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Data analysis

For manuscripts utilizing custom algorithms or software that are central to the research but not yet described in published literature, software must be made available to editors and
reviewers. We strongly encourage code deposition in a community repository (e.g. GitHub). See the Nature Research guidelines for submitting code & software for further information.

Analysis of bulk RNA-seq data

Gene expression was estimated using Kallisto (v0.43.1) and gene fusions were detected using STAR-Fusion (v1.4.0). We used
GRCh38_v27_CTAT_lib_Feb092018 from the STAR-fusion website as the human reference and corresponding GENCODE annotation sets.

Analysis of scRNA-seq data

For single cell RNA-seq analysis, the proprietary software tool Cell Ranger (v2.1.1) from 10x Genomics was used for de-multiplexing sequence
data into FASTQ files, aligning reads to the human genome (GRCh38), and generating gene-by-cell UMI count matrix. The R package Seurat
(v2.0) was used for all subsequent analysis.

Ancestry analysis

We used a reference panel of genotypes and clustering based on principal components to identify the likely ancestry of our 14 multiple
myeloma individuals, with an additional 856 Multiple Myeloma Research Foundation (MMRF) cases (including 31 multiple time point cases).
We randomly selected 10,000 coding SNPs from minor allele frequency > 0.02 from the 1000 Genomes Project. From that set of loci, we
measured the depth and allele counts of each sample’s bam using the tool bam-readcount (version 0.8.0). Genotypes were called using these
criteria: 0/0 if reference count ! 8 and alternate count < 4; 0/1 if reference count ! 4 and alternate count ! 4; 1/1 if reference count < 4 and
alternate count ! 8; and ./. (missing) otherwise. After filtering markers with vacancies > 5% in our multiple myeloma samples, 6,349 markers
were left for analysis. We performed principal component analysis (PCA) on the 1000 Genomes samples to identify the top 20 principal
components. We then projected our multiple myeloma samples onto the 20-dimensional space representing the 1000 Genomes data. To
predict the likely ancestry of our multiple myeloma samples, we built a random forest classifier using these 20 principal components, which
has known ancestry information for each sample. Using an 80%/20% split between training and test data, our classifier had 99.6% test
accuracy. We then predicted the likely ancestry of our multiple myeloma samples based on this classifier.

scRNA-seq data integration

Different scRNA gene expression matrices were integrated using the Seurat R package. We controlled for batch effects using the CCA method
and the data were integrated using the top 1000 variable genes from each sample and the first 15 CCs. Cell types were assigned based on
manual review of marker gene expression. Cells with inconsistent cell type assignments between the integrated and individual analysis were
filtered out. In some cases, the inconsistencies arose from evident clustering issues (for example, when reviewing marker gene expression,
two sub-clusters were obvious within one cluster). Such instances were manually resolved and the cells were rescued. All differential gene
expression analyses were carried out using the FindMarkers function of the Seurat package. The default Wilcox test was used and hits with
adjusted p-value < 0.05 were deemed significant.

scRNA-seq correlation analysis

After integration, for each cell type, we compared the gene expression to other types to identify the significant highly expressed genes
(adjusted p-value < 0.05 and log fold change > 0). Then their average expressions in each sample were calculated. Their pairwise correlations
were then estimated.

Clustering of sub-populations of plasma cells based on pathway enrichment

We used differentially expressed genes (DEGs, fold change >1.5 and FDR < 0.1) to detect clusters in plasma cells for each sample. We then
used the DEGs for each sub-cluster in samples to do pathway enrichment analysis. For the integration pathway analysis, we used the q-value
(FDR) associated with each pathway and only used pathways that had at least one significant (FDR < 0.05) association with a cluster in order to
filter non-significant pathways. We then calculated the correlation between sub-clusters from different samples based on the 764 pathway
FDR values, to see which sub-clusters shared similar enrichment in pathways.

10Xmapping

scRNA data provide an unprecedented resource for studying tumor heterogeneity and clonal evolution. Connecting somatic mutations to
individual cells can help to better understand these aspects and have the potential to identify tumor cells which cannot be unveiled purely
based on expression data or is difficult to be separated by expression alone. Here, we developed a mapping tool (10Xmapping), which can
identify reads supporting the reference allele and variant allele covering the variant site in each individual cell by tracing cell and molecular
barcode information in the bam file. The tool is freely available at https://github.com/ding-lab/10Xmapping. For mapping, we used high-
confidence somatic mutations from WES data; mutations were combined if data from multiple time points existed.

Single cell RNA CNV detection and clustering

To detect large-scale chromosomal copy number variations using single-cell RNA-seq data, inferCNV (version 0.8.2) 15 was used to obtain
relative expression intensity of plasma cells in comparison to a set of reference “normal” cells, including B cells, T cells, Erythrocytes, NK cells,
etc. Cutoff=0.1 was used for revealing CNV signals. inferCNV took the raw expression matrix generated from Seurat after several filtering
steps, as described above. Subsequently, samples were clustered on inferCNV expression data for 30 genes implicated in MM. Cells for each
sample underwent a dimensionality reduction using PCA and t-SNE before clustering. Cells were then clustered with the DBSCAN algorithm.
Optimal values for epsilon and minimum points were selected via a grid search. Parameters resulting in the highest Silhouette coefficient were
ultimately selected.

Trajectory-based analysis of B cells/Plasma cell lineage

For trajectory analysis, B and plasma cells as a whole were extracted from each case (across time points), respectively. B cell and plasma cells
were then imported into Monocle2 74. Parameters for the analysis were consistent with the tutorial (http://cole-trapnell-lab.github.io/
monocle-release/docs/#constructing318

single-cell-trajectories), except that (1) cell type is set as the variable for differential expression text and (2) to select genes used for ordering,
we set 1e-10 as the q value cut-off. We used the function “plot_cell_trajectory” to visualize B cells and plasma cell subcluster projection in the
trajectory. To calculate the proportion of different plasma cell subclusters within each state, B cells and plasma cells that do not belong to any
subclusters were removed. The rest of the cells were first normalized by the total number of cells within a time point and then plasma cell
subcluster proportions were calculated within each state of interest.
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- A description of any restrictions on data availability
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For the corpus of 14 patients, the Washington University Institutional Review Board approved the study protocol, and we have complied with all relevant ethical
regulations, including obtaining informed consent from all participants.

All sequencing data (10xWGS, WGS, WES, Bulk RNA-seq and scRNA-seq) used in this study can be accessed at the NCBI under accession code PRJNA694128 [https://
submit.ncbi.nlm.nih.gov/subs/sra/SUB8614413/overview]. CyTOF data have been deposited with the FlowRepository (FR-FCM-Z3EP). For ancestry analysis in
Supplementary Figure 1b, data was also provided by The Multiple Myeloma Research Foundation (MMRF) CoMMpass (Relating Clinical Outcomes in MM to
Personal Assessment of Genetic Profile) Study (NCT01454297). dbGaP Study Accession: phs000748. The MMRF CoMMpass study can be accessed at https://
www.ncbi.nlm.nih.gov/projects/gap/cgi-bin/study.cgi?study_id=phs000748.v7.p4.

The main data corpus of the study comprises 29 longitudinal samples from 14 multiple myeloma patients with different combinations of
disease stages, sequencing data types, and treatments (refer to Fig. 1a). All patients have at least one sample with both single-cell RNA
sequencing (scRNA-seq) and 10x Genomics linked-read whole genome sequencing (10xWGS), and 9 patients have data from two or more time
points, including a mix of CD138+ sorted or unsorted bone marrow aspirate samples. Three patients have data from the SMM and primary
stages, and six have both primary and relapse samples. For some samples, whole genome sequencing (WGS), whole exosome sequencing
(WES) and bulk-RNA sequencing (bulk-RNA-seq) are also available.

Four additional patient samples were included for CyTOF validation experiment.

Sample size was determined by the availability of patients enrolled in the study; where bone marrow samples are available, scRNA-seq was
determined as the technology to prioritize.

For scRNA integration, samples with less than 500 cells and samples where only plasma cells are detected are excluded, because they are
likely to generate a bias at the all-sample-level integration. Based on this criteria, single cell sample from 37692 SMM, 57075 Primary and
98433 Primary time points are excluded (<500 cells). Sample 25183 Relapse-1 is also excluded (only plasma cells are detected).

Replication was not included in the study design as human samples are limited.

The study design was observational only and did not involve allocating patients into treatment groups. Therefore, randomization was not
relevant to the study design.

The study design was observational only and did not involve allocating patients into treatment groups. Therefore, blinding was not relevant to
the study design.
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Materials & experimental systems

n/a Involved in the study

Antibodies

Eukaryotic cell lines

Palaeontology and archaeology

Animals and other organisms

Human research participants

Clinical data

Dual use research of concern

Methods

n/a Involved in the study

ChIP-seq

Flow cytometry

MRI-based neuroimaging

Antibodies
Antibodies used

Validation

Antibodies used for CyTOF experiments are listed in Table S6, including manufacture and metals used for conjugation, as well as the
target concentration. Antibodies being used and the validation provided by the company are listed below:

CD11c(Bu15,BioLegend; validation from website:Flow Cytometry, CyTOF)

CD123 (IL-3R)(6H6,BioLegend; validation from website:Flow Cytometry, CyTOF)

CD138(DL-101,Fluidigm; validation from website:CyTOF)

CD14(M5E2,BioLegend; validation from website:Flow Cytometry, CyTOF)

CD16(3G8,Fluidigm; validation from website:CyTOF)

CD163(GHI/61,Fluidigm; validation from website:CyTOF)

CD19(HIB19,Fluidigm; validation from website:CyTOF)

CD3(UCHT1,BioLegend; validation from website:Flow Cytometry, CyTOF)

CD34(581,Fluidigm; validation from website:CyTOF)

CD38(HIT2,Fluidigm; validation from website:CyTOF)

CD4(SK3,BioLegend; validation from website:Flow Cytometry, CyTOF)

CD45(HI30,Fluidigm; validation from website:CyTOF)

CD56 (NCAM)(NCAM16.2,Fluidigm; validation from website:CyTOF)

CD61(VI-PL2,BioLegend; validation from website:Flow Cytometry, CyTOF)

CD66b(6/40C,Biolegend; validation from website:Flow Cytometry, IHC-P)

CD69(FN50,Fluidigm; validation from website:CyTOF)

CD71(CY1G4,BioLegend; validation from website:Flow Cytometry)

CD79b(CB31,Fluidigm; validation from website:CyTOF)

CD8a(SK1,BioLegend; validation from website:Flow Cytometry, CyTOF)

CXCR4(12G5,Fluidigm; validation from website:CyTOF)

FCRL5(509f6,Biolegend; validation from website:Flow Cytometry, IP)

H3.3(D1H2,Cell Signaling; validation from website:Flow Cytometry, WB, IHC, IF)

HLA-DQA1(Tu169,Biolegend; validation from website:Flow Cytometry, IHC-F)

IL-10(JES39D7,Fluidigm; validation from website:CyTOF)

IL-10RA(3F9,BD; validation from website:Flow Cytometry)

IL-17(N49653,Fluidigm; validation from website:CyTOF)

IL-17RA(W15177A,BioLegend; validation from website:Flow Cytometry)

IL-1B(AS10,BD; validation from website:Flow Cytometry, IHC)

IL-6(MQ213A5,Fluidigm; validation from website:CyTOF)

IL-6ST(AM64,BD; validation from website:Flow Cytometry)

IL32(373821,R&D; validation from website:Flow Cytometry)

Ig kappa (light chain)(MHK-49,BioLegend; validation from website:Flow Cytometry, CyTOF)

Ig lambda (light chain)(MHL-38,Fluidigm; validation from website:CyTOF)

IgG(97924,R&D; validation from website:Flow Cytometry, CyTOF, WB)

IkBa(L35A5,Fluidigm; validation from website:CyTOF)

Ki-67(B56,Fluidigm; validation from website:CyTOF)

STAT1(SM1,USBio; validation from website:Flow Cytometry, WB, IP)

STAT3(15H2B45,BioLegend; validation from website:ICFC)

TACI(1A1,Biolegend; validation from website:Flow Cytometry)

c-FOS(9F6,Cell Signaling; validation from website:Flow Cytometry, WB, IP, IHC, IF)

c-JUN(60A8,Cell Signaling; validation from website:Flow Cytometry, WB, IP, ChIP, IHC, IF)

p-p38[T180/Y182](D3F9,Fluidigm; validation from website:CyTOF)

p4E-BP1(236B4,Fluidigm; validation from website:CyTOF)

pMAPKAPK2[T334](27B7,Fluidigm; validation from website:CyTOF)

pNF-kB p65[S529](K10-895.12.50,Fluidigm; validation from website:CyTOF)

pStat1[Y701](58D6,Fluidigm; validation from website:CyTOF)

pStat1[Y701](58D6,Fluidigm; validation from website:CyTOF)

Antibodies are first validated by manufactures where possible. For antibodies where CyTOF validation is not available by the
manufacture, or antibodies that are not conjugated with metals for CyTOF experiment, metal conjugation is done first. Then, titration




