
Editorial Note: This manuscript has been previously reviewed at another journal that is not 

operating a transparent peer review scheme. This document only contains reviewer comments and 

rebuttal letters for versions considered at Nature Communications. 

REVIEWER COMMENTS 

Reviewer #1 (Remarks to the Author): Expert in multiple myeloma genomics 

Liu and colleagues have revised their previous manuscript, which I previously reviewed for 

[redacted]. Some of the analyses have changed, but unfortunately the paper retains the same 

fundamental weaknesses. 

MAJOR CRITICISMS 

1) There is no hypothesis and a complete lack of a central story. There is not even any real 

hypothesis generation. 

2) The manuscript consists of a series of observations about gene expression or cell clusters, which 

usually only apply to a subset of the samples. In some cases, these observations are confined to 

samples with a particular feature (e.g the CCND1-activating translocations). However, the numbers 

are too small to draw any conclusions about whether the associations are genuine or are a chance 

finding. In other cases, the authors describe a pattern that they have observed in a few of the 

samples, but not the others. It is hard to know what to conclude from this, apart from the (well-

known) fact that myeloma is a heterogeneous disease. 

3) There is very little attempt to link the findings to the biology of myeloma. Where biological 

interpretations are made, they are speculative and no or minimal attempt is made to test the 

hypotheses. 

4) Some of the figures and explications are very hard to follow. 

5) The real novelty that I see in this dataset is the inclusion of microenvironmental single cell 

sequencing data. However, these are mostly ignored. There may be a really interesting story 

pertaining to immuno-oncology hidden within, but there is no real attempt to pursue this. 

6) Ultimately, the authors neither convince me that they have a particularly novel analytical 

approach to single cell data, nor that they describe any new insights into myeloma biology, let alone 

cancer in general. 

7) I accept that the data have value as a resource. However, I could find no entry under the “Data 

availability” heading. It is essential that the raw data be made public prior to publication. 

SPECIFIC EXAMPLES OF THE ABOVE 

Practically every result in the manuscript can be criticized in the same way... 



Page 6 – VAF changes are seen during disease progression in patients 27522 and 59114. Can we 

conclude that this is a general phenomenon? Why is this important? 

Page 7 – Hubs for a mutational network in 25722 R.2 sample. What are these? Are they seen 

elsewhere? Why are they important? 

Page 8 – Clustering correlation between SMM and primary samples in patients 47491 and 58408 

with lower correlation between primary samples and relapse. There are too few samples to draw 

any conclusions. However, assuming this is a general phenomenon, what is the biological relevance? 

Page 8 – Correlation of clustering by translocation. Are there sufficient samples to claim that this is a 

broad phenomenon? If so, what is the relevance? 

Page 8 – Plasma cells cluster by patient, non-PC by cell type. This is hardly surprising. Of the two 

SMM samples, there appear to be very few PC in 58408. Is this correct? 

Page 8 – Differential expression analyses. Conclusions are drawn from only a few cases: two SMM 

and one remission. Difficult to draw any conclusions here. Relevance? There are six relapse samples, 

but only three (for IL1R2) or one (for IL1B) are shown in the figure. Why is this? What about the 

other relapse samples? Does this in fact indicate that the phenomena are not general? Why do the 

findings matter? 

Page 8/9 – Three cases examined for microenvironmental cells. There is no consistent pattern. What 

is the biological relevance? 

Page 9 – Outlier analysis on two patients. The same problem. Can we draw general conclusions 

about t(11;14)? What is the relevance? 

Page 10/11 – B-cell lineage analysis. A purported association between MS4A1 expression in PCs of 

patients 56203, 83942, 77570 and CCND1 regulation. What about patient 81012, which has a 

t(11;14) but very low MS4A1? Why doesn’t this show the pattern? What is meant by “aberrant 

CCND1 regulation according to FISH”? It is not a translocation and there is no overexpression, so 

what are we talking about? The authors really cannot draw any conclusion about relationship 

between CCND1 and B-cell phenotype from their data. Even if they could, they still fail to explain 

why this relevant. If they were speculating about pre-germinal centre origins of myeloma or cells 

that manifest resistance, this might be interesting, but I cannot see specific evidence of this in the 

data that they show. 

Page 11 – Having been shown four levels of B-cells, we are not told why this is important. 

Page 11/12 – Deep chromosome 13 loss in three patients. From the manuscript: “Clusters with 

deeper deletion tended to be patient and subpopulation-specific, while cells mapping to the same 

location as normal plasma cells tended to come from multiple patients and showed greater 

variability”. This is very vague. It is not formalized or quantified. Why does it matter? 



Page 12 – Investigation of clonal structure. Only three samples. Generalizable? Relevant? 

Page 14 – The authors describe two t-SNE clusters in each of primary and relapse samples of six 

patients. Here, at last, we might have numbers that allow us to generalize a finding. However, we 

should also presumably see a similar two clusters in all the other primary samples if this is a general 

phenomenon – I don’t think this is shown. Assuming that this is the case, what is the situation in 

SMM? Is there just one cluster in SMM then two in primary myeloma or are there always two 

clusters? Ultimately, we are still left with the question: why does this matter for myeloma biology? 

Page 14/15 – Proportion of PCs varies between primary and relapse (but not always?). Both 

increases and decreases are seen. What does this tell us? 

Page 15 – Patient 81012 subpopulation dynamics. “Trajectory-based analysis also suggests R.3 and 

R.4 are mainly present at the end point of state 4 and state 5, respectively.” What exactly are states 

4 and 5, apart from some arbitrary point in pseudotime? Why is this important? More confusingly, 

we are told first that P.2/R.2 have the lowest expression of FOS. We are then told that P.1, R.1, and 

R.2 exhibit higher expression. So does R.2 exhibit higher or lower expression? Similarly, R.4 is stated 

to have the highest expression, but we are then told that R.3 and R.4 have similar expression of FOS 

to R.1. R.4 has chr 19 loss, but we are not told why this matters (chromosome 19 loss is not one of 

the more common cytogenetic findings in myeloma). The conclusion is that R.3 and R.4 have 

enhanced growth and survival, but I don’t see what data tell us that. Are they basing this on 

overexpression of CKS1B and MEF2C, respectively? If so, this is a bizarre conclusion. Surely there are 

multiple other factors that can promote growth and survival that may be expressed slightly higher 

and/or in combination by P.1 and P.2 (but not making the threshold for differential expression). 

Again, even if true, why does it matter? Can we say that it is a universal/near-universal 

phenomenon? 

Page 16 – Similar analysis for 56203. (1) They claim that P.1 is closest to the relapse samples, but 

extended data figure 8a is really hard to follow and it is not clear how they concluded this. (2) 

Assuming, though, that they are correct in this, how many cells exhibited chr 17 loss in P.1. Were 

they present before treatment? (3) Surely p53 is the best candidate for a tumor suppressor on chr 

17. Why are we not shown p53 expression in the various samples? (4) And, again, what is the 

biological relevance of all this? 

Page 16/17 – The analysis of patient 27522 is poorly written and hard to follow. They conclude by 

stating that there are “important clinical implications” but don’t tell us what these are. The 

statement: “Taken together, one interpretation is there were cells present at remission that evaded 

treatment and survived to seed the relapse” seems to be a remarkably anodyne conclusion; any 

clinician who has treated myeloma knows this already. 

Page 21 – It is not clear how fig. 7A supports the text, which is not easy to follow. Are the authors 

drawing their conclusions on the role of AP-1 in myeloma from fig. 7A (which does not support the 

conclusion) or from samples 58408 and 81012, which is only two patients? 



Fig. 7B shows some correlation between FOS/JUN expression and a few of their known targets (IL6ST 

and IL1A). This is entirely unsurprising, but doesn’t really tell us anything. 

Fig. 7C This shows a possible correlation between FOS and H3F3B for only four samples and no or 

minimal correlation between FOS or JUN and other potential targets. The CyTOF data appear to be 

mostly missing. I am not sure what we can conclude from this. In terms of the bottom of the figure 

(i.e. the functional consequences), this is speculative. Many of the proteins may be pleiotropic and, 

as noted, many of the correlations appear weak. Surely some of these proposed functional 

consequences are potentially testable, e.g. are there any gene signatures or expression markers of 

SAHF that could be examined (with the caveat that we are only looking at four samples). 

Reviewer #2 (Remarks to the Author): Expert in single-cell RNA-seq, biostatistics, and bioinformatics 

The authors have addressed my concerns from the last round of reviews and I have no more 

reservations. As I wrote last time, this study is done on a small cohort that is very heterogeneous, 

and most of the results obtained are inconclusive. But, I appreciate the reviewers' point that 

multiple myeloma is an extremely heterogeneous disease, and it is not realistic right now to conduct 

a study of the scale necessary to draw integrative general conclusions. I think this is a nice 

demonstrative study, with successful integration across multiple omics data types, that provides a 

data resource and initial exploration upon future large scale studies can be based. 

Reviewer #3 (Remarks to the Author): Expert in single-cell RNA-seq and tumour microenvironment 

The authors have addressed all of my comments in great detail. They have thoroughly reanalysed 

the single-cell RNA-seq data and included many new analyses of the tumour microenvironment as 

well as trajectory analysis of the plasma cells, which is a tremendous effort. However, even though 

the study provides a unique longitudinal dataset and represents a valuable resource, the more 

detailed analyses still haven’t resulted into common trends and significant insights about the 

progression or treatment of myeloma. The samples are very heterogeneous in terms of their 

mutational and transcriptional landscape. The manuscript might be more suitable to be published as 

a resource. 



Reviewer #1 (Remarks to the Author): Expert in multiple myeloma genomics 
 
Reviewer 1: Liu and colleagues have revised their previous manuscript, which I previously 
reviewed for [redacted]. Some of the analyses have changed, but unfortunately the 
paper retains the same fundamental weaknesses. 
 
MAJOR CRITICISMS 
Reviewer 1: There is no hypothesis and a complete lack of a central story. There is not 
even any real hypothesis generation. 
Authors: We appreciate the referee’s point and feel that the manuscript was less than clear 
in  framing  our  hypothesis and  main  story.  We  have  remedied  this  issue  in  the  revision. 
Summarizing, the key hypothesis is that dynamic population shifts are exhibited in both the 
malignant  plasma  cells  and  the  surrounding  microenvironment  during  the  disease 
progression process and that these shifts should be discernable at the single-cell level using 
scRNA technology. Pursuing this hypothesis, we collected a longitudinal set of myeloma 
patient samples that encompass multiple disease stages and various treatment modalities. 
By  integrating  genomics  and  single  cell  mapping,  we  were  able  to  track  plasma  cell 
subpopulations across disease stages, finding they fall into three patterns: stability (from 
SMM to primary diagnosis) and either gain or loss (from primary diagnosis to relapse). We 
also found that the expression of AP-1 complex is one of the key features that determines the 
subcluster  structure  of  plasma  cells  and  this  is  also  validated  by  CyTOF-based  protein 
analysis. 
 
Reviewer 1: The manuscript consists of a series of observations about gene expression or 
cell clusters, which usually only apply to a subset of the samples. In some cases, these 
observations are confined to samples with a particular feature (e.g the CCND1-activating 
translocations). However, the numbers are too small to draw any conclusions about whether 
the associations are genuine or are a chance finding. In other cases, the authors describe a 
pattern that they have observed in a few of the samples, but not the others. It is hard to 
know what to conclude from this, apart from the (well-known) fact that myeloma is a 
heterogeneous disease. 
Authors:  We  understand  the  referee’s  criticism,  but  would  point  to  the  inherent  and 
unavoidable difficulties of gathering large, longitudinal MM cohorts for basic research. Indeed, 
this would be the first published longitudinal genomics study, as far as we can tell from 
searching the literature. 
 
Our sample cohort encompasses the relevant heterogeneities across the genomic landscape, 
disease stages, and treatment regimes (Figure 1). The rationale for our sample collection 
strategy is to prioritize the longitudinal survey nature of the study above the consistency of 
having  the  complete  complement  of  fully-powered,  stratified  groups  over  all  classes  of 
genomic alterations and their treatment regimes. The latter design is not possible at this time. 
For instance, even the most highly mutated driver genes like KRAS only appear in ~20% 



patients1, meaning, for example, that obtaining 50 consistent cases (80% power) would 
require a sample cohort of >250 patients. Each element of heterogeneity implies similar-sized 
or even larger patient samples over the various strata. Although our cohort is small, the range 
of mutations suggests our data are representative of the general myeloma population, which 
tends to undergo diverse treatment regimens depending on patient-specific factors.  
With this rationale, the aim for this study has been to 1) serve as a model of how to 
longitudinally integrate data from the genomic level, RNA expression level, and the 
microenvironment side in order to more comprehensively investigate the disease progression 
of multiple myeloma, and 2) pinpoint observations of note from our cohort, which should serve 
as a springboard for future clinical studies where greater homogeneities of patient profiles 
and treatments and fully-powered, longitudinal sample cohorts become available. 
 
Reviewer 1: There is very little attempt to link the findings to the biology of myeloma. 
Where biological interpretations are made, they are speculative and no or minimal attempt 
is made to test the hypotheses. 
Authors: We appreciate the reviewer’s careful reading of the manuscript. As was mentioned 
above, the limited sample size within this study precludes definitive conclusions. Given the 
provisional nature of our observations, we do not feel there is not enough evidence to 
motivate a deep dive into linking findings to myeloma biology. Rather, we anticipate that this 
undertaking will fall to future, larger-scale studies of myeloma. 
As to specific cases, namely 56203 and 81012, for which the reviewer raises concerns, the 
revision adds new analysis (expanded in the SPECIFIC EXAMPLE part below; refer to page 
14-19 in response letter) as another layer for validating our findings. We are not certain 
whether the observations we made for either of the two cases have a more general relevance 
to other myeloma cases; however, the subcluster structure within each time point for each 
case should be more clear with the additional analysis. 
 
Reviewer 1: Some of the figures and explications are very hard to follow. 
Authors: The referee touches upon an important point. We have carefully re-edited our text 
accordingly to clarify our findings. We also expanded and clarified discussion for parts 
identified by both the reviewer and the editors, especially within the SPECIFIC EXAMPLE 
part. Overall, we feel the readability of the revised manuscript should be acceptable. 
 
Reviewer 1: The real novelty that I see in this dataset is the inclusion of 
microenvironmental single cell sequencing data. However, these are mostly ignored. There 
may be a really interesting story pertaining to immuno-oncology hidden within, but there is 
no real attempt to pursue this. 

                                                
1 Bezieau, S. et al. High incidence of N and K-Ras activating mutations in multiple myeloma and 
primary plasma cell leukemia at diagnosis. Hum Mutat 18, 212-224 (2001). 



Authors: We appreciate the reviewer’s suggestion and have expanded our treatment of this 
aspect of our work. We performed a cell-to-cell interaction analysis using cellphonedb2 
(https://github.com/Teichlab/cellphonedb), focusing on tumor interactions with cells from 
myeloid (Reviewer Response Letter Figure 1a) and lymphoid (Response Letter Figure 1b) 
lineages. We also investigated the specific interactions between myeloid and lymphoid 
lineages (Response Letter Figure 1c). 
 
Several interactions are worth noting. For example, between the myeloid population and 
tumor cells, we detected a significant interaction between TNFSF13B (myeolid) and 
TNFRSF17 (Plasma), the former coding for B-Cell-Activating Factor (BAFF) and the latter for  
B cell maturation antigen (BCMA). BAFF improves myeloma cell survival by upregulating anti-
apoptotic protein expression3 and macrophage-derived BAFF seems to confer bortezomib 
resistance via Akt and NF-kB pathways in myeloma4. Conversely, BCMA is a CAR-T target 
that is being actively pursued in myeloma treatment5.  It is possible that enhanced survival of 
myeloma cells conferred by BAFF is mediated by BCMA and that targeting their interaction 
would be therapeutically beneficial. 
 
We also found significant correlation between CCL4 (CD8+T cells and NK cells) and 
GPRC5D (Plasma cells), the latter a myeloma-antigen candidate6, recapitulating findings in 
IMEx7 and IntAct (www.ebi.ac.uk). Experimental validation for this interaction is based on two 
hybrid array screenings8. CCL4 (a.k.a. MIP1-β) is an important chemokine mediator of 
physiological homeostasis via recruitment of regulatory T cells9. Regarding myeloma, CCL4 
secretion helps promote development of osteolytic lesions via interaction with its cognate 

                                                
2 Efremova, M., Vento-Tormo, M., Teichmann, S. A. & Vento-Tormo, R. CellPhoneDB: inferring 
cell-cell communication from combined expression of multi-subunit ligand-receptor 
complexes. Nat Protoc 15, 1484-1506 (2020). 
3 Neri, P. et al. Neutralizing B-cell activating factor antibody improves survival and inhibits 
osteoclastogenesis in a severe combined immunodeficient human multiple myeloma model. Clin 
Cancer Res 13, 5903-5909 (2007). 
4 Chen, J. et al. BAFF is involved in macrophage-induced bortezomib resistance in 
myeloma. Cell Death Dis 8, e3161 (2017). 
5 Yu, B., Jiang, T. & Liu, D. BCMA-targeted immunotherapy for multiple myeloma. J Hematol 
Oncol 13, 125 (2020). 
6 Smith, E. L. et al. GPRC5D is a target for the immunotherapy of multiple myeloma with 
rationally designed CAR T cells. Sci Transl Med 11, eaau7746 (2019). 
7 Orchard, S. et al. Protein interaction data curation: the International Molecular Exchange 
(IMEx) consortium. Nat Methods 9, 345-350 (2012). 
8 Luck, K. et al. A reference map of the human binary protein interactome. Nature 580, 402-408 
(2020). 
9 Bystry, R. S., Aluvihare, V., Welch, K. A., Kallikourdis, M. & Betz, A. G. B cells and 
professional APCs recruit regulatory T cells via CCL4. Nat Immunol 2, 1126-1132 (2001). 



receptor CCR510. This interaction could shed light on the apparently complex way that CCL4 
is associated with myeloma biology. 
 
Another noteworthy interaction is between NCR3 from NK cells and BAG6 from a variety of 
cell types, including monocytes, macrophages, dendritic cells, NK cells, and plasma cells. In 
chronic lymphocytic leukemia (CLL), tumor cell-released soluble BAG6 inhibits NK cell 
cytotoxicity by engaging with NCR3 on NK cells 1112. Whether this behavior occurs in MM 
remains to be established. Other examples include interactions between CLEC2B from 
plasma cells and KLRF1 from NK cells and LGALS9 from macrophage/monocytes with 
CD47/CD44 from T/NK cells. KLRF1 is an activating homodimeric C-type lectin-like receptor 
involved in cytokine release13, while CD47 is an immunosuppressive checkpoint14. 

                                                
10 Abe, M. et al. Role for macrophage inflammatory protein (MIP)-1alpha and MIP-1beta in the 
development of osteolytic lesions in multiple myeloma. Blood 100, 2195-2202 (2002). 
11 Reiners, K. S. et al. Soluble ligands for NK cell receptors promote evasion of chronic 
lymphocytic leukemia cells from NK cell anti-tumor activity. Blood 121, 3658-3665 (2013). 
12 Pittari, G. et al. Restoring Natural Killer Cell Immunity against Multiple Myeloma in the Era of 
New Drugs. Front Immunol 8, 1444 (2017). 
13 Kuttruff, S. et al. NKp80 defines and stimulates a reactive subset of CD8 T cells. Blood 113, 
358-369 (2009). 
14 Tong, B. & Wang, M. CD47 is a novel potent immunotherapy target in human malignancies: 
current studies and future promises. Future Oncol 14, 2179-2188 (2018). 



 
Response Letter Figure 1. Summary of cell-cell interactions between (a) tumor cells and 
myeloid populations; (b) tumor cells and lymphoid populations; (c) lymphoid and myeloid 
populations. Interactions of interest are highlighted in red. 



 
 
Reviewer 1: Ultimately, the authors neither convince me that they have a particularly novel 
analytical approach to single cell data, nor that they describe any new insights into myeloma 
biology, let alone cancer in general. 
Authors: We acknowledge the reviewer’s concern for the novelty of this study, but would 
make the following points: 
 
First, we combined multi-omics data from the genomic and transcriptomic side longitudinally. 
Specifically regarding scRNA, we integrated multi-layer information based on mutation 
mapping (developed internally for this study; https://github.com/ding-lab/10Xmapping), 
inferred copy number profile and expression profile, and found cell subclusters that are either 
preserved or lost as disease progresses. This kind of longitudinal genomics analysis is novel 
for MM. 
 
Second, a detailed analysis for longitudinal samples from primary diagnosis and relapse time 
point identifies unique characteristics of some of these populations from the relapse stage,  
which we discuss in the following pages (refer to page 14-19 in response letter). We anticipate 
that future work will utilize a very similar strategy as what we have developed here, except 
with increasingly larger sample sizes in order to establish whether the patterns observed here 
hold generally and whether there are more possibilities reflecting disease heterogeneity. 
 
Third, we identified plasma cell clusters that are characterized by differential AP-1 expression 
levels. While previous studies have emphasized the importance of AP-1 expression in 
myeloma proliferation and drug resistance15, this is the first study, to the best of our 
knowledge, that shows FOS/JUN differential expression co-exists within individual samples. 
This observation could open the door to future work exploring the biological roles of both the 
AP-1-high and AP-1-low populations in parallel. 
 
Reviewer 1: I accept that the data have value as a resource. However, I could find no entry 
under the “Data availability” heading. It is essential that the raw data be made public prior to 
publication. 
Authors: We acknowledge the reviewer’s concern regarding making data public. We are 
currently working on public SRA submission and expecting the data to be public soon. 
 
SPECIFIC EXAMPLES OF THE ABOVE 
 
Practically every result in the manuscript can be criticized in the same way... 
 
                                                
15 Fan, F. et al. The AP-1 transcription factor JunB is essential for multiple myeloma cell 
proliferation and drug resistance in the bone marrow microenvironment. Leukemia 31, 1570-
1581 (2017). 



Reviewer 1: Page 6 – VAF changes are seen during disease progression in patients 27522 
and 59114. Can we conclude that this is a general phenomenon? Why is this important? 

Authors: Changes within the tumor of variant allele frequencies over time reflect 
clonal/subclonal evolution. In 27522, for example, TP53 VAF (based on WES) increased from 
0.4% at the primary state to 33.1% at relapse-1, then to 42.6% at relapse-2. This increase 
means that the minor subclone with TP530R284Q has become resistant to treatment and 
expands over disease progression. VAF for NRAS-Q61K is 17.1% at the primary stage but 
drops to 0.6% in relapse-1 and then to 0% in relapse-2, indicating that the subclone containing 
this variant is eliminated by treatment. 
 
For 59114 however, not all samples were sorted, meaning VAF could reflect either tumor 
subclonality OR differences in sample tumor fraction.  Because of this ambiguity, we have 
removed the text describing VAF changes for 59114. 
 
Our varied sampling strategy and the inherent patient diversity make it difficult to conclude 
whether observed VAF changes are a general disease phenomena. However, assessing VAF 
changes sheds light on how resistant tumor subclones may grow to dominance over the 
course of treatment. This is a well-established model for cancerous relapse. Examining VAF 
changes closely may help guide treatment strategies in combating disease persistence.  
 

Reviewer 1: Page 7 – Hubs for a mutational network in 25722 R.2 sample. What are these? 
Are they seen elsewhere? Why are they important? 

Authors: We appreciate the reviewer catching this detail. “Mutational network” is not an 
accurate term in this context. We are only referring to mutations co-occurring in the same 
cells. We have clarified the text accordingly. 
Reviewer 1:  Why are they important?  
Authors: Mutation mapping with single-cell data reveals combinations of co-occurring 
mutations in the same cells, thus giving a better picture of tumor subclonality than VAF alone. 
It also can determine gene expression differences between subclones that are characterized 
by different mappings. Currently the number of mapped mutations is small, but technological 
improvements in snRNA-seq will push future expansions.  
Reviewer 1:  Are they seen elsewhere?  
Authors: For 27522 R.2, we were able to map 7 variants (out of 48 detected in bulk analysis) 
to 63 plasma cells in single-cell data (Supplemental Table S2). For other samples, we 
observed either fewer mapped variants or fewer plasma cells bearing such variants and were 
thus unable to find similar patterns of mutation co-occurrence in those instances. This very 
likely reflects technological limitations.  



Reviewer 1:  Page 8 – Clustering correlation between SMM and primary samples in patients 
47491 and 58408 with lower correlation between primary samples and relapse. There are too 
few samples to draw any conclusions. However, assuming this is a general phenomenon, what 
is the biological relevance? 

Authors: For cases where SMM, primary, and relapse samples are available, we observe a 
higher degree of similarity between SMM and primary than between primary and relapse. The 
presence of subsequent timepoints is in itself a suggestion of higher-risk SMM (having indeed 
progressed to malignancy) and the dissimilarity between primary and relapse samples 
suggests treatment-induced alterations in the tumor population. A takeaway here is that 
comparison between tumor expression profiles for primary-diagnosed patients without prior 
treatment and low-risk SMM patients (without progression to primary myeloma) may be 
informative for identifying features that could predict high-risk versus low-risk SMM. 
 
Reviewer 1: Page 8 – Correlation of clustering by translocation. Are there sufficient samples to 
claim that this is a broad phenomenon? If so, what is the relevance? 
 
Authors: As with a few other comments, this one touches upon sample size. Multiple 
myeloma is especially tricky because even its most frequent driver events are only found in 
small percentages of patients, necessitating very large samples for drawing general 
conclusions. While we cannot make such conclusions here, it is important to investigate the 
assumption that “samples with similar cytogenetic alterations will tend to have similar gene 
expression profiles”. Indeed, 77570 and 83942 both have t(11;14) and exhibit similar 
expression profiles, which provisionally supports this assumption. If it is later found to hold 
true in a larger sense, it should be possible to further investigate the features for the 
associated expression profile, which could shed light on additional therapeutic targets for a 
certain group of patients. 
 

Reviewer 1: Page 8 – Plasma cells cluster by patient, non-PC by cell type. This is hardly 
surprising. Of the two SMM samples, there appear to be very few PC in 58408. Is this correct? 

Authors: The observation is consistent with the expectation that tumor cells are highly 
heterogeneous, while the microenvironment tends to be more similar across patients. But, it 
is worth investigating the degree to which this diversity is functionally significant for disease 
physiology. We thus utilized scRNA-seq to examine drivers of cluster resolution. For the SMM 
time point of 58408, we indeed did not find a lot of plasma cells in the sample. 
 



Reviewer 1: Page 8 – Differential expression analyses. Conclusions are drawn from only a few 
cases: two SMM and one remission. Difficult to draw any conclusions here. Relevance? There 
are six relapse samples, but only three (for IL1R2) or one (for IL1B) are shown in the figure. 
Why is this? What about the other relapse samples? Does this in fact indicate that the 
phenomena are not general? Why do the findings matter? 

Authors: We the referee’s comment regarding consistency of microenvironment profiles 
across samples, but unfortunately, the observation we reported in the manuscript is not seen 
across all samples (Reviewer Response Letter Figure 2). For cases 27522 and 56203, IL1R2 
expression in monocytes is not altered significantly across time points. For IL1B, only 60359 
showed an obvious change. This suggests the findings may not be general, given the diverse 
spectrum of patient genomic landscapes and treatment regimes. Nevertheless, we were able 
to use our longitudinal sampling to pinpoint some interesting microenvironmental changes at 
the cell-type level. It would take a significantly greater number of samples to support any 
generalizations regarding the microenvironment that would be helpful for guiding future 
therapeutic interventions. 

 
Response Letter Figure 2. Expression of IL1R2 and IL1B in monocytes for samples with multiple 
time points. 
 

Reviewer 1: Page 8/9 – Three cases examined for microenvironmental cells. There is no 
consistent pattern. What is the biological relevance? 

Authors: Our cohort is a heterogeneous collection that represents many genomic variations, 
disease stages, and treatment regimes, so inconsistencies in the microenvironment are not 
wholly unexpected. However, due to the large body of work detailing the interaction and 
interdependence of myeloma with other cells in the bone marrow, it may be surprising that 
we do not see strong indications of specific microenvironmental perturbations. We believe 
that reporting this observed heterogeneity is therefore important in underlining the complexity 



of this disease. Future studies with a more homogenous cohort may better elucidate the role 
of the microenvironment in myeloma.  
 

Reviewer 1: Page 9 – Outlier analysis on two patients. The same problem. Can we draw 
general conclusions about t(11;14)? What is the relevance? 

Authors: Here, we test the assumption that “tumors with similar cytogenetic alterations may 
have similar microenvironment profiles”. While multiple myeloma is known to be highly 
interactive with its physiological niche, the correlation between tumor subtype and specific 
microenvironment perturbations has not yet been heavily studied. We explore this question 
using scRNA-seq of whole bone marrow, which precludes biases due to cell-sorting that 
hinder other methods. While our cohort is admittedly too small for general conclusions, we 
feel that this study provides valuable evidence for a presently sparse body of work.  
 

Reviewer 1: Page 10/11 – B-cell lineage analysis. A purported association between MS4A1 
expression in PCs of patients 56203, 83942, 77570 and CCND1 regulation. What about patient 
81012, which has a t(11;14) but very low MS4A1? Why doesn’t this show the pattern?  

Authors: This observation serves to validate the proposed molecular subtype classification 
of MM by Zhan et al.16. In that study, patients with CCND1 activation were classified into two 
groups, where one group, CD2, is characterized by high expression of certain B cell markers 
like MS4A5 (CD20) and PAX5, while the other group, CD1, lacks B cell markers and exhibits 
overexpression for genes FYN and SETD7. For patient 77570 and 83942, we observed high 
expression of MS4A1, suggesting those two cases belong to the CD2 group. Conversely, 
case 81012 showed elevated SETD7 and FYN expression, suggesting it belongs to the CD1 
group. 

Reviewer 1: What is meant by “aberrant CCND1 regulation according to FISH”? It is not a 
translocation and there is no overexpression, so what are we talking about?  

Authors: Unfortunately, our explanation regarding this point was somewhat ambiguous. The 
statement mentioning “aberrant CCND1 regulation according to FISH” actually refers to the 
results from the FISH report. FISH was not able to detect the IGH-CCND1 rearrangement for 
case 56203; however, an abnormal pattern consisting of three signals for IGH and two signals 
for CCND1 was observed in 87/200 nuclei, indicative of trisomy for the corresponding region 
on chromosome 14. 

                                                
16 Zhan, F. et al. The molecular classification of multiple myeloma. Blood 108, 2020-2028 
(2006). 



Reviewer 1: The authors really cannot draw any conclusion about relationship between 
CCND1 and B-cell phenotype from their data. Even if they could, they still fail to explain why this 
relevant. If they were speculating about pre-germinal centre origins of myeloma or cells that 
manifest resistance, this might be interesting, but I cannot see specific evidence of this in the 
data that they show. 

Authors: As mentioned, this observation supports a previous study focusing on different 
subtypes of multiple myeloma. Based on single cell data alone, however, the only conclusion 
here is that some myeloma cells with aberrant CCND1 regulation exhibit a B cell phenotype, 
suggesting targeting B cells could be another effective myeloma treatment regime. The 
underlying reason for the observed B cell phenotype is not clear, but it could be that some 
plasma cells de-differentiate into a less mature state, or that there are malignant cells that 
are already lurking at premature stages. It would be definitely interesting to investigate 
whether the resistant myeloma cells are truly of pre-germinal center origins, but it is beyond 
the scope of our current study.  
 

Reviewer 1: Page 11 – Having been shown four levels of B-cells, we are not told why this is 
important. 

Authors: We appreciate the reviewer’s raising this point. We have added an explanation to 
the revision, as follows. 

1. By dissecting lineage-specific genes, we can discern whether malignant plasma cells 
exhibit high expression of certain genes that are indicative of earlier lineages 
(mature B cells, earlier/primitive B cells). 

2. It allows highlighting of features that distinguish between normal and malignant 
plasma cells at the single cell level. 

3. It helps identify novel and less-explored markers for each developmental stage that 
might be worth further investigation. 

4. Our observations could serve as a reference for other scRNA-seq studies for cross-
comparison, especially in the field of myeloma and other B cell malignancies. 

Reviewer 1: Page 11/12 – Deep chromosome 13 loss in three patients. From the manuscript: 
“Clusters with deeper deletion tended to be patient and subpopulation-specific, while cells 
mapping to the same location as normal plasma cells tended to come from multiple patients and 
showed greater variability”. This is very vague. It is not formalized or quantified. Why does it 
matter? 

Authors: To address the referee’s point, we have added a mapping for normal plasma cells 
and changed the layout of color for better and clearer visualization. A figure is also attached 
below (reviewer response letter figure 3) to show the distribution of B cells and plasma cells 
(with copy number information for chromosome 13) for each sample. It should be noted, 
though, that due to the limited number of plasma cells from healthy donor samples, these 
cells exhibit a scattered pattern in the tSNE (but still within the same region). This observation 
is important because the patient and subpopulation-specific pattern for clusters with deeper 



chr13 deletion suggests that deep deletion of chr13 is an important feature in determining the 
overall expression profile of malignant plasma cells. Conversely, if this feature is not 
important, we would expect that samples with and without deep chr13 loss would be mixed 
together. Taking a step further, deep chr13 loss could be a stratifying feature for helping 
determine treatment regimes in the clinic (assuming there are enough samples for a solid 
conclusion). We have revised the text in the manuscript to clarify this point. 

 
Response Letter Figure 3. Mapping of B cells and plasma cells (with copy number information 
for chromosome 13) to the integrated tSNE plot with B and Plasma cells for each sample, 
respectively. 
 



 

Reviewer 1: Page 12 – Investigation of clonal structure. Only three samples. Generalizable? 
Relevant? 

Authors: The reviewer raises the questions of generality and relevance of the manuscript’s 
clonal structure analysis. All three cases are collected at SMM and primary diagnosis stages, 
with the consistency in timing for all indicating this structure is characteristic of at least some 
fraction of cases that progress from SMM to MM. A very simple probability model that posits 
picking 3 such samples randomly from a population would be significant at the 0.01 level 
suggests a population fraction around 0.011/3 ≈ 21%. We certainly concede that this 
observation might not be the only existing situation, but we do maintain this observation bears 
at least partial generalizability. Its relevance includes the following: 

1. Transition from SMM to MM does not necessarily involve significant, dynamic cell 
subpopulation changes (which is already suggested in the manuscript).  

2. While not mentioned in the manuscript, a further indication for this observation is that 
there could be features within plasma cells that distinguish high-risk SMM (which 
would progress to MM) from low-risk SMM (which remains stable and does not 
progress). Identifying features that distinguish high/low-risk SMM is a completely 
different undertaking that requires a different experimental design though. 

 

Reviewer 1: Page 14 – The authors describe two t-SNE clusters in each of primary and 
relapse samples of six patients. Here, at last, we might have numbers that allow us to 
generalize a finding. However, we should also presumably see a similar two clusters in all the 
other primary samples if this is a general phenomenon – I don’t think this is shown. Assuming 
that this is the case, what is the situation in SMM? Is there just one cluster in SMM then two in 
primary myeloma or are there always two clusters? Ultimately, we are still left with the question: 
why does this matter for myeloma biology? 

Authors: Indeed, we did not find a similar two-cluster-structure for all primary samples, which 
is also reflected in Figure 7a, but which might have been expected due to the specificity of 
the malignant plasma cells from different patients. Our analysis suggests the transition from 
SMM to primary MM should be a process in which plasma cell populations remain generally 
stable; therefore, we would assume the population structure for the cases where we did not 
find two-cluster-structure remains the same for its corresponding SMM time point. However, 
due to the unavailability of such samples, we do not have sufficient evidence to make such 
predictions in the manuscript. Rather, we are expecting future studies would be able to 
investigate a larger number of cases where SMM and primary diagnosed longitudinal samples 
are available for a more comprehensive characterization, in order to make more solid 
conclusions. 
For the cases we showed regarding the two-cluster structure, we discussed possible 
biological interpretations in later sections. Briefly, the two clusters are usually characterized 
by different levels of FOS/JUN expression and we were able to find downstream targets by 



examining FOS binding sites, suggesting ZBTB20 and H3F3B are two downstream targets 
that are being regulated. Analysis for the presumed downstream targets of ZBTB20 and 
H3F3B points to a senescent phenotype for cells with high expression of ZBTB20 and 
H3F3B, characterized by presence of SAHF, enhanced survival, decreased proliferation, 
and increased inflammatory cytokines. Altogether, the evidence suggests the AP-1-high 
population within the two-cluster structured plasma cells is associated with senescence. For 
samples from more advanced disease stages, though (e.g. Relapse), there are situations 
where AP-1-high population exhibit different biological meanings, which are discussed in 
the manuscript and the following response letter as well (e.g. page 14 about 81012, page 
17 about 56203) 
 

Reviewer 1: Page 14/15 – Proportion of PCs varies between primary and relapse (but not 
always?). Both increases and decreases are seen. What does this tell us? 

Authors: PC proportion may reflect tumor burden, but it may also be due to sampling 
variation. While we report observed proportions, we stress that bone marrow sampling is 
inherently noisy, and we suggest that PC proportion not be viewed as a direct indicator of 
tumor burden. 
 

Reviewer 1: Page 15 – Patient 81012 subpopulation dynamics.  

Authors: The reviewer’s concern for 81012 subpopulation dynamics is well taken. We have 
splitted our response to concerns into pieces in order to address them individually in the 
following pages.  

Reviewer 1: “Trajectory-based analysis also suggests R.3 and R.4 are mainly present at the 
end point of state 4 and state 5, respectively.” What exactly are states 4 and 5, apart from some 
arbitrary point in pseudotime? Why is this important?  

Authors: A “state” in pseudotime analysis lies between two adjacent branch points, or 
between a branch point and a terminal point. We performed trajectory analysis using Monocle 
(R package), whose algorithm assumes that cells undergo traceable, step changes in 
phenotype, and that a sample consists of cells along different stages of this developmental 
progression. Monocle infers how cells align along this pseudotime trajectory based on 
degrees of similarity in their gene expressions. States 4 and 5 are two terminal states - the 
cells at their respective terminal points are furthest away from the rest of plasma cells and B 
cells. We found R.3 and R.4 to be present mainly at the end points of states 4 and 5, which 
suggests that these two populations have different expression profiles from other cells. This 
is just one piece of the larger body of evidence showing  that R.3 and R.4 are two distinct, 
new populations. 



Reviewer 1: More confusingly, we are told first that P.2/R.2 have the lowest expression of 
FOS. We are then told that P.1, R.1, and R.2 exhibit higher expression. So does R.2 exhibit 
higher or lower expression?  

Authors: Based on figure 4f, P.2 and R.2 are the populations with lower FOS expressions. 
The previous text was due to a typo and we apologize for the confusion.The corrected 
sentence should be: “For FOS, one component within the AP-1 complex, we found the lowest 
expression in P.2 and R.2; P.1, R.1 and R.3 exhibit higher expression, while R.4 shows 
highest expression.” We very much appreciate the reviewer’s diligence in catching this 
mistake and we have corrected the sentence in the manuscript. 

Reviewer 1: Similarly, R.4 is stated to have the highest expression, but we are then told that 
R.3 and R.4 have similar expressions of FOS to R.1. R.4 has chr 19 loss, but we are not told 
why this matters (chromosome 19 loss is not one of the more common cytogenetic findings in 
myeloma).  

Authors: The reason we specifically looked into R.3 and R.4 is that both populations are 
newly-derived, indicating the differences for these two populations between R.1/R,2 is not 
only associated with FOS expression, although both populations have high FOS expression 
(despite even higher in R.4). We again appreciate reviewer’s diligence and have modified the 
text in the manuscript to clarify our rationale. We agree that chromosome 19 loss is not a 
common cytogenetic finding in myeloma. However, the reason for including inferCNV 
analysis here is that we wanted to see if there is any evidence at the CNV level that could 
distinguish different myeloma populations. It turned out that, among all the global CNV 
alterations, chr 19 loss within this case is most striking. For R.4, we think chromosome 19 
loss is another layer of evidence, besides expression and geometric location within UMAP, 
to demonstrate that this is a newly-derived, distinct population and that this population is 
different from others in terms of gene expression and copy number profile. 

Reviewer 1: The conclusion is that R.3 and R.4 have enhanced growth and survival, but I don’t 
see what data tell us that. Are they basing this on overexpression of CKS1B and MEF2C, 
respectively? If so, this is a bizarre conclusion. Surely there are multiple other factors that can 
promote growth and survival that may be expressed slightly higher and/or in combination by P.1 
and P.2 (but not making the threshold for differential expression). Again, even if true, why does 
it matter? Can we say that it is a universal/near-universal phenomenon? 

Authors: The reviewer indicates that analyzing the overexpression of individual genes is 
not sufficient to support our conclusion. Accordingly, we examined across all top DEGs for 
R.3 and R.4, respectively (Reviewer Response Letter Figure 4a; shown are the top 15 DE 
genes for R.3 and R.4, respectively).  
In fact, CKS1B is not among the top members in the list of DE genes for R.3; however, we 
do find genes such as MKI67 and TOP2A, two common proliferative markers, to be among 
the top list. Based on results from Reactome-based pathway analysis, the top DE genes for 
R.3 are enriched for pathways such as cell cycle, G1/S-Specific Transcription (Reviewer 
Response Letter Figure 4b), providing another layer of evidence for enhanced growth of R.3. 



 
For R.4, we are not able to find DE genes obviously enriched in specific pathways. This is 
partially expected, though, given the presence of lncRNAs (MALAT1, NEAT1, SMCR5) and 
that some of the genes are less well-explored (CTB-152G17.6, AC104532.4). Nevertheless, 
we are able to find upregulation of CCND1 for R.4, apart from MEF2C alone. Also, we also 
find upregulation of ADAR, an RNA-editing enzyme that has recently been reported to 
promote MM progression17. 
 
Altogether, we show that, R.3 and R.4, the two distinct populations, exhibit unique expression 
profiles than all the other populations and that such expression profiles are associated with 
altered biological processes that could contribute to disease progression through a variety of  
mechanisms.  

 
Response Letter Figure 4. Additional analysis for dynamics within case 81012. 
(a) Scaled expression for top DE genes from R.3 and R.4, respectively. Colors indicated 
average of scaled expression; size of the dots indicates the percentage of cells with non-zero 
expression. (b) Pathway enrichment analysis for top DE genes from R.3. 
 
The referee’s question regarding the universality of this phenomenon cannot really be 
answered meaningfully at this time because of the complexity of the disease. Nevertheless, 
this is a very interesting question and we expect it will be addressed in the future with a more 
uniform sample collection strategy. 
 

Reviewer 1: Page 16 – Similar analysis for 56203. 

Authors: Similar to case 81012, the reviewer is concerned about the biological interpretation 
for case 56203, and we will address the questions point by point in the following responses. 

                                                
17 Tasakis, R. N. et al. ADAR1 can drive Multiple Myeloma progression by acting both as an 
RNA editor of specific transcripts and as a DNA mutator of their cognate genes. bioRxiv (2020). 



Reviewer 1: (1) They claim that P.1 is closest to the relapse samples, but extended data figure 
8a is really hard to follow and it is not clear how they concluded this.  

Authors: The difficulty mentioned by the reviewer may be due to the multiple-color regimes 
being used; for better illustration, we have attached another figure below (Reviewer Response 
Letter Figure 5a and 5b).  
 
For the initial round of plasma cell subcluster analysis, we were able to find 3 subclusters 
from primary (P.1, P.2, P.3) and 2 subclusters from relapse-1 (R.1, R.2). We further divided 
P.1 into 6 “sub”-subclusters using the “FindClusters” function from R package Seurat; this 2-
nd level subcluster is created in the hope of finding a more refined mapping pattern, given 
the large number of cells from P.1. Therefore, in the extended data figure 8a, there are 
multiple colors representing different subclusters. 
 
In Reviewer Response Letter Figure 5b, we are showing the initial subcluster mapping of 
56203. We can observe clusters  R.1 (green) and R.2 (dark orange) cluster separately from 
P.1 (pink), P.2 (purple), and P.3 (yellow) in the integrated tSNE plot. However, based on 
geometric distribution of the cells, R.1 and R.2 are still closest to P.1, but are distant from P.2 
and P.3. This information, together with other evidence from the expression level (e.g. the 
expression for SDC1, SLAMF7 and CCNL1 are higher for P.1, R.1 and R.2 and lower for P.2 
and P.3), leads us to speculate that R.1 and R.2 are derived from P.1, while the other two 
populations from primary stages are lost as disease progresses, as shown in the bottom left 
of extended figure 8a. 

Reviewer 1: (2) Assuming, though, that they are correct in this, how many cells exhibited chr 
17 loss in P.1. Were they present before treatment?  

Authors: We checked chr17 loss based on averaged scaled chr17 copy number profiles and 
used 0.76 as the cutoff for copy number loss. Within P.1, we found 34/2015 cells with chr17 
copy number loss. For P.2 and P.3, we found 0 cells with chr17 loss out of 297, 255 cells, 
respectively. For R.1 and R.2, we found 96/131, 27/32 cells with copy number loss, 
respectively. While we were not able to find a huge proportion of cells with chr17 loss before 
treatment for P.1, this is the only population from the primary stage where we could observe 
copy number loss. It could suggest some of the cells from P.1, rather than P.2 or P.3, gained 
growth advantage, and likely additional phenotypic changes, along treatment, and became 
the resistant populations found for R.2 and R.3. 

Reviewer 1: (3) Surely p53 is the best candidate for a tumor suppressor on chr 17. Why are we 
not shown p53 expression in the various samples?  

Authors: The reviewer is suggesting that we check the expression of TP53 as a 
representative for chromosome 17 loss. However, we did not really expect obvious gene 
expression changes from the scRNA side (Reviewer Response Letter Figure 5f). This is 
actually due to the sparse nature of single cell RNA-Seq data. In scRNA analysis, sparsity 
means the observation where a given gene within a given cell has no unique molecules 



mapped to, which could be either true absence of expression, or due to drop out (the gene is 
expressed, by not detected by the platform). As expected, TP53 exhibits low expression (with 
a large proportion of zero-reads) across different subclusters; as a result, it would be difficult 
to infer chromosome 17 loss from TP53 expression. 
 
The rationale for using inferCNV as a measurement for copy number profile is that, copy 
number profile could be proximal to the average gene expression for large genomic regions; 
the caveat for drop out within a specific gene could be compensated for, given a larger 
number of genes present in a certain genomic region18. Therefore, we believe the output from 
inferCNV should be a better representation of the copy number profile. 

Reviewer 1: (4) And, again, what is the biological relevance of all this? 

Authors: The take-away here is that we can detect dynamic tumor population shifts during 
disease progression: in 81012, R.3 and R.4 are newly gained groups relative to primary tumor 
populations, while in 56203, P.2 and P.3 are lost at relapse. These two cases contrast with 
58408, which exemplifies population stability from SMM to the MM stages.  
 
For 56203, one hypothesis is that P.2 and P.3 are eliminated after treatment, while P.1 
represents a refractory subclone. Since R.1 and R.2 do not overlap exactly with P.1 cells in 
the integrated tSNE, we see that these additional relapse subclones have gained features 
not present in P.1. The features that set R.1 and R.2 apart from P.1 are shown in the dot plot 
below (Reviewer Response Letter Figure 5c). Among these features, the ones gained in R.1 
(relative to P.1) are generally shared by R.2, whereas some features are unique to R.2.  
 
Pathway enrichment analysis for R.1 features highlight the Wnt and cytokine signaling 
(Reviewer Response Letter Figure 5d); in contrast, R.2 features enrich for cell cycle pathways 
(Reviewer Response Letter Figure 5e). This suggests that R.2 in 56203 exhibits enhanced 
proliferation. Interestingly, it appears similar to R.3 in 81012, a newly gained tumor population 
in relapse that upregulates TOP2A, MKI67, and CKS1B.  Although we have too few samples 
for further generalization, we show quantifiable changes in tumor subclonality. Our results 
represent a promising line for future investigation into tracing the origin of a highly proliferative 
clone in relapse stages. 

                                                
18 inferCNV of the Trinity CTAT Project.  https://github.com/broadinstitute/inferCNV 



 
Response Letter Figure 5. Additional analysis for dynamics within case 56203. 
(a) Duplication of Extended Data Figure 8a. (b) Mapping of subcluster to tSNE plot for the 
integration of primary and relapse-1 from case 56203. (c) Dot plot showing the scaled 
expression for the genes differentially expressed for R.1 or R.2. (d-e) Pathway enrichment 
analysis showing the top-enriched pathways from top DE genes from R1 (d) and R.2 (e); (f) 



Predicted copy number profile of chromosome 17 (upper) and expression of TP53 (bottom) for 
each subpopulation within case 56203. 
 

Reviewer 1: Page 16/17 – The analysis of patient 27522 is poorly written and hard to follow. 
They conclude by stating that there are “important clinical implications” but don’t tell us what 
these are. The statement: “Taken together, one interpretation is there were cells present at 
remission that evaded treatment and survived to seed the relapse” seems to be a remarkably 
anodyne conclusion; any clinician who has treated myeloma knows this already. 

Authors: In relapse-2 of patient 27522, we found three plasma cell subpopulations with 
different degrees of predicted malignancy based on their distinct mutation, gene copy-
number, and gene expression profiles. Technical limitations, along with a very low number of 
detectable plasma cells at the remission stage, limit our ability to identify the exact clone that 
may have given rise to the relapse subpopulations. Nevertheless, we established evidence 
at the single cell level that even at relapse, a spectrum of phenotypes exist within the tumor. 
As the reviewer points out, current disease models are well familiar with subclonal expansion 
driven by selective pressures of myeloma treatment -- here, we add to this understanding by 
identifying the specific genomic and transcriptomic composition of this presupposed tumor 
diversity. We believe that this is valuable, albeit limited, insight into how single cell techniques 
have the potential to inform and enhance future treatment strategies.   

Reviewer 1: Page 21 – It is not clear how fig. 7A supports the text, which is not easy to follow. 
Are the authors drawing their conclusions on the role of AP-1 in myeloma from fig. 7A (which 
does not support the conclusion) or from samples 58408 and 81012, which is only two patients? 

Authors: The reviewer is wondering about the rationale for drawing conclusions from Fig 7A, 
where we stated that ”We then evaluated the expression of FOS and JUN across subclusters 
and across samples, finding at least one plasma cell subpopulation with high expression of 
FOS or JUN in all cases, regardless of AP-1 expression differences (Fig. 7a).” We concede 
that there is some ambiguity in the writing. 
 
We did not draw our conclusion from 58408 or 81012, however, these are the two typical 
cases that prompt us to investigate the subcluster structures of plasma cells across samples 
with a specific focus on AP-1 complex components FOS and JUN. For the subcluster 
analysis, we looked into the tSNE plot for plasma cell distribution for each individual samples 
and manually gated subpopulations based on the geometric locations in tSNE plot, when 
possible (the strategy is similar to what we did for 58408 and 81012 in Figure 4a and 4d; 
specific tSNE plots not shown due to space limit). It turns out that for each sample, whether 
there is only one subcluster or more than one subcluster, at least one of the subclusters 
exhibits a high expression of either FOS or JUN when comparing against the plasma 
subclusters across the cohorts (7A, upper panel heatmap). The bottom panel for the violin 
plot shows the expression for certain cases at a more zoomed-in perspective. It can be seen 
that for both 37692 and 47491, both S.2 and P.1 exhibits relatively elevated FOS and JUN 



expression; for 56203, P.1, R.1 and R.2 all show high expression; for 57075, the expression 
level of FOS and JUN between the two subclusters is not readily distinguished, but both 
exhibit high expression. 
 
We have edited the manuscript text to remove the statement “Interestingly, plasma cells from 
the multiple sample collections of Patients 58408 and 81012 showed subpopulations 
exhibiting differential expression of both FOS and JUN, and we manually defined plasma cell 
subclusters for each sample based on their t-SNE mapping location” to minimize the 
confusion. 

Reviewer 1: Fig. 7B shows some correlation between FOS/JUN expression and a few of their 
known targets (IL6ST and IL1A). This is entirely unsurprising, but doesn’t really tell us anything. 

Authors: We appreciate the reviewer’s attention to this detail. We included CyTOF protein 
quantitation results in Fig 7B and 7C to validate the transcriptomic expression patterns that 
we see in scRNA analysis. The differences in FOS/JUN expression across plasma cell 
subpopulations suggest that our in-silico findings are true at the protein level, as well. We first 
verified the interaction between FOS/JUN and IL6ST using ChIP-Seq analysis designed to 
find FOS-interacting promoter regions in B-cell lymphoma. While the interaction between 
FOS/JUN and these targets is not an entirely novel finding, the direction of regulation, 
especially in the context of myeloma, is not well-elucidated in present literature to the best of 
our knowledge. The physiological consequences of FOS/JUN upregulation in this disease are 
not well understood; we therefore aim to provide a closer look at downstream targets by 
analyzing correlation with putative interactors. We have refined the text for clarity. 

Reviewer 1: Fig. 7C This shows a possible correlation between FOS and H3F3B for only four 
samples and no or minimal correlation between FOS or JUN and other potential targets. The 
CyTOF data appear to be mostly missing. I am not sure what we can conclude from this. In 
terms of the bottom of the figure (i.e. the functional consequences), this is speculative. Many of 
the proteins may be pleiotropic and, as noted, many of the correlations appear weak. Surely 
some of these proposed functional consequences are potentially testable, e.g. are there any 
gene signatures or expression markers of SAHF that could be examined (with the caveat that 
we are only looking at four samples). 

Authors: We acknowledge the reviewer’s concern about the validity of the experimental 
design. CyTOF experiments here mainly serve as a method of validation; besides, the 
number of cells required for one run of CyTOF exceeds the number of cells needed for a 
single cell experiment, which already limits our choices of samples. Therefore, only four 
samples were included in the CyTOF experiment. 
 
The correlation between FOS/JUN and other potential targets seems to be minimum or does 
not exist at all based on the visualization. This is likely due to the low expression baseline 
and potentially high drop-out rates for some of the genes (regarding scRNA data). Therefore, 
the average expression for genes such as ZBTB20 and IL6ST seem to be very low,  with the 



color looking similar for the AP-1 high/low populations; but the trend for AP-1 complex 
expression and the potential targets are consistent. A similar scenario applies for protein data 
as well, where the high expression of JUN at the protein level partially masks the expression 
patterns for other potential downstream targets. In terms of CyTOF data being missing, this 
is due to the unavailability of antibodies for some of the genes of interest. 
 
SAHF stands for senescence-associated heterochromatin foci, which is one of the markers 
for senescence. Experimental validation of SAHF by itself requires staining19, which is not 
included in our study design. Additional ways to go around with this question is the 
examination of the senescence phenotype by itself. In fact, our conclusion for the AP-1 high 
population in general, is that this is a population with associated with senescent phenotype, 
and the evidences, apart from SAHF, also includes enhanced survival (e.g. MCL1), 
decreased cell proliferation (e.g. CDKN1A), and presence of senescence-associated-
secretory profile (IL1B). 
 
Reviewer #2 (Remarks to the Author): Expert in single-cell RNA-seq, biostatistics, and 
bioinformatics 
Reviewer 2: The authors have addressed my concerns from the last round of reviews and I 
have no more reservations. As I wrote last time, this study is done on a small cohort that is 
very heterogeneous, and most of the results obtained are inconclusive. But, I appreciate the 
reviewers' point that multiple myeloma is an extremely heterogeneous disease, and it is not 
realistic right now to conduct a study of the scale necessary to draw integrative general 
conclusions. I think this is a nice demonstrative study, with successful integration across 
multiple omics data types, that provides a data resource and initial exploration upon future 
large scale studies can be based. 
Authors: We appreciate the referee’s observations regarding the heterogeneity of sampling 
during the last round of revision. We would envision our study to serve as a foundation for 
larger scale studies in the future. 
 
Reviewer #3 (Remarks to the Author): Expert in single-cell RNA-seq and tumour 
microenvironment 
Reviewer 3: The authors have addressed all of my comments in great detail. They have 
thoroughly reanalysed the single-cell RNA-seq data and included many new analyses of the 
tumour microenvironment as well as trajectory analysis of the plasma cells, which is a 
tremendous effort. However, even though the study provides a unique longitudinal dataset 
and represents a valuable resource, the more detailed analyses still haven’t resulted into 
common trends and significant insights about the progression or treatment of myeloma. The 
samples are very heterogeneous in terms of their mutational and transcriptional landscape. 
The manuscript might be more suitable to be published as a resource. 
                                                
19 Aird, K. M. & Zhang, R. Detection of senescence-associated heterochromatin foci 
(SAHF). Methods Mol Biol 965, 185-196 (2013). 
 



Authors: We would like to thank the reviewer for providing constructive suggestions within 
the revision. As the reviewer pointed out, that our sample size is not sufficient to conclude 
common trends and significant insights into the myeloma disease progression, we agree 
that being published as a resource may be more suitable. 
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