S2	01	118.22(13)	C5	C2	C3	110.0(2)
O2	S2	N1	108.49(12)	C2	C1	S1	90.89(18)
O2	S2	C4	109.66(13)	C8	C7	C6	121.5(3)
01	S2	N1	106.30(11)	C12	C7	C8	118.5(3)
01	S2	C4	106.49(13)	C12	C7	C6	120.0(3)
N1	S2	C4	107.15(13)	C9	C8	C7	120.2(3)
C3	S1	C1	77.49(13)	C7	C12	C11	121.0(3)
C2	N1	S2	125.66(18)	C9	C10	C11	119.3(3)
N1	C2	C1	115.3(2)	C7	C6	C5	113.3(3)
N1	C2	C5	106.3(2)	C10	C11	C12	120.0(3)
N1	C2	C3	118.0(2)	C6	C5	C2	114.7(2)
C1	C2	C3	96.0(2)	C10	C9	C8	121.0(3)
C5	C2	C1	111.2(2)	C2	C3	S 1	90.64(19)

Table 5 Bond Angles for BL-0667 (Cpd 18)

Table 6 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for BL-0667 (Cpd 18)

Atom	X	У	Z	U(eq)
H1	5890.16	3773.2	5969.21	24
H4A	8186.19	2947.38	3893.44	33
H4B	7061.99	1593.7	4592.77	33
H4C	8843.94	2536.35	5004.29	33
H1A	7146.52	8935.85	7492.86	33
H1B	7896.2	9049.87	6446.36	33
H8	4206.37	7466.98	9427.05	37
H12	2943.93	1793.37	7829.93	36
H10	1221.66	2651.63	10443.28	39
H6A	4719.7	7384.57	7726.24	48
H6B	3976.92	5326.85	7048.98	48
H11	1399.88	452.22	9043.22	40
H5A	6255.65	2956.29	7585.61	29
H5B	6986.56	4954.35	8296.77	29
H9	2638.46	6133.19	10624.98	41
НЗА	9633.98	4375.89	6370.81	29
H3B	9265.43	3225.04	7400.08	29

X-ray Structure Determination for BL-0657 (Cpd 19, CCDC 1995772)

Experimental:

Crystals of BL-0657 (Cpd 19) were grown from dichloromethane/hexanes. The single crystal X-ray diffraction studies were carried out on a Bruker APEX-II CCD diffractometer equipped with with Mo K α radiation ($\lambda = 0.71073$). A **0.**18 × 0.05 × 0.04 mm colorless block was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using ϕ and ϖ scans. Crystal-to-detector distance was 60 mm with 5.00 s exposure time. A total of 66842 reflections were collected covering the indices $-16 \le h \le 16$, $-18 \le k \le 18$, $-23 \le 1 \le 23$. 13392 reflections were found to be symmetry independent, with a Rint of 0.0434. The space group was found to be P-1. Crystallographic data are summarized in Table 1.

Table 1 Crystal data and structure refinement for BL-0657 (Cpd 19)

Identification code	BL-0657
Empirical formula	$C_{17}H_{19}NO_2S_2$
Formula weight	333.46
Temperature/K	100.0
Crystal system	triclinic
Space group	P-1
a/Å	13.0037(7)
b/Å	15.1406(11)
c/Å	18.8773(14)
α'°	100.792(2)
β/°	100.006(2)
$\gamma^{\prime \circ}$	111.272(2)
Volume/Å ³	3281.4(4)
Z	8
$\rho_{calc}g/cm^3$	1.347
μ/mm^{-1}	0.329
F(000)	1403.0
Crystal size/mm ³	$0.18 \times 0.05 \times 0.04$
Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/°	3 to 52.734
Index ranges	$\text{-16} \le h \le \text{16}, \text{-18} \le k \le \text{18}, \text{-23} \le \text{l} \le \text{23}$
Reflections collected	66842
Independent reflections	13392 [$R_{int} = 0.0434$, $R_{sigma} = 0.0370$]
Data/restraints/parameters	13392/0/355
Goodness-of-fit on F ²	1.081
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0878, wR_2 = 0.2143$
Final R indexes [all data]	$R_1 = 0.1136, wR_2 = 0.2382$
Largest diff. peak/hole / e Å ⁻³	3.40/-2.43

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for BL-0657 (Cpd 19) Ueq is defined as 1/3 of of the trace of the orthogonalised UIJ tensor.

S2D 1256.4(9) 5180.7(7) 1477.9(6) 155.2) S2A 1520.4(9) 2280.2(7) 992.7(6) 15.9(2) S2C -5563.6(9) 20.7(8) 3696.4(6) 17.2(2) S1B 548.9(10) 2771.3(9) 3533.6(7) 25.2(4) S1A 4953.5(11) 2288.5(9) 1383.7(7) 27.8(3) S1C -1432.5(13) 1667.7(11) 4802.0(8) 39.4(3) S1D -2869.4(13) 3551.4(11) 276.2(8) 37.4(5) O2A 750(3) 2593(2) 1176.7(17) 20.3(6) O1D 206(13) 4357(2) 1176.7(17) 20.3(6) O1A 1712(3) 1456(2) 1176.7(17) 20.3(6) O1B 206(3) 3532(2) 1247.1(17) 21.6(7) O2C -6347(3) 334(2) 4016.6(17) 22.5(7) O1C -5275(3) -728(2) 3922.9(18) 24.5(7) O2B 4958(3) 2650(2) 4070.0(18) 24.8(7) <t< th=""><th>Atom</th><th>X</th><th>У</th><th>Z</th><th>U(eq)</th></t<>	Atom	X	У	Z	U(eq)
S2A 1520.4(9) 2280.2(7) 992.7(6) 15.9(2) S2C -5563.6(9) 20.7(8) 3696.4(6) 17.2(2) S1B 548.9(10) 2771.3(9) 3533.6(7) 25.2(4) S1A 4953.5(1) 2228.5(9) 1383.7(7) 27.8(3) S1C -1432.5(13) 1667.7(11) 4802.0(8) 37.4(5) O2A 750(3) 2593(2) 1330.2(17) 20.0(6) O1D 2061(3) 4877(2) 1176.7(17) 20.3(6) O1A 1712(3) 1456(2) 1153.4(17) 21.6(7) O2D 976(3) 5932(2) 1247.1(17) 21.6(7) O2C -6347(3) 334(2) 4017.6(17) 20.3(6) O1B 3878(3) 2704(2) 3922.9(18) 24.8(7) O1C -5275(3) -728(2) 3922.9(18) 24.8(7) NID 91(3) 4196(3) 1259.1(19) 16.3(7) N2A 2727(3) 3230(3) 1255.5(19) 17.2(7) NIB	S2D	1256.4(9)	5180.7(7)	1477.9(6)	15.5(2)
S2C -5563.6(9) 20.7(8) 3696.4(6) 17.2(2) S2B 4024.9(9) 2880.7(8) 4232.6(6) 16.7(2) S1B 548.9(10) 2717.13(9) 3533.6(7) 25.2(4) S1A 4953.5(11) 2228.5(9) 1383.7(7) 27.8(3) S1C -1432.5(13) 1667.7(11) 4802.0(8) 39.4(3) S1D -2869.4(13) 3551.4(11) 27.6(2) 1330.2(17) 20.0(6) O1A 1712(3) 4456(2) 1135.4(17) 22.1(7) O2C -6347(3) 334(2) 4017.6(17) 20.3(6) O1B 3878(3) 3704(2) 4032.5(17) 22.5(7) O1C -5275(3) -728(2) 3922.9(18) 24.5(7) N1D 91(3) 4196(3) 1259.1(19) 16.3(7) NAA 2727(3) 3230(3) 1255.5(19) 17.1(7) N1B 2882(3) 1900(3) 3801.5(19) 17.1(7) C2A 3881(4) 3242(3) 1345(2) 17.7(8) <	S2A	1520.4(9)	2280.2(7)	992.7(6)	15.9(2)
S2B 4024.9(9) 2880.7(8) 4232.6(6) 16.7(2) SIB 548.9(10) 2771.3(9) 3533.6(7) 25.2(4) SIA 4953.5(11) 2228.5(9) 1383.7(7) 27.8(3) SIC -1432.5(13) 1667.7(11) 4802.0(8) 39.4(3) SID -2869.4(13) 3551.4(11) 276.2(8) 37.4(5) O2A 750(3) 2593(2) 1330.2(17) 20.6(6) O1D 2061(3) 487(2) 1153.4(17) 22.1(7) O2D 976(3) 5932(2) 1247.1(17) 20.3(6) O1C -5275(3) -728(2) 3922.9(18) 24.5(7) O2E 4958(3) 2652(2) 4070.0(18) 24.8(7) N1D 91(3) 4196(3) 1255.5(19) 17.2(7) N1A 2727(3) 3230(3) 1255.5(19) 17.2(7) N1B 2882(3) 1900(3) 3801.5(19) 16.4(7) N1C -4412(3) 1002(3) 3869.3(19) 17.1(7) C2A	S2C	-5563.6(9)	20.7(8)	3696.4(6)	17.2(2)
S1B 548.9(10) 2771.3(9) 3533.6(7) 25.2(4) S1A 4953.5(11) 2228.5(9) 1383.7(7) 27.8(3) S1C -1432.5(13) 1667.7(11) 4802.0(8) 39.4(3) S1D -2869.4(13) 3551.4(11) 276.2(8) 37.4(5) O2A 750(3) 2593(2) 1330.2(17) 20.0(6) O1D 2061(3) 4877(2) 1176.7(17) 20.3(6) O1A 1712(3) 1456(2) 1153.4(17) 22.1(7) O2D 976(3) 5932(2) 1247.1(17) 21.6(7) O2C -6347(3) 334(2) 4017.6(17) 20.3(6) O1B 3878(3) 3704(2) 4032.5(17) 22.5(7) O1C 5275(3) -728(2) 3922.9(18) 24.8(7) N1D 91(3) 4196(3) 1255.1(19) 16.3(7) N2A 2727(3) 3230(3) 1255.1(9) 17.1(7) N1B 2882(3) 1002(3) 3869.3(19) 17.1(7) N1C	S2B	4024.9(9)	2880.7(8)	4232.6(6)	16.7(2)
SIA 4953.5(11) 2228.5(9) 1383.7(7) 27.8(3) SIC -1432.5(13) 1667.7(11) 4802.0(8) 39.4(3) SID -2869.4(13) 3551.4(11) 276.2(8) 37.4(5) O2A 750(3) 2593(2) 130.2(17) 20.0(6) O1D 2061(3) 4877(2) 1176.7(17) 20.3(6) O1A 1712(3) 1456(2) 1153.4(17) 22.1(7) O2C -6347(3) 334(2) 4017.6(17) 20.3(6) O1B 3878(3) 3704(2) 4032.5(17) 22.5(7) O1C -5275(3) -728(2) 3922.9(18) 24.5(7) O2B 4958(3) 2652(2) 4070.0(18) 24.8(7) N1D 91(3) 4196(3) 1255.1(19) 17.2(7) N1B 2882(3) 1900(3) 3801.5(19) 16.4(7) N1C -4412(3) 1002(3) 3869.3(19) 17.1(7) C2A 3881(4) 3242(3) 1345(2) 17.7(8) C4D	S1B	548.9(10)	2771.3(9)	3533.6(7)	25.2(4)
SIC -1432.5(13) 1667.7(11) 4802.0(8) 39.4(3) SID -2869.4(13) 3551.4(11) 276.2(8) 37.4(5) O2A 750(3) 2593(2) 1330.2(17) 20.0(6) OID 2061(3) 4877(2) 1176.7(17) 22.1(7) O2D 976(3) 5932(2) 1247.1(17) 22.6(7) O2C -6347(3) 3704(2) 4032.5(17) 22.5(7) O2B 976(3) 728(2) 3922.9(18) 24.5(7) O2B 4958(3) 2652(2) 4070.0(18) 24.8(7) NID 91(3) 4196(3) 1259.1(19) 16.3(7) N2A 2727(3) 3230(3) 1255.5(19) 17.2(7) NIB 2882(3) 1000(3) 380.5(19) 16.4(7) N1C -4412(3) 1002(3) 3869.3(19) 17.1(7) C2A 3881(4) 3242(3) 1345(2) 17.6(8) C12D -1315(4) 443(3) 1519(2) 17.8(8) C12D <t< td=""><td>S1A</td><td>4953.5(11)</td><td>2228.5(9)</td><td>1383.7(7)</td><td>27.8(3)</td></t<>	S1A	4953.5(11)	2228.5(9)	1383.7(7)	27.8(3)
S1D -2869.4(13) 3551.4(11) 276.2(8) 37.4(5) O2A 750(3) 2593(2) 1330.2(17) 20.0(6) O1D 2061(3) 4877(2) 1176.7(17) 20.3(6) O1A 1712(3) 1455(2) 11513.4(17) 22.1(7) O2D 976(3) 5932(2) 1247.1(17) 21.6(7) O2C -6347(3) 334(2) 4017.6(17) 20.3(6) O1B 3878(3) 3704(2) 4032.5(17) 22.5(7) O2C -5275(3) -728(2) 3922.9(18) 24.8(7) N1D 91(3) 4196(3) 1259.1(19) 16.3(7) N2A 2727(3) 3230(3) 1255.5(19) 17.2(7) N1B 2882(3) 1900(3) 3801.5(19) 16.4(7) N1C -4412(3) 1002(3) 3869.3(19) 17.1(7) C2A 3881(4) 3242(3) 1345(2) 17.6(8) C12C -1315(4) 443(3) 1793(2) 17.9(8) C12D	S1C	-1432.5(13)	1667.7(11)	4802.0(8)	39.4(3)
O2A 750(3) 2593(2) 1330.2(17) 20.0(6) O1D 2061(3) 4877(2) 1176.7(17) 20.3(6) O1A 1712(3) 1456(2) 1153.4(17) 22.1(7) O2D 976(3) 5932(2) 1247.1(17) 21.6(7) O2C -6347(3) 334(2) 4017.6(17) 20.3(6) O1B 3878(3) 3704(2) 4032.5(17) 22.5(7) O1C -5275(3) -728(2) 3922.9(18) 24.8(7) NID 91(3) 4196(3) 1259.1(19) 16.3(7) NID 91(3) 4196(3) 1255.5(19) 17.1(7) NIB 2882(3) 1900(3) 3801.5(19) 16.4(7) NIC -4412(3) 1002(3) 3869.3(19) 17.1(7) C2A 3881(4) 3242(3) 1345(2) 17.7(8) C4D 1837(4) 5591(3) 2460(2) 16.1(8) C12C -3185(4) 743(3) 1793(2) 17.9(8) C12D -1315(4) <td>S1D</td> <td>-2869.4(13)</td> <td>3551.4(11)</td> <td>276.2(8)</td> <td>37.4(5)</td>	S1D	-2869.4(13)	3551.4(11)	276.2(8)	37.4(5)
O1D 2061(3) 4877(2) 1176.7(17) 20.3(6) O1A 1712(3) 1456(2) 1153.4(17) 22.1(7) O2D 976(3) 5932(2) 1247.1(17) 21.6(7) O2C -6347(3) 334(2) 4017.6(17) 20.3(6) O1E -5275(3) -728(2) 3922.9(18) 24.5(7) O2B 4958(3) 2652(2) 4070.0(18) 24.8(7) N1D 91(3) 4196(3) 1255.1(19) 17.2(7) N1B 2882(3) 1900(3) 3801.5(19) 16.4(7) N1C -4412(3) 1002(3) 3869.3(19) 17.1(7) C2A 3881(4) 3242(3) 1345(2) 17.6(8) C12C -3185(4) 743(3) 1793(2) 17.9(8) C12D -1315(4) 4454(3) 3261(2) 16.8(8) C12D -3185(4) 743(3) 1793(2) 17.9(8) C12A 5383(4) 250(3) 5540(2) 20.2(9) C12A 5383(4) <td>O2A</td> <td>750(3)</td> <td>2593(2)</td> <td>1330.2(17)</td> <td>20.0(6)</td>	O2A	750(3)	2593(2)	1330.2(17)	20.0(6)
O1A 1712(3) 1456(2) 1153.4(17) 22.1(7) O2D 976(3) 5932(2) 1247.1(17) 21.6(7) O2C -6347(3) 334(2) 4017.6(17) 20.3(6) O1B 3878(3) 3704(2) 4032.5(17) 22.5(7) O1C -5275(3) -728(2) 3922.9(18) 24.5(7) O2B 4958(3) 2652(2) 4070.0(18) 24.8(7) N1D 91(3) 4196(3) 1255.5(19) 17.2(7) N1E 2882(3) 1900(3) 3801.5(19) 16.4(7) N1C -4412(3) 1002(3) 3869.3(19) 17.1(7) C2A 3881(4) 3242(3) 1345(2) 17.7(8) C4D 1837(4) 5591(3) 2460(2) 16.1(8) C12C -3185(4) 743(3) 1793(2) 17.9(8) C4A 948(4) 1992(3) 13(2) 16.7(8) C12D -1315(4) 4454(3) 251(2) 18.2(9) C4A 948(4)	01D	2061(3)	4877(2)	1176.7(17)	20.3(6)
O2D 976(3) 5932(2) 1247.1(17) 21.6(7) O2C -6347(3) 334(2) 4017.6(17) 20.3(6) O1B 3878(3) 3704(2) 4032.5(17) 22.5(7) O1C -5275(3) -728(2) 3922.9(18) 24.5(7) O1B 4958(3) 2652(2) 4070.0(18) 24.8(7) N1D 91(3) 4196(3) 1259.1(19) 16.3(7) N2A 2727(3) 3230(3) 1255.5(19) 17.2(7) N1B 2882(3) 1900(3) 3869.3(19) 17.1(7) C2A 3881(4) 3242(3) 1345(2) 16.1(8) C4D 1837(4) 5591(3) 2460(2) 16.1(8) C12C -3185(4) 743(3) 1793(2) 17.9(8) C12D -1315(4) 4454(3) 3261(2) 16.2(8) C3B 1372(4) 2440(3) 4252(2) 18.2(9) C4A 948(4) 1992(3) 115(12) 21.7(9) C4C -6201(4)	01A	1712(3)	1456(2)	1153.4(17)	22.1(7)
O2C -6347(3) 334(2) 4017.6(17) 20.3(6) O1B 3878(3) 3704(2) 4032.5(17) 22.5(7) O1C -5275(3) -728(2) 3922.9(18) 24.5(7) O2B 4958(3) 2652(2) 4070.0(18) 24.8(7) NID 91(3) 4196(3) 1259.1(19) 16.3(7) N1D 91(3) 4196(3) 1255.5(19) 17.2(7) N1B 2882(3) 1900(3) 3801.5(19) 16.4(7) N1C -4412(3) 1002(3) 3869.3(19) 17.1(7) C2A 3881(4) 3242(3) 1345(2) 16.1(8) C4D 1837(4) 5291(3) 1345(2) 16.8(8) C12C -3185(4) 743(3) 1793(2) 17.9(8) C12D -1315(4) 4454(3) 3261(2) 16.8(8) C3B 1372(4) 2440(3) 4252(2) 18.2(9) C9B 4334(4) 2360(3) 5540(2) 20.2(9) C12A 5383(4)	O2D	976(3)	5932(2)	1247.1(17)	21.6(7)
O1B 3878(3) 3704(2) 4032.5(17) 22.5(7) O1C -5275(3) -728(2) 3922.9(18) 24.5(7) O2B 4958(3) 2652(2) 4070.0(18) 24.8(7) NID 91(3) 4196(3) 1259.1(19) 16.3(7) N2A 2727(3) 3230(3) 1255.5(19) 17.2(7) NIB 2882(3) 1900(3) 3801.5(19) 16.4(7) NIC -4412(3) 1002(3) 3869.3(19) 17.1(7) C2A 3881(4) 3242(3) 1345(2) 17.7(8) C4D 1837(4) 5591(3) 2460(2) 16.1(8) C2B 1701(4) 1831(3) 3646(2) 16.8(8) C12C -3185(4) 743(3) 179(2) 17.9(8) C4A 948(4) 1992(3) 13(2) 16.7(8) C3B 1372(4) 2440(3) 4252(2) 18.2(9) C9B 4334(4) 2360(3) 540(2) 20.2(9) C12A 5383(4) <td< td=""><td>O2C</td><td>-6347(3)</td><td>334(2)</td><td>4017.6(17)</td><td>20.3(6)</td></td<>	O2C	-6347(3)	334(2)	4017.6(17)	20.3(6)
O1C -5275(3) -728(2) 3922.9(18) 24.5(7) O2B 4958(3) 2652(2) 4070.0(18) 24.8(7) NID 91(3) 4196(3) 1255.1(19) 16.3(7) N2A 2727(3) 3230(3) 1255.5(19) 17.2(7) NIB 2882(3) 1900(3) 3801.5(19) 16.4(7) NIC -4412(3) 1002(3) 3869.3(19) 17.1(7) C2A 3881(4) 3242(3) 1345(2) 17.7(8) C4D 1837(4) 5591(3) 2460(2) 16.1(8) C2B 1701(4) 1831(3) 3646(2) 16.8(8) C12C -3185(4) 743(3) 1793(2) 17.9(8) C4A 948(4) 1992(3) 13(2) 16.7(8) C3B 1372(4) 2440(3) 4252(2) 18.2(9) C9B 4334(4) 2360(3) 5540(2) 20.2(9) C12A 5383(4) 5893(3) 1151(2) 21.7(9) C4C -6201(4) <td< td=""><td>O1B</td><td>3878(3)</td><td>3704(2)</td><td>4032.5(17)</td><td>22.5(7)</td></td<>	O1B	3878(3)	3704(2)	4032.5(17)	22.5(7)
O2B 4958(3) 2652(2) 4070.0(18) 24.8(7) N1D 91(3) 4196(3) 1259.1(19) 16.3(7) N2A 2727(3) 3230(3) 1255.5(19) 17.2(7) N1B 2882(3) 1900(3) 3891.5(19) 16.4(7) N1C -4412(3) 1002(3) 3869.3(19) 17.1(7) C2A 3881(4) 3242(3) 1345(2) 16.1(8) C4D 1837(4) 5591(3) 2460(2) 16.1(8) C12C -3185(4) 743(3) 1793(2) 17.9(8) C12D -1315(4) 4454(3) 3261(2) 16.7(8) C3B 1372(4) 2440(3) 4252(2) 18.2(9) C9B 433(4) 2360(3) 5540(2) 20.2(9) C12A 5383(4) 5893(3) 1151(2) 21.7(9) C4C -6201(4) -413(3) 2721(2) 17.8(8) C7D 2791(4) 6230(3) 398(3) 22.2(9) C1DD -1223(4) <t< td=""><td>01C</td><td>-5275(3)</td><td>-728(2)</td><td>3922.9(18)</td><td>24.5(7)</td></t<>	01C	-5275(3)	-728(2)	3922.9(18)	24.5(7)
NID 91(3) 4196(3) 1259.1(19) 16.3(7) N2A 2727(3) 3230(3) 1255.5(19) 17.2(7) NIB 2882(3) 1900(3) 3801.5(19) 16.4(7) NIC -4412(3) 1002(3) 3869.3(19) 17.1(7) C2A 3881(4) 3242(3) 1345(2) 16.1(8) C4D 1837(4) 5591(3) 2460(2) 16.1(8) C2B 1701(4) 1831(3) 3646(2) 16.8(8) C12C -3185(4) 743(3) 1793(2) 17.9(8) C12D -1315(4) 4454(3) 3261(2) 16.7(8) C4A 948(4) 1992(3) 13(2) 16.7(8) C3B 1372(4) 2440(3) 4252(2) 18.2(9) C3B 1372(4) 2400(3) 2540(2) 20.2(9) C12A 5383(4) 5893(3) 1151(2) 21.7(9) C4C -6201(4) -413(3) 2721(2) 17.8(8) C7D 2791(4) 6230	O2B	4958(3)	2652(2)	4070.0(18)	24.8(7)
N2A 2727(3) 3230(3) 1255.5(19) 17.2(7) N1B 2882(3) 1900(3) 3801.5(19) 16.4(7) N1C -4412(3) 1002(3) 3869.3(19) 17.1(7) C2A 3881(4) 3242(3) 1345(2) 17.7(8) C4D 1837(4) 5591(3) 2460(2) 16.1(8) C2B 1701(4) 1831(3) 3646(2) 16.8(8) C12C -3185(4) 743(3) 1793(2) 17.9(8) C12D -1315(4) 4454(3) 3261(2) 16.7(8) C4A 948(4) 1992(3) 13(2) 16.7(8) C3B 1372(4) 2440(3) 4252(2) 18.2(9) C3B 1372(4) 2440(3) 4252(2) 18.2(9) C4C -6201(4) -413(3) 2721(2) 17.8(8) C7D 2791(4) 6230(3) 3988(3) 22.2(9) C10D -1223(4) 4600(3) 1964(2) 18.9(9) C5D 1966(4) 6514	N1D	91(3)	4196(3)	1259.1(19)	16.3(7)
N1B 2882(3) 1900(3) 3801.5(19) 16.4(7) N1C -4412(3) 1002(3) 3869.3(19) 17.1(7) C2A 3881(4) 3242(3) 1345(2) 17.7(8) C4D 1837(4) 5591(3) 2460(2) 16.1(8) C2B 1701(4) 1831(3) 3646(2) 16.8(8) C12C -3185(4) 743(3) 1793(2) 17.9(8) C12D -1315(4) 4454(3) 3261(2) 16.7(8) C3B 1372(4) 2440(3) 4252(2) 18.2(9) C9B 4334(4) 2360(3) 5540(2) 20.2(9) C12A 5383(4) 5893(3) 1151(2) 21.7(9) C4C -6201(4) -413(3) 2721(2) 17.8(8) C7D 2791(4) 6230(3) 398(3) 22.2(9) C10D -1223(4) 4600(3) 1964(2) 18.9(9) C5D 1966(4) 6514(3) 2853(2) 19.1(9) C4B 4209(4) 3077	N2A	2727(3)	3230(3)	1255.5(19)	17.2(7)
N1C -4412(3) 1002(3) 3869.3(19) 17.1(7) C2A 3881(4) 3242(3) 1345(2) 17.7(8) C4D 1837(4) 5591(3) 2460(2) 16.1(8) C2B 1701(4) 1831(3) 3646(2) 16.8(8) C12C -3185(4) 743(3) 1793(2) 17.9(8) C12D -1315(4) 4454(3) 3261(2) 16.7(8) C3B 1372(4) 2440(3) 4252(2) 18.2(9) C9B 4334(4) 2360(3) 5540(2) 20.2(9) C12A 5383(4) 5893(3) 1151(2) 21.7(9) C4C -6201(4) -413(3) 2721(2) 17.8(8) C7D 2791(4) 6230(3) 3988(3) 22.2(9) C10D -1223(4) 4600(3) 1964(2) 18.9(9) C5D 1966(4) 6514(3) 2853(2) 19.1(9) C4B 4209(4) 3077(3) 5209(2) 18.1(9) C9C -6375(4) -1350	N1B	2882(3)	1900(3)	3801.5(19)	16.4(7)
C2A3881(4)3242(3)1345(2)17.7(8)C4D1837(4)5591(3)2460(2)16.1(8)C2B1701(4)1831(3)3646(2)16.8(8)C12C-3185(4)743(3)1793(2)17.9(8)C12D-1315(4)4454(3)3261(2)17.6(8)C4A948(4)1992(3)13(2)16.7(8)C3B1372(4)2440(3)4252(2)18.2(9)C9B4334(4)2360(3)5540(2)20.2(9)C12A5383(4)5893(3)1151(2)21.7(9)C4C-6201(4)-413(3)2721(2)17.8(8)C7D2791(4)6230(3)3988(3)22.2(9)C10D-1223(4)4600(3)1964(2)18.9(9)C5D1966(4)6514(3)2853(2)19.1(9)C4B4209(4)3077(3)5209(2)18.1(9)C9C-6375(4)-1350(3)2330(2)20.2(9)C5C-6552(4)1028(3)3884(2)20.6(9)C5C-6552(4)195(3)2362(2)21.1(9)C10C-3166(4)589(3)3110(2)20.3(9)C10A4710(4)4318(3)1524(2)19.5(9)C17D-472(4)5152(3)3879(3)24.7(10)C12B188(4)-849(3)3807(2)19.2(9)C5A723(4)1067(3)-427(3)24.7(10)C9D2181(4)4982(3)2823(2)21.1(9)	N1C	-4412(3)	1002(3)	3869.3(19)	17.1(7)
C4D1837(4)5591(3)2460(2)16.1(8)C2B1701(4)1831(3)3646(2)16.8(8)C12C-3185(4)743(3)1793(2)17.9(8)C12D-1315(4)4454(3)3261(2)17.6(8)C4A948(4)1992(3)13(2)16.7(8)C3B1372(4)2440(3)4252(2)18.2(9)C9B4334(4)2360(3)5540(2)20.2(9)C12A5383(4)5893(3)1151(2)21.7(9)C4C-6201(4)-413(3)2721(2)17.8(8)C7D2791(4)6230(3)3988(3)22.2(9)C10D-1223(4)4600(3)1964(2)18.9(9)C5D1966(4)6514(3)2853(2)19.1(9)C4B4209(4)3077(3)5209(2)18.1(9)C9C-6375(4)-1350(3)2330(2)20.2(9)C10C-3166(4)589(3)3110(2)20.3(9)C10A4710(4)4318(3)1524(2)19.5(9)C17D-472(4)5152(3)3879(3)24.7(10)C12B188(4)-849(3)3807(2)19.2(9)C5A723(4)1067(3)-427(3)24.7(10)C9D2181(4)4982(3)2823(2)21.1(9)	C2A	3881(4)	3242(3)	1345(2)	17.7(8)
C2B1701(4)1831(3)3646(2)16.8(8)C12C-3185(4)743(3)1793(2)17.9(8)C12D-1315(4)4454(3)3261(2)17.6(8)C4A948(4)1992(3)13(2)16.7(8)C3B1372(4)2440(3)4252(2)18.2(9)C9B4334(4)2360(3)5540(2)20.2(9)C12A5383(4)5893(3)1151(2)21.7(9)C4C-6201(4)-413(3)2721(2)17.8(8)C7D2791(4)6230(3)3988(3)22.2(9)C10D-1223(4)4600(3)1964(2)18.9(9)C5D1966(4)6514(3)2853(2)19.1(9)C4B4209(4)3077(3)5209(2)18.1(9)C9C-6375(4)-1350(3)2330(2)20.2(9)C2C-3265(4)1028(3)3884(2)20.6(9)C5C-6552(4)195(3)2362(2)21.1(9)C10A4710(4)4318(3)1524(2)19.5(9)C17D-472(4)5152(3)3879(3)24.7(10)C12B188(4)-849(3)3807(2)19.2(9)C5A723(4)1067(3)-427(3)24.7(10)C9D2181(4)4982(3)2823(2)21.1(9)	C4D	1837(4)	5591(3)	2460(2)	16.1(8)
C12C-3185(4)743(3)1793(2)17.9(8)C12D-1315(4)4454(3)3261(2)17.6(8)C4A948(4)1992(3)13(2)16.7(8)C3B1372(4)2440(3)4252(2)18.2(9)C9B4334(4)2360(3)5540(2)20.2(9)C12A5383(4)5893(3)1151(2)21.7(9)C4C-6201(4)-413(3)2721(2)17.8(8)C7D2791(4)6230(3)3988(3)22.2(9)C10D-1223(4)4600(3)1964(2)18.9(9)C5D1966(4)6514(3)2853(2)19.1(9)C4B4209(4)3077(3)5209(2)18.1(9)C9C-6375(4)-1350(3)2330(2)20.2(9)C3C-3265(4)1028(3)3884(2)20.6(9)C5C-6552(4)195(3)2362(2)21.1(9)C10C-3166(4)589(3)3110(2)20.3(9)C10A4710(4)4318(3)1524(2)19.5(9)C17D-472(4)5152(3)3879(3)24.7(10)C12B188(4)-849(3)3807(2)19.2(9)C5A723(4)1067(3)-427(3)24.7(10)C9D2181(4)4982(3)2823(2)21.1(9)	C2B	1701(4)	1831(3)	3646(2)	16.8(8)
C12D-1315(4)4454(3)3261(2)17.6(8)C4A948(4)1992(3)13(2)16.7(8)C3B1372(4)2440(3)4252(2)18.2(9)C9B4334(4)2360(3)5540(2)20.2(9)C12A5383(4)5893(3)1151(2)21.7(9)C4C-6201(4)-413(3)2721(2)17.8(8)C7D2791(4)6230(3)3988(3)22.2(9)C10D-1223(4)4600(3)1964(2)18.9(9)C5D1966(4)6514(3)2853(2)19.1(9)C4B4209(4)3077(3)5209(2)18.1(9)C9C-6375(4)-1350(3)2330(2)20.2(9)C2C-3265(4)1028(3)3884(2)20.6(9)C5C-6552(4)195(3)2362(2)21.1(9)C10A4710(4)4318(3)1524(2)19.5(9)C17D-472(4)5152(3)3879(3)24.7(10)C12B188(4)-849(3)3807(2)19.2(9)C5A723(4)1067(3)-427(3)24.7(10)C9D2181(4)4982(3)2823(2)21.1(9)	C12C	-3185(4)	743(3)	1793(2)	17.9(8)
C4A948(4)1992(3)13(2)16.7(8)C3B1372(4)2440(3)4252(2)18.2(9)C9B4334(4)2360(3)5540(2)20.2(9)C12A5383(4)5893(3)1151(2)21.7(9)C4C-6201(4)-413(3)2721(2)17.8(8)C7D2791(4)6230(3)3988(3)22.2(9)C10D-1223(4)4600(3)1964(2)18.9(9)C5D1966(4)6514(3)2853(2)19.1(9)C4B4209(4)3077(3)5209(2)18.1(9)C9C-6375(4)-1350(3)2330(2)20.2(9)C2C-3265(4)1028(3)3884(2)20.6(9)C5C-6552(4)195(3)2362(2)21.1(9)C10A4710(4)4318(3)1524(2)19.5(9)C17D-472(4)5152(3)3879(3)24.7(10)C12B188(4)-849(3)3807(2)19.2(9)C5A723(4)1067(3)-427(3)24.7(10)C9D2181(4)4982(3)2823(2)21.1(9)	C12D	-1315(4)	4454(3)	3261(2)	17.6(8)
C3B1372(4)2440(3)4252(2)18.2(9)C9B4334(4)2360(3)5540(2)20.2(9)C12A5383(4)5893(3)1151(2)21.7(9)C4C-6201(4)-413(3)2721(2)17.8(8)C7D2791(4)6230(3)3988(3)22.2(9)C10D-1223(4)4600(3)1964(2)18.9(9)C5D1966(4)6514(3)2853(2)19.1(9)C4B4209(4)3077(3)5209(2)18.1(9)C9C-6375(4)-1350(3)2330(2)20.2(9)C2C-3265(4)1028(3)3884(2)20.6(9)C5C-6552(4)195(3)2362(2)21.1(9)C10C-3166(4)589(3)3110(2)20.3(9)C17D-472(4)5152(3)3879(3)24.7(10)C12B188(4)-849(3)3807(2)19.2(9)C5A723(4)1067(3)-427(3)24.7(10)C9D2181(4)4982(3)2823(2)21.1(9)	C4A	948(4)	1992(3)	13(2)	16.7(8)
C9B4334(4)2360(3)5540(2)20.2(9)C12A5383(4)5893(3)1151(2)21.7(9)C4C-6201(4)-413(3)2721(2)17.8(8)C7D2791(4)6230(3)3988(3)22.2(9)C10D-1223(4)4600(3)1964(2)18.9(9)C5D1966(4)6514(3)2853(2)19.1(9)C4B4209(4)3077(3)5209(2)18.1(9)C9C-6375(4)-1350(3)2330(2)20.2(9)C2C-3265(4)1028(3)3884(2)20.6(9)C5C-6552(4)195(3)2362(2)21.1(9)C10C-3166(4)589(3)3110(2)20.3(9)C17D-472(4)5152(3)3879(3)24.7(10)C12B188(4)-849(3)3807(2)19.2(9)C5A723(4)1067(3)-427(3)24.7(10)C9D2181(4)4982(3)2823(2)21.1(9)	C3B	1372(4)	2440(3)	4252(2)	18.2(9)
C12A5383(4)5893(3)1151(2)21.7(9)C4C-6201(4)-413(3)2721(2)17.8(8)C7D2791(4)6230(3)3988(3)22.2(9)C10D-1223(4)4600(3)1964(2)18.9(9)C5D1966(4)6514(3)2853(2)19.1(9)C4B4209(4)3077(3)5209(2)18.1(9)C9C-6375(4)-1350(3)2330(2)20.2(9)C2C-3265(4)1028(3)3884(2)20.6(9)C5D-6552(4)195(3)2362(2)21.1(9)C10C-3166(4)589(3)3110(2)20.3(9)C17D-472(4)5152(3)3879(3)24.7(10)C12B188(4)-849(3)3807(2)19.2(9)C5A723(4)1067(3)-427(3)24.7(10)C9D2181(4)4982(3)2823(2)21.1(9)	C9B	4334(4)	2360(3)	5540(2)	20.2(9)
C4C-6201(4)-413(3)2721(2)17.8(8)C7D2791(4)6230(3)3988(3)22.2(9)C10D-1223(4)4600(3)1964(2)18.9(9)C5D1966(4)6514(3)2853(2)19.1(9)C4B4209(4)3077(3)5209(2)18.1(9)C9C-6375(4)-1350(3)2330(2)20.2(9)C2C-3265(4)1028(3)3884(2)20.6(9)C5D-6552(4)195(3)2362(2)21.1(9)C10C-3166(4)589(3)3110(2)20.3(9)C17D-472(4)5152(3)3879(3)24.7(10)C12B188(4)-849(3)3807(2)19.2(9)C5A723(4)1067(3)-427(3)24.7(10)C9D2181(4)4982(3)2823(2)21.1(9)	C12A	5383(4)	5893(3)	1151(2)	21.7(9)
C7D2791(4)6230(3)3988(3)22.2(9)C10D-1223(4)4600(3)1964(2)18.9(9)C5D1966(4)6514(3)2853(2)19.1(9)C4B4209(4)3077(3)5209(2)18.1(9)C9C-6375(4)-1350(3)2330(2)20.2(9)C2C-3265(4)1028(3)3884(2)20.6(9)C5C-6552(4)195(3)2362(2)21.1(9)C10C-3166(4)589(3)3110(2)20.3(9)C17D-472(4)5152(3)3879(3)24.7(10)C12B188(4)-849(3)3807(2)19.2(9)C5A723(4)1067(3)-427(3)24.7(10)C9D2181(4)4982(3)2823(2)21.1(9)	C4C	-6201(4)	-413(3)	2721(2)	17.8(8)
C10D-1223(4)4600(3)1964(2)18.9(9)C5D1966(4)6514(3)2853(2)19.1(9)C4B4209(4)3077(3)5209(2)18.1(9)C9C-6375(4)-1350(3)2330(2)20.2(9)C2C-3265(4)1028(3)3884(2)20.6(9)C5C-6552(4)195(3)2362(2)21.1(9)C10C-3166(4)589(3)3110(2)20.3(9)C10A4710(4)4318(3)1524(2)19.5(9)C17D-472(4)5152(3)3879(3)24.7(10)C12B188(4)-849(3)3807(2)19.2(9)C5A723(4)1067(3)-427(3)24.7(10)C9D2181(4)4982(3)2823(2)21.1(9)	C7D	2791(4)	6230(3)	3988(3)	22.2(9)
C5D1966(4)6514(3)2853(2)19.1(9)C4B4209(4)3077(3)5209(2)18.1(9)C9C-6375(4)-1350(3)2330(2)20.2(9)C2C-3265(4)1028(3)3884(2)20.6(9)C5C-6552(4)195(3)2362(2)21.1(9)C10C-3166(4)589(3)3110(2)20.3(9)C10A4710(4)4318(3)1524(2)19.5(9)C17D-472(4)5152(3)3879(3)24.7(10)C12B188(4)-849(3)3807(2)19.2(9)C5A723(4)1067(3)-427(3)24.7(10)C9D2181(4)4982(3)2823(2)21.1(9)	C10D	-1223(4)	4600(3)	1964(2)	18.9(9)
C4B4209(4)3077(3)5209(2)18.1(9)C9C-6375(4)-1350(3)2330(2)20.2(9)C2C-3265(4)1028(3)3884(2)20.6(9)C5C-6552(4)195(3)2362(2)21.1(9)C10C-3166(4)589(3)3110(2)20.3(9)C10A4710(4)4318(3)1524(2)19.5(9)C17D-472(4)5152(3)3879(3)24.7(10)C12B188(4)-849(3)3807(2)19.2(9)C5A723(4)1067(3)-427(3)24.7(10)C9D2181(4)4982(3)2823(2)21.1(9)	C5D	1966(4)	6514(3)	2853(2)	19.1(9)
C9C-6375(4)-1350(3)2330(2)20.2(9)C2C-3265(4)1028(3)3884(2)20.6(9)C5C-6552(4)195(3)2362(2)21.1(9)C10C-3166(4)589(3)3110(2)20.3(9)C10A4710(4)4318(3)1524(2)19.5(9)C17D-472(4)5152(3)3879(3)24.7(10)C12B188(4)-849(3)3807(2)19.2(9)C5A723(4)1067(3)-427(3)24.7(10)C9D2181(4)4982(3)2823(2)21.1(9)	C4B	4209(4)	3077(3)	5209(2)	18.1(9)
C2C-3265(4)1028(3)3884(2)20.6(9)C5C-6552(4)195(3)2362(2)21.1(9)C10C-3166(4)589(3)3110(2)20.3(9)C10A4710(4)4318(3)1524(2)19.5(9)C17D-472(4)5152(3)3879(3)24.7(10)C12B188(4)-849(3)3807(2)19.2(9)C5A723(4)1067(3)-427(3)24.7(10)C9D2181(4)4982(3)2823(2)21.1(9)	C9C	-6375(4)	-1350(3)	2330(2)	20.2(9)
C5C-6552(4)195(3)2362(2)21.1(9)C10C-3166(4)589(3)3110(2)20.3(9)C10A4710(4)4318(3)1524(2)19.5(9)C17D-472(4)5152(3)3879(3)24.7(10)C12B188(4)-849(3)3807(2)19.2(9)C5A723(4)1067(3)-427(3)24.7(10)C9D2181(4)4982(3)2823(2)21.1(9)	C2C	-3265(4)	1028(3)	3884(2)	20.6(9)
C10C-3166(4)589(3)3110(2)20.3(9)C10A4710(4)4318(3)1524(2)19.5(9)C17D-472(4)5152(3)3879(3)24.7(10)C12B188(4)-849(3)3807(2)19.2(9)C5A723(4)1067(3)-427(3)24.7(10)C9D2181(4)4982(3)2823(2)21.1(9)	C5C	-6552(4)	195(3)	2362(2)	21.1(9)
C10A4710(4)4318(3)1524(2)19.5(9)C17D-472(4)5152(3)3879(3)24.7(10)C12B188(4)-849(3)3807(2)19.2(9)C5A723(4)1067(3)-427(3)24.7(10)C9D2181(4)4982(3)2823(2)21.1(9)	C10C	-3166(4)	589(3)	3110(2)	20.3(9)
C17D-472(4)5152(3)3879(3)24.7(10)C12B188(4)-849(3)3807(2)19.2(9)C5A723(4)1067(3)-427(3)24.7(10)C9D2181(4)4982(3)2823(2)21.1(9)	C10A	4710(4)	4318(3)	1524(2)	19.5(9)
C12B188(4)-849(3)3807(2)19.2(9)C5A723(4)1067(3)-427(3)24.7(10)C9D2181(4)4982(3)2823(2)21.1(9)	C17D	-472(4)	5152(3)	3879(3)	24.7(10)
C5A723(4)1067(3)-427(3)24.7(10)C9D2181(4)4982(3)2823(2)21.1(9)	C12B	188(4)	-849(3)	3807(2)	19.2(9)
C9D 2181(4) 4982(3) 2823(2) 21.1(9)	C5A	723(4)	1067(3)	-427(3)	24.7(10)
	C9D	2181(4)	4982(3)	2823(2)	21.1(9)

C1A	4071(4)	2562(3)	702(2)	21.9(9)
C2D	-1067(4)	4167(3)	1207(2)	20.0(9)
C7C	-7272(4)	-1089(3)	1204(3)	24.6(10)
C8B	4522(4)	2539(3)	6312(3)	23.5(9)
C6D	2450(4)	6832(3)	3623(3)	21.9(9)
C11B	973(4)	231(3)	4055(3)	22.2(9)
C11D	-1007(4)	4083(3)	2564(3)	22.8(9)
C11C	-3401(4)	1124(3)	2528(3)	23.6(9)
C9A	668(4)	2672(3)	-285(3)	22.5(9)
C13D	-2443(4)	4112(3)	3300(3)	24.6(10)
C5B	4275(4)	3962(3)	5633(2)	21.9(9)
C17B	521(4)	-1547(3)	3450(3)	23.8(10)
C13C	-2080(4)	1036(4)	1713(3)	25.5(10)
C17C	-4089(4)	94(4)	1186(3)	25.9(10)
C6C	-7086(4)	-146(3)	1602(3)	23.2(9)
C10B	910(4)	733(3)	3423(2)	18.7(9)
C3A	4228(4)	2783(3)	1966(3)	21.9(9)
C11A	4652(4)	4801(3)	884(3)	25.1(10)
C17A	4887(4)	6567(4)	1228(3)	26.3(10)
C7B	4593(4)	3423(4)	6741(3)	27.0(10)
C8D	2656(4)	5305(3)	3589(3)	22.8(9)
C7A	-94(4)	1484(4)	-1493(3)	28.1(10)
C8A	142(4)	2410(4)	-1044(3)	25.9(10)
C1B	1415(4)	2307(3)	3027(3)	23.1(9)
C8C	-6923(4)	-1690(3)	1567(3)	23.6(10)
C16D	-756(5)	5495(4)	4519(3)	31.2(11)
C14D	-2725(5)	4448(4)	3940(3)	31.6(11)
C3C	-2353(4)	2094(4)	4233(3)	25.5(10)
C3D	-1472(4)	4609(4)	597(3)	26.1(10)
C6B	4465(4)	4124(4)	6404(3)	27.5(10)
C16B	-199(4)	-2542(4)	3243(3)	28.3(10)
C1C	-2815(4)	592(4)	4483(3)	26.9(10)
C13B	-881(4)	-1170(4)	3947(3)	28.3(10)
C6A	198(4)	818(4)	-1189(3)	29.9(11)
C14C	-1885(5)	697(4)	1035(3)	32.7(11)
C1D	-1968(4)	3105(4)	835(3)	27.8(10)
C15D	-1876(4)	5142(4)	4553(3)	30.7(11)
C16A	5555(5)	7575(4)	1471(3)	33.0(11)
C15C	-2793(5)	52(4)	433(3)	31.7(11)
C16C	-3899(5)	-258(4)	509(3)	33.3(11)
C14B	-1591(5)	-2166(4)	3757(3)	35.3(12)
C15B	-1245(5)	-2857(4)	3398(3)	35.3(12)
C13A	6570(5)	6260(4)	1347(3)	38.2(13)
C15A	6726(5)	7925(4)	1657(3)	36.8(12)
C14A	7237(6)	7265(5)	1612(4)	50.7(16)

Table 3 Bond Lengths for BL-0657 (Cpd 19)

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S2D	01D	1.445(3)	C12A	C13A	1.389(7)
S2D	O2D	1.431(3)	C4C	C9C	1.386(6)
S2D	N1D	1.614(4)	C4C	C5C	1.395(6)
S2D	C4D	1.770(4)	C7D	C6D	1.388(6)
S2A	O2A	1.444(3)	C7D	C8D	1.392(6)
S2A	O1A	1.432(3)	C10D	C2D	1.536(6)
S2A	N2A	1.613(4)	C10D	C11D	1.533(6)
S2A	C4A	1.774(4)	C5D	C6D	1.395(6)
S2C	O2C	1.445(3)	C4B	C5B	1.390(6)
S2C	01C	1.430(3)	C9C	C8C	1.395(6)
S2C	N1C	1.610(4)	C2C	C10C	1.534(6)
S2C	C4C	1.770(4)	C2C	C3C	1.546(6)
S2B	O1B	1.435(3)	C2C	C1C	1.546(6)
S2B	O2B	1.443(3)	C5C	C6C	1.387(6)
S2B	N1B	1.613(4)	C10C	C11C	1.534(6)
S2B	C4B	1.770(4)	C10A	C11A	1.531(6)
S1B	C3B	1.837(4)	C17D	C16D	1.389(7)
S1B	C1B	1.836(5)	C12B	C11B	1.507(6)
S1A	C1A	1.838(5)	C12B	C17B	1.389(6)
S1A	C3A	1.843(5)	C12B	C13B	1.387(7)
S1C	C3C	1.838(5)	C5A	C6A	1.395(7)
S1C	C1C	1.838(5)	C9D	C8D	1.384(6)
S1D	C3D	1.838(5)	C2D	C3D	1.546(6)
S1D	C1D	1.832(5)	C2D	C1D	1.541(6)
N1D	C2D	1.475(5)	C7C	C6C	1.395(6)
N2A	C2A	1.473(5)	C7C	C8C	1.388(6)
N1B	C2B	1.473(5)	C8B	C7B	1.390(7)
N1C	C2C	1.472(6)	C11B	C10B	1.535(6)
C2A	C10A	1.524(6)	C9A	C8A	1.389(6)
C2A	C1A	1.555(6)	C13D	C14D	1.383(7)
C2A	C3A	1.552(6)	C5B	C6B	1.392(7)
C4D	C5D	1.388(6)	C17B	C16B	1.388(7)
C4D	C9D	1.397(6)	C13C	C14C	1.388(7)
C2B	C3B	1.551(6)	C17C	C16C	1.388(7)
C2B	C10B	1.531(6)	C17A	C16A	1.390(7)
C2B	C1B	1.544(6)	C7B	C6B	1.379(7)

C12C	C11C	1.513(6)	C7A	C8A	1.390(7)
C12C	C13C	1.387(6)	C7A	C6A	1.381(7)
C12C	C17C	1.389(6)	C16D	C15D	1.375(7)
C12D	C17D	1.390(6)	C14D	C15D	1.387(7)
C12D	C11D	1.510(6)	C16B	C15B	1.373(7)
C12D	C13D	1.387(6)	C13B	C14B	1.389(7)
C4A	C5A	1.385(6)	C14C	C15C	1.386(7)
C4A	C9A	1.389(6)	C16A	C15A	1.371(8)
C9B	C4B	1.394(6)	C15C	C16C	1.384(7)
C9B	C8B	1.393(6)	C14B	C15B	1.391(8)
C12A	C11A	1.507(6)	C13A	C14A	1.387(9)
C12A	C17A	1.391(7)	C15A	C14A	1.385(9)

Table 4 Bond Angles for BL-0657 (Cpd 19)

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
O1D	S2D	N1D	105.44(18)	C5B	C4B	S2B	119.2(3)
O1D	S2D	C4D	105.78(19)	C5B	C4B	C9B	121.5(4)
O2D	S2D	O1D	119.66(19)	C4C	C9C	C8C	119.2(4)
O2D	S2D	N1D	107.90(19)	N1C	C2C	C10C	112.8(4)
O2D	S2D	C4D	107.82(19)	N1C	C2C	C3C	109.8(4)
N1D	S2D	C4D	110.05(19)	N1C	C2C	C1C	114.0(4)
O2A	S2A	N2A	105.56(18)	C10C	C2C	C3C	111.3(4)
O2A	S2A	C4A	105.71(19)	C10C	C2C	C1C	111.9(4)
01A	S2A	O2A	118.78(18)	C3C	C2C	C1C	95.9(4)
01A	S2A	N2A	108.74(19)	C6C	C5C	C4C	119.3(4)
01A	S2A	C4A	108.03(19)	C11C	C10C	C2C	113.7(4)
N2A	S2A	C4A	109.80(19)	C2A	C10A	C11A	115.7(4)
O2C	S2C	N1C	105.72(18)	C16D	C17D	C12D	120.5(5)
O2C	S2C	C4C	105.52(19)	C17B	C12B	C11B	121.2(4)
01C	S2C	O2C	119.50(19)	C13B	C12B	C11B	120.4(4)
01C	S2C	N1C	109.05(19)	C13B	C12B	C17B	118.4(4)
01C	S2C	C4C	107.5(2)	C4A	C5A	C6A	118.7(4)
N1C	S2C	C4C	109.19(19)	C8D	C9D	C4D	119.2(4)
O1B	S2B	O2B	119.03(19)	C2A	C1A	S1A	90.7(3)
O1B	S2B	N1B	108.39(19)	N1D	C2D	C10D	113.0(4)
O1B	S2B	C4B	108.2(2)	N1D	C2D	C3D	113.9(4)
O2B	S2B	N1B	105.41(19)	N1D	C2D	C1D	109.8(4)
O2B	S2B	C4B	106.3(2)	C10D	C2D	C3D	111.6(4)
N1B	S2B	C4B	109.24(19)	C10D	C2D	C1D	111.7(4)
C1B	S1B	C3B	77.3(2)	C1D	C2D	C3D	95.6(4)
C1A	S1A	C3A	77.7(2)	C8C	C7C	C6C	120.2(4)

C3C	S1C	C1C	77.3(2)	C7B	C8B	C9B	120.2(4)
C1D	S1D	C3D	77.1(2)	C7D	C6D	C5D	120.1(4)
C2D	N1D	S2D	125.6(3)	C12B	C11B	C10B	112.5(4)
C2A	N2A	S2A	127.6(3)	C12D	C11D	C10D	111.7(4)
C2B	N1B	S2B	126.2(3)	C12C	C11C	C10C	112.7(4)
C2C	N1C	S2C	125.4(3)	C4A	C9A	C8A	118.7(4)
N2A	C2A	C10A	106.5(3)	C14D	C13D	C12D	120.9(5)
N2A	C2A	C1A	117.3(4)	C4B	C5B	C6B	118.7(4)
N2A	C2A	C3A	114.2(3)	C16B	C17B	C12B	120.6(4)
C10A	C2A	C1A	112.8(4)	C12C	C13C	C14C	120.4(5)
C10A	C2A	C3A	109.8(4)	C16C	C17C	C12C	121.1(5)
C3A	C2A	C1A	96.1(3)	C5C	C6C	C7C	120.1(4)
C5D	C4D	S2D	119.9(3)	C2B	C10B	C11B	114.4(4)
C5D	C4D	C9D	121.2(4)	C2A	C3A	S1A	90.6(3)
C9D	C4D	S2D	118.9(3)	C12A	C11A	C10A	111.2(4)
N1B	C2B	C3B	118.2(3)	C16A	C17A	C12A	121.1(5)
N1B	C2B	C10B	106.7(3)	C6B	C7B	C8B	120.3(5)
N1B	C2B	C1B	113.7(3)	C9D	C8D	C7D	120.1(4)
C10B	C2B	C3B	111.9(3)	C6A	C7A	C8A	120.3(5)
C10B	C2B	C1B	110.4(3)	C9A	C8A	C7A	120.2(5)
C1B	C2B	C3B	95.8(3)	C2B	C1B	S1B	91.1(3)
C13C	C12C	C11C	120.5(4)	C7C	C8C	C9C	120.1(4)
C13C	C12C	C17C	118.8(4)	C15D	C16D	C17D	120.4(5)
C17C	C12C	C11C	120.7(4)	C13D	C14D	C15D	120.0(5)
C17D	C12D	C11D	120.5(4)	C2C	C3C	S1C	91.2(3)
C13D	C12D	C17D	118.6(4)	C2D	C3D	S1D	90.5(3)
C13D	C12D	C11D	120.9(4)	C7B	C6B	C5B	120.6(5)
C5A	C4A	S2A	118.9(3)	C15B	C16B	C17B	120.8(5)
C5A	C4A	C9A	121.8(4)	C2C	C1C	S1C	91.1(3)
C9A	C4A	S2A	119.2(3)	C12B	C13B	C14B	121.1(5)
C2B	C3B	S1B	90.9(3)	C7A	C6A	C5A	120.2(5)
C8B	C9B	C4B	118.7(4)	C15C	C14C	C13C	120.3(5)
C17A	C12A	C11A	120.8(4)	C2D	C1D	S1D	90.9(3)
C13A	C12A	C11A	121.5(4)	C16D	C15D	C14D	119.6(5)
C13A	C12A	C17A	117.7(5)	C15A	C16A	C17A	120.3(5)
C9C	C4C	S2C	120.3(3)	C16C	C15C	C14C	119.8(5)
C9C	C4C	C5C	121.1(4)	C15C	C16C	C17C	119.5(5)
C5C	C4C	S2C	118.5(3)	C13B	C14B	C15B	119.8(5)
C6D	C7D	C8D	120.4(4)	C16B	C15B	C14B	119.3(5)
C11D	C10D	C2D	114.1(4)	C14A	C13A	C12A	121.2(6)
C4D	C5D	C6D	119.0(4)	C16A	C15A	C14A	119.4(6)
C9B	C4B	S2B	119.3(3)	C15A	C14A	C13A	120.2(6)

Table 5 Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters (Å2×103) for BL-0657 (Cpd 19)

Atom	X	У	Z	U(eq)
H1D	193.67	3808.2	1532.1	20
H2A	2672.49	3633.82	985.93	21
H1B	2904.63	1425.26	4001.72	20
H1C	-4541.24	1373.4	3589.05	21
H3BA	2035.94	3012.99	4603.32	22
H3BB	896.22	2037.92	4527.12	22
H9B	4291.85	1760.18	5244.53	24
H7D	3119.75	6449.42	4513.42	27
H10A	-693.67	5305.2	2149.41	23
H10B	-2013.18	4559.43	1888.37	23
H5D	1729.12	6921.92	2599.89	23
H9C	-6125.11	-1754.7	2579.18	24
H5C	-6426.01	835.91	2635.58	25
H10E	-2385.9	611.31	3160.17	24
H10F	-3713.3	-111.24	2927.05	24
H10C	5498.63	4364.69	1688.51	23
H10D	4563.38	4700.67	1951.01	23
H17D	305.43	5395.75	3862.2	30
H5A	921.48	611.11	-214.01	30
H9D	2090.51	4353.12	2548.08	25
H1AA	4496.65	2920.17	384.17	26
H1AB	3358.21	1997.83	391.67	26
H7C	-7639.35	-1320.83	683.98	29
H8B	4601.04	2056.38	6547.23	28
H6D	2545.27	7462.22	3899.4	26
H11G	1769.45	307.22	4238.4	27
H11H	766.13	564.73	4475.26	27
H11A	-1466.42	3364.68	2360.73	27
H11B	-189.36	4197.78	2692.95	27
H11E	-4207.36	1043.57	2437.44	28
H11F	-2907.06	1836.55	2730.06	28
H9A	831.69	3304.69	24.93	27
H13D	-3030.48	3640.9	2879.92	30
H5B	4193.3	4445.97	5400.61	26
H17B	1247.97	-1342.94	3346.09	29
H13C	-1452.28	1471.45	2124.83	31
H17C	-4848.86	-111.99	1235.31	31
H6C	-7324.8	263.64	1352.06	28

1106.29	389.63	3001.6	22
112.3	655.24	3242.7	22
3567.08	2292.24	2070.53	26
4752.42	3279.13	2434.26	26
4917.14	4494.02	483.81	30
3849.1	4687.56	670.82	30
4077.41	6333.99	1114	32
4730.55	3545.41	7268.55	32
2889.42	4896.05	3842.28	27
-459.16	1306.84	-2011.02	34
-55.53	2866.29	-1258.02	31
966.11	1823.38	2537.63	28
2093.26	2836.55	2972.72	28
-7056.26	-2333.37	1295.15	28
-173.74	5977	4936.51	37
-3500.74	4203.86	3959.2	38
-2626.49	2527.89	4533.3	31
-2006.82	2401.92	3864.54	31
-1029.38	4664.07	217.61	31
-1515.28	5243.05	799.58	31
4505.83	4722.76	6700.66	33
34.58	-3010.32	2990.82	34
-2754.83	-31.66	4270.6	32
-3244.3	517.83	4868.76	32
-1132.52	-700.19	4176.76	34
41.41	188.74	-1499.71	36
-1126.15	907.96	983.44	39
-2328.39	2776.73	1190.17	33
-1682.4	2685.03	531.2	33
-2066.78	5372.19	4994.6	37
5199.19	8023.49	1506.68	40
-2657.15	-176.92	-30.88	38
-4524.09	-707.7	100.86	40
-2309.95	-2375.94	3871.65	42
-1728.61	-3539.48	3262.11	42
6930.58	5815.94	1300.37	46
7182.23	8614.35	1817.03	44
8046.94	7501.05	1761.27	61
	1106.29 112.3 3567.08 4752.42 4917.14 3849.1 4077.41 4730.55 2889.42 -459.16 -55.53 966.11 2093.26 -7056.26 -173.74 -3500.74 -2626.49 -2006.82 -1029.38 -1515.28 4505.83 34.58 -2754.83 -3244.3 -1132.52 41.41 -1126.15 -2328.39 -1682.4 -2066.78 5199.19 -2657.15 -4524.09 -2309.95 -1728.61 6930.58 7182.23 8046.94	1106.29389.63112.3655.243567.082292.244752.423279.134917.144494.023849.14687.564077.416333.994730.553545.412889.424896.05-459.161306.84-55.532866.29966.111823.382093.262836.55-7056.26-2333.37-173.745977-3500.744203.86-2626.492527.89-2006.822401.92-1029.384664.07-1515.285243.054505.834722.7634.58-3010.32-2754.83-31.66-3244.3517.83-1132.52-700.1941.41188.74-1126.15907.96-2328.392776.73-1682.42685.03-2066.785372.195199.198023.49-2657.15-176.92-4524.09-707.7-2309.95-2375.94-1728.61-3539.486930.585815.947182.238614.358046.947501.05	1106.29389.633001.6112.3655.243242.73567.082292.242070.534752.423279.132434.264917.144494.02483.813849.1687.56670.824077.416333.9911144730.553545.417268.552889.424896.053842.28459.161306.84-2011.02-55.532866.29-1258.02966.111823.382537.632093.262836.552972.72-7056.26-2333.371295.15-173.7459774936.51-3500.744203.863959.2-2626.492527.894533.3-2006.822401.923864.54-1029.384664.07217.61-1515.285243.05799.584505.834722.766700.6634.58-3010.322990.82-2754.83-31.664270.6-324.3517.834868.76-1132.52-700.194176.7641.41188.74-1499.71-1126.15907.96983.44-2328.392776.731190.17-1682.42685.03531.2-2066.785372.19494.655199.19802.491506.68-2657.15-176.92-30.88-4524.09-707.7100.86-230.95-2375.943871.65-1728.61-3539.483262.116930.585815.941300.37 <t< td=""></t<>

Table 6 Atomic Occupancy for BL-0657 (Cpd 19)

Atom	Occupancy	Atom	Occupancy
S1B	0.988(6)	S1D	0.974(6)
H3BB	0.988(6)	H1BA	0.988(6)
H3DA	0.974(6)	H3DB	0.974(6)
H1DB	0.974(6)	H15C	0.25

X-ray Structure Determination for BL-0679 (Cpd 21, CCDC 1995769)

Experimental:

Crystals of BL-0679 (Cpd 21) were grown from ethyl acetate/hexanes. The single crystal X-ray diffraction studies were carried out on a Bruker APEX-II CCD diffractometer equipped with Mo K α radiation ($\lambda = 0.71073$). A $0.0.20 \times 0.13 \times 0.08$ mm colorless rod was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100(2) K using ϕ and ϖ scans. Crystal-to-detector distance was 60 mm with 5.00 s exposure time. A total of 11306 reflections were collected covering the indices $-8 \le h \le 8$, $-13 \le k \le 13$, $-23 \le 1 \le 23$. 2780 reflections were found to be symmetry independent, with a Rint of 0.0431. The space group was found to be P2₁/c. Crystallographic data are summarized in Table 1.

Identification code	BL-0679
Empirical formula	C12H17NO3S2
Formula weight	287.41
Temperature/K	100.0
Crystal system	monoclinic
Space group	P21/c
a/Å	6.8795(3)
b/Å	10.5809(4)
c/Å	18.8700(7)
α'°	90
β°	99.6090(10)
$\gamma^{/\circ}$	90
Volume/Å3	1354.30(9)
Z	4
pcalcg/cm3	1.4095
μ/mm-1	0.393
F(000)	609.3
Crystal size/mm3	$0.20\times0.13\times0.08$
Radiation	Mo Ka ($\lambda = 0.71073$)
2Θ range for data collection/°	4.38 to 52.78
Index ranges	$-8 \le h \le 8, -13 \le k \le 13, -23 \le l \le 23$
Reflections collected	11306
Independent reflections	2780 [Rint = 0.0431, Rsigma = 0.0332]
Data/restraints/parameters	2780/0/79
Goodness-of-fit on F2	1.027
Final R indexes [I>= 2σ (I)]	R1 = 0.0547, wR2 = 0.1303
Final R indexes [all data]	R1 = 0.0573, $wR2 = 0.1326$
Largest diff. peak/hole / e Å-3	1.04/-0.97

Table 2 Fractional Atomic Coordinates (×10⁴) and Equivalent Isotropic Displacement Parameters (Å²×10³) for BL-0679 (Cpd 21) U_{eq} is defined as 1/3 of of the trace of the orthogonalised U_{IJ} tensor.

Atom	X	У	Z	U(eq)
S2	5913.9(9)	4941.8(6)	2456.7(3)	12.74(18)
S1	10149.1(10)	8053.8(6)	3776.8(4)	13.2(2)
O2	5126(3)	5045.8(19)	3114.3(11)	21.6(4)
03	5897(3)	3733.1(19)	2106.6(11)	22.7(4)
01	9717(3)	9292.2(18)	3391.9(10)	19.6(4)
N1	8163(3)	5453(2)	2607.3(11)	14.1(4)
C12	13962(4)	3479(3)	4478.5(14)	17.5(5)
C8	11426(4)	1897(3)	4375.8(14)	18.5(5)
C7	12088(4)	3059(2)	4161.3(13)	14.8(5)
C5	9784(4)	4953(2)	3871.3(13)	14.3(5)
C3	10864(4)	6831(2)	3172.6(13)	13.9(5)
C9	12608(4)	1165(3)	4889.0(15)	22.4(6)
C11	15139(4)	2748(3)	4986.8(15)	20.2(6)
C4	4615(4)	6001(3)	1829.4(14)	17.9(5)
C6	10863(4)	3845(2)	3583.7(14)	15.9(5)
C10	14472(4)	1588(3)	5197.1(15)	21.6(6)
C1	7963(4)	7033(2)	3596.4(14)	14.5(5)
C2	9133(4)	5968(2)	3298.6(13)	12.0(5)
S1ab	8898(12)	8019(8)	3014(4)	20(2)

Atom	Atom	Length/Å	Atom	Atom	Length/Å
S2	O2	1.439(2)	C8	C9	1.391(4)
S2	O3	1.439(2)	C7	C6	1.511(3)
S2	N1	1.619(2)	C5	C6	1.534(4)
S2	C4	1.761(3)	C5	C2	1.536(3)
S1	01	1.504(2)	C3	C2	1.550(3)
S1	C3	1.844(3)	C3	S1ab	1.833(9)
S1	C1	1.837(3)	C9	C10	1.391(4)
01	S1ab	1.584(8)	C11	C10	1.392(4)
N1	C2	1.467(3)	C1	C2	1.545(3)
C12	C7	1.400(4)	C1	S1ab	1.717(8)
C12	C11	1.383(4)	C2	S1ab	2.235(8)
C8	C7	1.394(4)			

Table 3 Bond Lengths for BL-0679 (Cpd 21)

Table 4 Bond Angles for BL-0679 (Cpd 21)

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
03	S2	O2	119.25(12)	C10	C9	C8	120.2(3)
N1	S2	O2	108.03(11)	C10	C11	C12	120.5(3)
N1	S2	03	108.17(12)	C5	C6	C7	114.2(2)
C4	S2	O2	108.01(12)	C11	C10	C9	119.3(3)
C4	S2	03	107.02(12)	C5	C2	N1	113.7(2)
C4	S2	N1	105.58(12)	C3	C2	N1	109.25(19)
C3	S 1	01	111.36(11)	C3	C2	C5	112.3(2)
C1	S 1	01	109.46(11)	C1	C2	N1	114.0(2)
C1	S 1	C3	76.57(11)	C1	C2	C5	111.3(2)
C2	N1	S2	124.04(17)	C1	C2	C3	94.93(19)
C11	C12	C7	120.6(3)	C3	S1ab	01	108.2(5)
С9	C8	C7	120.8(3)	C1	S1ab	01	111.8(5)
C8	C7	C12	118.6(2)	C1	S1ab	C3	79.9(4)
C6	C7	C12	119.8(2)	C2	S1ab	01	135.4(5)
C6	C7	C8	121.6(2)	C2	S1ab	C3	43.4(2)
C2	C5	C6	112.7(2)	C2	S1ab	C1	43.6(2)

Table 5 Hydrogen Atom Coordinates (Å×10⁴) and Isotropic Displacement Parameters (Å²×10³) for BL-0679 (Cpd 21)

Atom	X	У	Z	U(eq)
H1	8894(3)	5009(2)	2350.3(11)	17.0(5)
H12	14430(4)	4273(3)	4343.3(14)	21.0(6)
H8	10153(4)	1602(3)	4169.2(14)	22.2(7)
H5a	8609(4)	4627(2)	4051.4(13)	17.2(6)
H5b	10665(4)	5343(2)	4281.3(13)	17.2(6)
НЗа	10765(4)	7118(2)	2668.5(13)	16.7(6)
H3b	12177(4)	6459(2)	3346.7(13)	16.7(6)
НЗс	11875(4)	6983(2)	3603.1(13)	16.7(6)
H3d	11462(4)	6614(2)	2746.2(13)	16.7(6)
Н9	12140(4)	374(3)	5029.4(15)	26.8(7)
H11	16413(4)	3042(3)	5194.1(15)	24.2(7)
H4a	3256(9)	5704(11)	1688(8)	26.8(8)
H4b	4610(30)	6841(5)	2047(4)	26.8(8)
H4c	5258(18)	6045(15)	1404(5)	26.8(8)
Нба	11734(4)	4182(2)	3260.5(14)	19.1(6)
H6b	9877(4)	3290(2)	3293.9(14)	19.1(6)
H10	15283(4)	1089(3)	5547.3(15)	25.9(7)
H1a	7448(4)	6788(2)	4036.4(14)	17.4(6)
H1b	6896(4)	7387(2)	3233.3(14)	17.4(6)
H1c	6514(4)	6926(2)	3489.4(14)	17.4(6)
H1d	8415(4)	7228(2)	4110.6(14)	17.4(6)

Table 6 Atomic Occupancy for BL-0679 (Cpd 21)

Atom	Occupancy	Atom	Occupancy
S1	0.915(3)	H3a	0.915(3)
H3c	0.085(3)	H3d	0.085(3)
H1b	0.915(3)	H1c	0.085(3)
S1ab	0.085(3)		