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ABSTRACT Neuronal activity depends on ion channels and biophysical processes that are strongly and differentially sensi-
tive to physical variables such as temperature and pH. Nonetheless, neuronal oscillators can be surprisingly resilient to per-
turbations in these variables. We study a three-neuron pacemaker ensemble that drives the pyloric rhythm of the crab, Cancer
borealis. These crabs routinely experience a number of global perturbations, including changes in temperature and pH.
Although pyloric oscillations are robust to such changes, for sufficiently large deviations the rhythm reversibly breaks down.
As temperature increases beyond a tipping point, oscillators transition to silence. Acidic pH deviations also show tipping points,
with a reliable transition first to tonic spiking, then to silence. Surprisingly, robustness to perturbations in pH only moderately
affects temperature robustness. Consistent with high animal-to-animal variability in biophysical circuit parameters, tipping
points in temperature and pH vary across animals. However, the ordering and discrete classes of transitions at critical points
are conserved. This implies that qualitative oscillator dynamics are preserved across animals despite high quantitative param-
eter variability. A universal model of bursting dynamics predicts the existence of these transition types and the order in which
they occur.
SIGNIFICANCE Biological oscillators are important for many physiological processes. A three-neuron ensemble in the
stomatogastric ganglion of decapod crustaceans controls vital digestive contractions known as the pyloric rhythm. These
neural circuits show considerable variability in the number of each kind of voltage- and time-dependent ion channel across
animals. Because all ion channel function is affected by global perturbations such as temperature or pH, it is remarkable
that cold-blooded animals are resilient to these environmental challenges. We show that the oscillator makes stereotyped
state changes in response to temperature and pH but that the two perturbations do not interact strongly. This is predicted
by a universal mathematical model of neural oscillations.
INTRODUCTION

All nervous systems need to combat fluctuations in their
environment that might disrupt neuronal and circuit activity.
Fluctuations in global physical variables such as tempera-
ture and pH are usually resisted by compensatory homeo-
static responses and behavioral preferences (1–7). In
addition to active mechanisms that maintain homeostasis,
neural circuits exhibit intrinsic, automatic robustness to per-
turbations that arise from the collective properties of the
conductances that they express (8), providing an additional
line of defense against circuit failure (9–12).
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Recent work in crustacean nervous systems shows that
the neural circuit that generates the pyloric rhythm in the
stomatogastric ganglion (STG) of the crab, Cancer borealis,
can maintain normal activity patterns despite changes in
temperature from below 7 to �25�C (2,10–13). This robust-
ness makes sense ecologically because crustaceans such as
crabs and lobsters are poikilotherms—they do not regulate
their body temperature precisely—and experience natural
variations in temperature in their habitat. However, all
biochemical reactions are temperature dependent, so every
physiological property that underpins neuronal and circuit
function will be altered by a temperature change. For this
reason, we refer to a temperature perturbation as a global
perturbation.

There are several surprising aspects of the STG’s robust-
ness to acute changes in temperature. The underlying
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Oscillator robustness to perturbation
physiological properties of the neurons show large and het-
erogeneous temperature sensitivities that differ severalfold
between different currents and gating variables (11).
Without constraints on channel expression relationships,
such strong and heterogeneous temperature dependence
would detune physiological properties and cause circuit
failure for even modest temperature changes (4,14,15).
Nonetheless, there is two- to sixfold variability in the
expression of the different ionic conductances within the
same identified neurons of the STG across different animals
(16–19). Therefore, any mechanism that tunes conductance
expression to avoid temperature-induced instability must
also allow large variation in the space of solutions it finds.

Together, these observations suggest that robustness to
temperature imposes a constraint on the physiological prop-
erties of individual neurons and circuits. An immediate
question is whether such a constraint might be satisfied
only at the cost of making the circuit vulnerable to other
kinds of global perturbations. A key question we address
here is how temperature robustness interacts with robustness
to other global perturbations that alter neuronal and circuit
properties distinctly from temperature. Surprisingly, we
find only a modest interaction between pH and temperature
on neural oscillator activity, suggesting that each prepara-
tion, despite having idiosyncratic properties, has tuned these
properties to ensure robustness to multiple external insults.

Recent theoretical work has shown how correlations in
conductance expression can reconcile biophysical vari-
ability with behavioral robustness, provided the correlations
are constrained to offset the sensitivity of circuit behavior to
channel properties (15). This, in turn, suggests that neuronal
oscillators owe their robustness to certain universal dy-
namics that force a system to oscillate despite substantial
cellular and circuit level variability in biophysical parame-
ters (20–22). If true, such universal dynamics would lead
to stereotyped transitions when oscillatory dynamics fails
because of global perturbations in variables such as temper-
ature and pH, even if these transitions occur at markedly
different temperatures and pH values in each animal. We
explicitly test this hypothesis here and find that observed
transitions in dynamics are predicted by a universal model
of neuronal excitability.

Neuronal oscillators are critical for the operation of many
circuits. Oscillators have a number of properties that are
easy to measure and evaluate providing an outstanding
test bed for the assessment of resilience to single or multiple
global perturbations. Consequently, in this study we used a
three-neuron oscillator that functions to drive the pyloric
rhythm in the STG. We subjected the same recorded
neuronal oscillators to simultaneous temperature and pH
variations. pH has similar widespread effects on ionic cur-
rents, reversal potentials and channel kinetics as tempera-
ture (23–27), although the effects of pH on individual
physiological variables in the STG are not as well character-
ized as those of temperature (28). Moreover, there is some
evidence that crabs and other marine organisms may expe-
rience acute changes in pH in their environment, suggesting
that these neurons may be adapted to cope with this pertur-
bation (29–31). We developed a means of quantifying inter-
nal variability in the oscillator that is predictive of the
eventual collapse of oscillator rhythm, albeit to a limited
extent.
MATERIALS AND METHODS

Animals

C. borealis were purchased from Commercial Lobster (Boston, MA) and

maintained at 11�C in tanks containing artificial seawater. Animals used

in this study were obtained between July 2016 and November 2017.
Solutions

C. borealis physiological saline was composed of 440 mM NaCl, 26 mM

MgCl2, 13 mM CaCl2, 11 mM KCl, 12 mM Trizma Base, and 5 mMmaleic

acid (pH 7.4–7.5, measured at room temperature). For more acidic saline,

pH was adjusted with additional maleic acid. Picrotoxin (PTX) was pur-

chased from Sigma (St. Louis, MO) and used at 10�5 M in physiological

saline. The microelectrode solution was 10 mMMgCl2, 400 mM potassium

gluconate, 10 mM Hepes, 15 mM NaSO4, 20 mM NaCl (pH 7.45) (29).
Electrophysiology

The stomatogastric nervous system was dissected from the animal and

pinned taut in a Sylgard (Dow Corning, Midland, MI)-coated plastic petri

dish containing chilled physiological saline. All preparations used had

intact inferior and superior esophageal nerves and included commissural

and esophageal ganglia. For the duration of experiments, the dish was

superfused with saline. Temperature was controlled using a Peltier device

(Warner Instruments, Hamden, CT) and monitored using a thermistor

probe placed in the dish. Vaseline wells were placed around the lateral

ventricular nerve and the pyloric dilator nerve, and extracellular record-

ings were obtained using stainless steel pin electrodes placed in the wells

and amplified using a differential amplifier (A-M Systems, Sequim, WA).

In addition, intracellular recordings were obtained from the pyloric dilator

(PD) somata using 15–25 MU glass microelectrodes pulled with a

Flaming/Brown micropipette puller (Sutter Instrument Company, Novato,

CA). The cell type was identified by comparing spiking activity to extra-

cellular recordings on the PD nerve and by examining the intracellular

waveform.
Temperature manipulations

Intracellular recordings were begun at either 25 or 5�C below a crash tem-

perature determined with extracellular recordings. Preparations were then

exposed to continuously increasing temperatures, referred to as temperature

ramps. A waveform generator (Rigol, Beijing, China) was used to create a

steadily increasing voltage to control the output of the Peltier device. Tem-

perature was increased until preparations changed from bursting to silence

without continuous bursting/spiking activity, at which point the temperature

ramp was stopped in a majority of experiments.

As previously reported, somata swelled with increasing temperature

(10,13). With increasing temperature, small adjustments to the location of

the intracellular electrode were made to maintain the recording.

All preparations analyzed, with the exception of the experiments shown

in Fig. 5 B, were selected based on the presence of the transition to silence.

Preparations that continued to burst past 34�C were excluded.
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pH manipulations

Intracellular recordings of the PD neuron were begun at physiological pH.

After the addition of PTX, the pH of the superfused saline was controlled by

a slow, continuous mixing of pH 7 and pH 5 physiological saline during the

experiments. The pH of the superfused saline was measured using a pH

microelectrode purchased through Thermo Fisher Scientific (Orion

9810BN; Waltham, MA). The probe was calibrated each day using refer-

ence solutions at 11 and/or 25�C.
Data analysis

Data were acquired using a Digidata 1440 data acquisition board (Axon In-

struments, San Jose, CA) and analyzed using MATLAB (The MathWorks,

Natick, MA).
Transition definitions

Discrete transition points were defined in both the pH and temperature ex-

periments, with similar definitions used in both. A transition was marked

when a preparation spent more than 20 out of 30 s period in any activity

pattern. This reliably captured switches from one activity pattern to another

while filtering out small flickering events between activity patterns that

occur in small ranges (<0.5�C or <0.2 pH) near transitions.
A B
Phase plane analysis

The stretches of data to be analyzed were first low-pass filtered to remove

spikes. The filtered voltage signal and its derivative were normalized by the

standard deviation (SD) of each respective signal. The signal was mean sub-

tracted to center the oscillation on the origin of the axes and then transformed

fromaCartesian coordinate system (with the normalized voltage signal on the

x axis and the normalized voltage derivative on the y axis) to polar coordi-

nates. These steps generate the phase portrait shown in Fig. 4 C.

Next, we calculated the average trajectory of the oscillations by taking

the mean and SD of the radial coordinate at 200 evenly spaced angular co-

ordinates. This gave the envelope plotted in the phase plane in Fig. 4 C.

From these values, we calculated the coefficient of variation, the SD

normalized to the mean, at each point in the phase of the oscillation. We

then combined the values by taking their root mean-square, and these values

were plotted in Fig. 4, B–D after being smoothed by taking a 0.5�C or 0.1

pH moving average.
FIGURE 1 The pyloric and isolated pacemaker circuits. (A) Above: cir-

cuit diagram of the pyloric network of the STG. Chemical synapses are rep-

resented by curved lines with colored balls, with red indicating a
Statistical methods

Statistical analysis was performed using MATLAB. Coefficients of varia-

tion were compared as log-transformed variance as previously reported

(13). Residuals of fits were inspected and confirmed to have an approximate

normal distribution.

The linear model in Fig. 5 was fitted using fitlme in MATLAB. We chose

a linear mixed effects model with fixed effects accounting for trends among

the population and the random effects capturing interpreparation variability.

The model was specified to describe transition pH as a function of transition

temperature and transition type with interaction terms between temperature

and transition type and random effects of preparation on both (i.e., pH�1þ
temperature � transition_type þ (1 þ temperature ¼ transition_type

jpreparation_id).

cholinergic synapse and blue a glutamatergic synapse. Electrical synapses

are represented by resistor symbols. Below: an intracellular recording of

the PD neuron from the intact pyloric circuit. (B) Above: circuit diagram

of the isolated pacemaker after the addition of PTX. Below: intracellular

recording of the PD neuron from the isolated pacemaker circuit. Scale,

10 mV with dash at �50 mV.
Numerical methods

Simulated model behavior for the normal form is described by the systems

of Eqs. 1 and 2 in the Results. This was done using numerical integration in
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the Julia DifferentialEquation.jl package. To simulate the effect of stochas-

tic channel dynamics, a noise term was added to the second variable of the

normal form, and the resulting simulations were obtained using an out-of-

the-box stochastic differential equations solver with default parameters. In

deterministic simulations, noise amplitude was set to zero. In noisy simula-

tions, noise amplitude was set to D ¼ 0.001. Other parameters are as fol-

lows. In all parameter regimes: εs ¼ 0.01, εu ¼ 0.0001, and g ¼ �0.1.

Parameter regime A: bf ¼ 0.3, bs ¼ 0.15, and Iapp ¼ �0.337. Parameter

regime B: bf ¼ 0.25, bs ¼ 0.285, and Iapp ¼ �0.202. Parameter regime

C: bf ¼ �0.05, bs ¼ 0.35, and Iapp ¼ 0.0. Parameter regime D: bf ¼
0.05, bs ¼ 0.145, and Iapp ¼ �0.393. Parameter regime E: bf ¼ �0.033,

bs ¼ 0.11, and Iapp ¼ �0.366.
RESULTS

The pyloric rhythm in the STG is driven by a subset of
identified neurons that comprise a so-called pacemaker
kernel, or oscillator, consisting of the electrically coupled
double PD and single anterior burster neurons. The anterior
burster neuron is an intrinsically bursting cell and the
source of the oscillation. The pacemaker kernel rhythmi-
cally inhibits the LP (lateral pyloric) and pyloric neurons,
as depicted in Fig. 1 A. The LP neuron feeds back onto
and inhibits the PD neurons using glutamatergic transmis-
sion. The LP-evoked inhibitory postsynaptic potentials in
the PD neuron are seen in the intracellular recordings
shown in Fig. 1 A.



Oscillator robustness to perturbation
For this study, we isolated the oscillatory pacemaker
kernel from the rest of the circuit by adding PTX, which
blocks glutamatergic transmission in the STG (Fig. 1 B;
(32)). In PTX, glutamatergic inhibitory postsynaptic poten-
tials are no longer present in recordings from either of the
PD neurons during the stable oscillation (Fig. 1 B, bottom
panel).
Oscillator activity near critical temperatures

We examined the activity of the pacemaker kernel in
response to acute changes in temperature. Previous work es-
tablished that the pacemaker oscillation fails above a critical
temperature (13). We roughly determined the temperature at
which the intact pyloric rhythm became disorganized or si-
lent using extracellular recordings. We denote this the crit-
ical temperature or transition point. Consistent with
previous work, many preparations are robust across large
changes in temperature that prohibit a stable intracellular
recording for the full temperature range.

In 13 preparations, we first determined the approximate
critical temperature in the intact circuit. We then set the tem-
perature of the bath solution to 5�C below the transition
point, applied picrotoxin, and obtained intracellular record-
ings from a PD neuron in the isolated oscillator. The temper-
ature was then slowly increased at a rate of �5�C per hour
while holding the intracellular recording, allowing us to
monitor changes in the activity patterns of the isolated oscil-
lator with small changes in temperature (Fig. 2).

Recordings from three example experiments are shown in
Fig. 2, A–C. When far from critical temperatures, the iso-
lated oscillator had relatively constant burst frequency,
with clear membrane potential plateaus and bursts of action
potentials. As temperature was increased, bursting became
less regular, leaving plateaus with few or no spikes and var-
iable interburst intervals. Qualitative changes in bursting of
the pacemaker, i.e., transition points, were observed across
small changes in temperature.

Across preparations, these qualitative changes occurred at
different temperatures. In Fig. 2 A, for example, there is a
change in activity patterns of the preparation between 29.2
and 31�C, with bursting activity ceasing at the higher tem-
perature. In this preparation, there is little qualitative change
between 26.6 and 28.6�C, which can be contrasted with the
changes in the preparation shown in Fig. 2 B, in which there
is a dramatic change in activity pattern of the pacemaker
from 26.3 to 26.8�C. In each preparation, as temperature
was increased further, activity patterns transitioned to
silence, with no spikes fired and only small fluctuations in
the membrane potential (Fig. 2, A–C, bottom traces).

To quantitatively examine the changes in activity of the
isolated oscillator near critical temperatures, we measured
the burst frequency, duty cycle, and minimal membrane po-
tential as a function of temperature (Fig. 2, D–F) and rela-
tive to the transition point to silence (Fig. 2, G and H).
Duty cycle, important for the motor control function of
this circuit, is defined as the duration of time spiking
normalized to the burst period. It has previously been shown
to be conserved over temperature ranges that permit a stable
oscillation (11,13).

It has previously been shown that the burst frequency of
the isolated oscillator increases with temperature between
10 and 25�C (11,13). When examining burst frequency
near critical temperatures, we found that this relationship
was not present (Fig. 2 D) because there was no consistent
increase in frequency with increasing temperature across
preparations. In addition, when data were aligned to transi-
tion to silence, mean frequency across preparations de-
creases as preparations approach the transition (p < 0.001,
R2 ¼ 0.17, linear regression), with increasing between-prep-
aration variability (Fig. 2 G; p ¼ 0.034, two-sample F-test
for equal variance). Furthermore, duty cycle becomes
more variable between preparations near critical tempera-
tures (Fig. 2 E), and when aligned to the transitions to
silence, we saw that there is greatly increased variability be-
tween preparations near critical transitions (p ¼ 0.007, two-
sample F-test for equal variance). Previous work in our lab
examining transitions in activity patterns near critical tem-
peratures found little evidence for hysteresis (10,11).
Activity of isolated pacemaker near critical pH

To contrast temperature-induced changes with those
induced by a second global perturbation, we examined the
effects of acidic pH on the isolated oscillator. Recent work
has shown that the pyloric rhythm continues in the presence
of extreme pH in an approximate range from pH 6.1 to
pH 8.8 and that below approximately pH 6, the pyloric
rhythm becomes silent (33). We sought to examine what oc-
curs near these critical pH levels. To do this, we obtained
intracellular recordings of the PD neuron in physiological
saline at 11�C (pH 7.8). pH was then slowly lowered by
continuously adding pH 5 saline to the volume of saline
feeding the bath, with the rate of mixing adjusted to create
a change to pH 6 over the course of 1 h.

Example traces from three experiments are shown in
Fig. 3, A–C. All preparations were bursting at pH 7
(Fig. 3, A–C, top traces), but at more acidic pH, the regular-
ity of this bursting changed, with preparations depolarizing
and the amplitude of the slow wave decreasing (Fig. 3, A–
C). At lower acidic pH, bursting became intermittent with
periods of tonic spiking, and eventually the isolated oscil-
lator transitioned fully to tonic spiking activity (Fig. 3, A–
C, middle). After this transition, further decreases in pH
caused additional depolarization and smaller amplitude
spikes, and finally, the tonic spiking pattern transitioned to
silence (Fig. 3, A–C). We therefore defined two critical pH
values for each of these qualitative transitions in activity,
one marking the transition from bursting to tonic spiking
and one marking tonic spiking to silence.
Biophysical Journal 120, 1454–1468, April 20, 2021 1457
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FIGURE 2 Activity of isolated pacemaker near critical temperatures. (A–C) Intracellular recordings of the PD neuron in the presence of PTX across a

range of temperatures. Scale, 10 mV with dash at �50 mV. (D–F) Burst frequency (D), duty cycle (E), and minimal voltage during oscillation (F) of PD

neuron from 13 preparations are plotted as a function of temperature. Duty cycle is computed from intracellular traces as burst duration normalized to period

of oscillation. Duty cycle becomes undefined for single spike bursts. Colored lines correspond to example experiments with the same colors in (A)–(C).

(G–H) Above: average burst frequency (G) and duty cycle (H) across preparations are plotted as a function of distance, in degrees Celsius, to transition

to silence. Error bars represent SDs. Not all cells were recorded for full 3� before transition (see Materials and methods). Below: coefficients of variation

for burst frequency and duty cycle, respectively, calculated from above plots and aligned to transition to silence. *p < 0.05; ns, not significant. (G, top)

Frequency is predicted by proximity to transition using linear regression; (bottom) p ¼ 0.0342, two-sample F-test for equal variance. (H, top) Duty cycle

is predicted by proximity to transition using linear regression; (bottom) p ¼ 0.0069, two-sample F-test for equal variance. To see this figure in color, go

online.
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FIGURE 3 Activity of isolated pacemaker in acidic pH. (A–C) Intracellular recordings of the PD neuron in the presence of PTX across range of acidic pH.

Scale, 10mVwith dash at�50mV. (D–F) Burst frequency (D), duty cycle (E), andminimal voltage during oscillation (F) of PDneuron are plotted as a function

of pH from15 preparations. Duty cycle is computed as in Fig. 2. Colored traces correspond to example experiments of the same color in (A)–(C). Frequency and

duty cycle are only plottedwhen cell is bursting. (G) Above: average burst frequency (G) and duty cycle (H) across preparations plotted as a function of distance

to transition to tonic spiking. Error bars represent SDs. Not all cells were recorded for a range of 1 pH. Below: coefficients of variation for burst frequency and

duty cycle, respectively, calculated from the aboveplot and aligned to transition to tonic spiking. *p<0.05; ns, not significant. (G, top) Frequency is predicted by

proximity to transition using linear regression; (bottom) p ¼ 0.3757, two-sample F-test for equal variance. (H, top) Duty cycle is predicted by proximity to

transition using linear regression; (bottom) p ¼ 0.2893, two-sample F-test for equal variance. To see this figure in color, go online.

Oscillator robustness to perturbation
To compare the effects of pH and temperature near crit-
ical points (Fig. 2, D–H), we examined the relationship of
pH with burst frequency, duty cycle, and minimal voltage
during oscillations (burst frequency and duty cycle are
only defined during bursting). In the range examined here,
there is a slight effect of pH on burst frequency; with a
Biophysical Journal 120, 1454–1468, April 20, 2021 1459
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positive trend in frequency, pH becomes acidic (Fig. 3, D
and G; R2¼ 0.009, p< 0.001, linear regression). Duty cycle
near critical pH is variable, with a trend toward preparations
having increased duty cycle before transition to tonic
spiking (Fig. 3, E and H, p < 0.001, linear regression).
In contrast to preparations near critical temperatures
(Fig. 2 F), changes in pH cause substantial depolarization
(Fig. 3 F; p < 0.001, one-tailed unpaired t-test on data
aligned to transition to silence). When examining the system
for hysteresis around critical pH, we found evidence for a
significant time lag lasting many minutes that masked any
practically observable pH-dependent hysteresis (Fig. S1).
Such a time lag may, for example, reflect finite mixing
and equilibration times that exist despite careful placement
of pH probes and optimization of flow rates in the recording
chamber.

Together, the qualitative and quantitative differences be-
tween pH- and temperature-induced changes in membrane
potential activity are consistent with these perturbations
having distinct, global effects on underlying membrane cur-
rents, as shown in previous work (23,24,28,34).
Predicting transitions in the oscillator

We have shown that near critical temperatures and pH, the
activity patterns of the isolated oscillator change abruptly
with critical points varying across preparations. There is a
body of theory (35–39) that proposes a set of generalized
markers to predict critical transitions in dynamical systems,
including complex biological systems. These markers
include increased variability, increased recovery time from
perturbation, and flickering between states. We therefore
analyzed membrane potential variability near transitions, at-
tempting to predict the precise transition points in the activ-
ity patterns of the isolated pacemaker.

Increased variability is depicted in Fig. 4, A and B using
an example system consisting of a ball in a trough, subject
to noisy perturbations. This system is stably attracted to the
lowest energy state, whereas noise moves the ball
randomly away from this stable point. As the system
moves closer to reorganizing, thereby gaining a new stable
state, the basin of attraction becomes shallower (Fig. 4 B).
The same amount of noise now generates greater variation
in the movement of the ball. This simple example illus-
trates why increased variability is expected near a transi-
tion point in a dynamical system: ongoing, internal noise
perturbations cause variability in the system’s dynamics.
As the system approaches a transition, its sensitivity gener-
ically increases, and the impact of the internal noise
becomes more visible.

We examined within-preparation variance as a predictor
of transitions by examining the membrane potential traces
in their phase plane, as shown in Fig. 4 C. This allowed us
to define the ‘‘mean oscillation,’’ by computing the mean
trajectory across multiple oscillations, and a coefficient of
1460 Biophysical Journal 120, 1454–1468, April 20, 2021
variation (CV, SD normalized to the mean). This provides
a measure of the internal variability of the oscillation from
its average trajectory. We then combined these CV values
(see Materials and methods) to compute an overall measure
of variability (combined coefficient of variation, (CCV))
and plotted this as a function of distance to a transition in
both temperature and pH-induced transitions. These CCV
values are shown in Fig. 4, D–F, aligned to respective tran-
sition points (dashed red line).

We analyzed variability in preparations near temperature-
and pH-induced transitions. Consistent with theoretical pre-
dictions, there was a general, statistically significant trend
for the CCV to increase near a transition. Importantly, this
trend is present irrespective of the type of transition or the
perturbation (temperature or pH) that led to it. Nonetheless,
this measure offers a poor prediction of proximity to a tran-
sition within any given preparation. For example, with
measured variability in temperature perturbation, a CCV
value of 6 could mean the preparation is at the transition
point or more than 3� away. In the case of transition to
silence due to pH perturbation, the variance in many of
the preparations decreases near the transition to silence.
Thus, although variability at the population level shows a
robust increase near transition points, there is large interpre-
paration variability in this relationship that would preclude
its use as a reliable predictive tool for the onset of a transi-
tion in any given preparation.
Combined effects of temperature and pH

Lastly, we sought to ask whether there were interactions be-
tween pH perturbations and temperature perturbations. We
started by performing pH perturbations at 25�C, a tempera-
ture at which all preparations are bursting, and obtaining
intracellular recordings of the PD neuron in the isolated
oscillator (Fig. 5 A). We then subjected these same prepara-
tions to decreasing pH ramps. The transition points are high-
ly variable across preparations; as a consequence, pH ramps
performed at 11 and 25�C show transitions in overlapping
ranges (Fig. 5, A and C).

To control for interpreparation variability when testing
the interaction of pH and temperature, we exposed seven
preparations to multiple perturbations: decreasing pH at
11�C, decreasing pH at 25�C, and increasing temperature
(Fig. 5 B). This allowed us to test whether the combination
of temperature and pH will make the preparations more sen-
sitive (transition at less extreme values). We fitted a linear
model to the transition point data to describe transition pH
as a function of transition temperature and transition type.
This analysis showed a nonsignificant interaction between
transition temperature and transition pH (p ¼ 0.658).
Although the interaction between temperature and pH was
not statistically significant, there is a small, positive, signif-
icant interaction (b ¼ 0.01, p < 0.01) between temperature
and tonic-to-silent transitions, suggesting that higher
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FIGURE 4 Variance increases at the population level before transitions in activity pattern. (A and B) Cartoon schematic depicting noisy ball attracted to

bottom of trough. The same amount of noise induces larger deviations in (B) compared with (A). (C) Above: voltage trace from PD neuron in isolated pace-

maker plotted in orange. Scale, 1 s, 5 mVat �50 mV. Below: phase portrait generated from low-passed voltage trace plotted in orange as normalized mem-

brane voltage (Vm) versus normalized instantaneous change in voltage (dVm; see Materials and methods). The solid black line represents the mean of the

oscillations, and the dashed black lines are two SDs plus and minus the mean. These values—means and SDs—are calculated for 200 points in phase sche-

matized by the solid and dashed black and gray lines. (D) Each green line represents the moving average of combined coefficients of variation (see Materials

and methods) plotted as a function of temperature from transition to silence (red line). (E and F) Each blue line represents the moving average of combined

coefficient of variation as a function of pH. Experiments are aligned to transition. (E) Red line represents transition to tonic spiking. (F) Red line represents

transition to silence. (D–F) Linear regression on log-transformed data predicting CCV using proximity to transition. To see this figure in color, go

online.

Oscillator robustness to perturbation
temperature makes the preparations slightly more robust to
pH perturbation. Together, these results show that there is a
modest interaction between temperature and pH perturba-
tions that, surprisingly, confers slightly higher pH robust-
ness at more extreme temperatures.
Stereotyped transitions during temperature and
pH perturbations

We have shown that the pacemaker oscillation undergoes
different types of transitions in activity patterns when
Biophysical Journal 120, 1454–1468, April 20, 2021 1461



A

B

C

FIGURE 5 Qualitative type and orderings of transitions are preserved despite large animal-to-animal variability in critical temperatures and pH. (A) Each

horizontal line represents one preparation exposed to a range of pH at 25�C (n ¼ 5). The qualitative activity pattern, or state, is indicated with color: green

corresponding to bursting, yellow to tonic spiking, and red to silence. (B) The same preparation was exposed to each condition and plotted in the same order

across conditions (n¼ 8), meaning the first horizontal line in the temperature conditions corresponds to the first horizontal line in the pH conditions. (C) The

top set of preparations were exposed to increasing temperature (n¼ 20, 13 from Figs. 2 and 7 additional without intracellular recordings), and the bottom set

of preparations were exposed to decreasing pH (n ¼ 15). (A–C) Preparations are ordered based on transition to silence. To see this figure in color, go

online.
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exposed to extreme temperature versus pH. In Fig. 5 C, we
plotted the activity patterns as a function of temperature or
pH, respectively, for the set of experiments from Figs. 2 and
3. In the temperature experiments combined with those from
Fig. 5 B, all 26 preparations transitioned from bursting to
silence without tonic spiking. In contrast, 25 of 26 pH exper-
iments transitioned from bursting to tonic spiking to silence,
whereas the remaining one transitioned from bursting to
silence.
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A geometrical model of neuronal excitability
captures global transitions

Despite significant quantitative variability in transitions
induced by temperate and pH perturbations, our data re-
vealed consistent qualitative changes across preparations.
That is, the sequence of changes in dynamics is largely pre-
served even though the critical experimental parameter
value at which a transition occurs may vary substantially
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from one animal to the next. Such qualitative consistency
suggests that there is a core underlying dynamics common
to each biological preparation and that the multitude of
bare biophysical parameters and state equations that capture
quantitative electrophysiological properties can be boiled
down to a minimal set, sufficient for capturing all qualitative
dynamics including bursting, tonic firing, and silence. In
such a minimal model, global perturbations should appear
as paths traversing well-defined boundaries between behav-
ioral states, with the boundaries defining the order in which
transitions can occur.

We therefore asked whether such a unifying model exists
that can capture and shed insight on our observations. We
recently proposed (22) a reduced model that captures the dy-
namics of neuronal excitability through a reduction to three
state variables that describe dynamics on three separate
timescales: fast (action potential generation), slow (action
potential repolarization, interspike period, and burst genera-
tion), and ultraslow (burst termination and interburst
period). This model was first introduced in (22), and a full
description of its derivation can be found there. For
completeness, we give an abbreviated account of how it is
derived and interpreted here. The model is based on a cur-
rent balance equation:

_V ¼ � IfastðVÞ � IsðVsÞ � IuðVuÞ þ Iapp; (1a)

_V ¼ ε ðV �V Þ; (1b)
s s s

and

_Vu ¼ εuðV�VuÞ; (1c)

where V models the membrane potential, Vs is the state
variable, and Vu is the ultraslow state variable. The param-
eters 0 < εu << εs << 1 fix the characteristic time con-
stants of the ultraslow and slow variables, respectively.
The membrane potential dynamics is determined by the
three current components, Ifast(V), Is(Vs), and Iu(Vu),
modeling fast, slow, and ultraslow ionic current varia-
tions. The three timescales are typically characterized
by identifiable ionic currents with particular time con-
stants of activation and inactivation (see (20,21,40) for de-
tails). For example, the fast timescale includes the
activation of fast (transient and persistent) sodium cur-
rents. The slow timescale includes the inactivation of tran-
sient sodium currents, the activation of delayed rectifier
potassium currents, and the activation of calcium currents.
The ultraslow timescales include the inactivation of cal-
cium currents and activation of calcium-gated potassium
currents. Other important currents for STG neuron dy-
namics are A-type potassium currents, which in the above
classification have a slow activation and an ultraslow
inactivation.
The functional forms of the three current components in
system (1) are chosen to capture the key qualitative features
of measured early (x 1 ms), late (x 10 ms), and steady-
state (>100 ms) current/voltage (I/V) curves, as would be
measured in step voltage clamp experiments. Such I/V
curves have been extensively characterized in the pace-
maker neurons that we are studying here, over many
decades of research in our laboratories and elsewhere
(41–45). The early-current component is modeled by
Iearly(V) ¼ Ifast(V), the late-current component is modeled
by Ilate(V) ¼ Iearly(V) þ Is(V), and the steady-state current
component is modeled by Iss(V)¼ Ilate(V)þ Iu(V). The min-
imal model that respects the qualitative shape of these I/V
curves is

IfastðVÞ ¼ � V3 þ bf V � 1

2
gV2 � gbsV; (2a)

2 1 2
IsðVÞ ¼ � ðV þ bsÞ �
2
gV ; (2b)

and

IuðVÞ ¼ � V (2c)

Minimal models of this kind are commonly referred to as
normal forms. The specific form above is formally justified
using singularity theory methods, described in detail previ-
ously (22). This earlier work also showed that this model is
sufficient for capturing the excitability types observed in
STG pacemaker neurons, which we demonstrate in the
parameter chart in Fig. 6. The three parameters bf, bs, and
g appearing in Eq. 2 shape the model early, late, and
steady-state I/V curve with the same qualitative principle
as ionic current modulation in a biophysical model. For
fixed negative g, the (bf, bs) parameter chart is partitioned
into different qualitative regions, of which we only consider
the five labeled A–E (the only relevant regions for this
study). A similar partitioning, with slight quantitative differ-
ences, appears for positive g.

Regions of distinct qualitative dynamics are characterized
by different early (black curves in Fig. 6, A2–E2) and late
(gray curves in Fig. 6, A2–E2) I/V curve configurations.
The steady-state I/V curve is always monotonically
increasing in the chosen parameter range and is not drawn
for clarity. Changes in I/V curve configuration are reflected
into changes in the model electrical behavior (Fig. 6, A1–
E1; left is the deterministic simulation and right is with a
small added noise) and in the underlying geometric fast-
slow (V, Vs) phase portrait (Fig. 6, A3–E3). These phase por-
traits can be analyzed with standard dynamical system tools
(46) to infer the type of bifurcations underlying excitability
in the various behavioral regimes. The transitions between
behavioral regimes are also ruled by bifurcations of higher
codimension. For instance, a pitchfork bifurcation organizes
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FIGURE 6 Behavioral parameter chart of the geometrical normal form model. A1–E1: electrical behavior of the geometrical model in five distinct qual-

itative regimes identified in the (bf, bs) parameter chart (center right panel). Left trace is deterministic. Right trace is with a small added noise used to repro-

duce possible spontaneous stochastic spiking as observed along temperature perturbations at the transition from periodic bursting to slow oscillatory

potentials. A2–E2: geometrical model early (black) and late (gray) I/V curves in the different regimes. Thresholds (i.e., maxima and minima) of the two

I/V curves are indicated by black and gray triangles, respectively. A3–E3: slow-fast (V, Vs) phase portrait of the geometrical model for frozen ultraslow

(Vu) variable. The value at which the ultraslow variable was frozen was chosen to highlight the dynamical properties (bistable, excitable, globally stable,

etc.) of the slow-fast subsystem, which largely determines the resulting rhythmic behavior in the presence of ultraslow adaptation (see text for details).

To see this figure in color, go online.
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the transition between regimes A and B (22). To maintain
a clear connection with experiments and biophysical
properties, in the remainder of the section, we solely
focus on I/V curve shaping rather than on describing
bifurcations.

In region C, both the early and late (and thus all three) I/V
curves are monotonically increasing. No negative conduc-
tance interval exists in any of the three timescales, and the
model exhibits a passive, nonexcitable behavior, with a
unique globally asymptotically stable equilibrium.
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In region B, the early I/V curve exhibits a negative
conductance interval, which makes the model spike excit-
able and capable of periodic spiking for sufficiently large
depolarizing currents. The interval of fast negative conduc-
tance is delimited by the fast low and high thresholds, i.e.,
the maximum and minimum of the fast I/V curve, respec-
tively (black triangles in Fig. 6, B2). The late I/V curve is
monotone in this region, which implies that the fast-slow
phase portrait possesses a unique (excitable or unstable, de-
pending on Iapp) equilibrium. The model cannot exhibit any



FIGURE 7 Temperature and pH perturbation as qualitative geometric

paths. The behavioral transitions observed in response to increasing pH

and temperature perturbations emerge as transverse paths in the geometrical

model’s reduced parameter space. To see this figure in color, go online.
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type of slow (e.g., burst) excitability in this regime. At the
dashed transition set between regions B and C, the early
I/V curve has an inflection point, i.e., a fast hysteresis point
in the jargon of singularity theory. In regions A, D, and E,
the late I/V curve also exhibits an interval of negative
conductance, and the resulting excitable types depend on
the interaction between the slow and the fast negative
conductance. The dashed boundary line (labeled ‘‘slow hys-
teresis’’) corresponds to the existence of an inflection point
in the slow I/V curve, i.e., a slow hysteresis that enables
slow wave oscillations.

In regions A, D, and E), the slow low threshold (down-
ward gray triangle in Fig. 6, A2–E2) is always located at
more hyperpolarized potentials then the fast low threshold
(downward black triangle) and thus dominates excitability.
The model is slow excitable, i.e., it either produces bursts
or slow oscillatory potentials in response to excitations. In
region A, the high slow threshold (upward gray triangle)
falls in the fast negative conductance region, which means
that the slow excited state is unstable and surrounded by a
spiking limit cycle, as illustrated in the associated geometric
phase plane. The ultraslow dynamics turns the resulting rest-
spike bistability into bursting. In region D, the slow high
threshold (upward gray triangle in Fig. 6, D2) happens
before the fast low threshold (downward black triangle),
i.e., the slow excited state is stable but fast excitable. In
the absence of noise (or any other excitatory inputs), the
model produces slow oscillations, but in the presence of
exogenous inputs (noise in the stochastic simulations on
the right), it produces conditional spiking on top of the
slow wave caused by crossing the low fast threshold.

The transition between regions A and D (solid line) cor-
responds to fast and slow threshold alignment. Geometri-
cally, this alignment corresponds to a transcritical
singularity (21). Crossing the fast hysteresis line between
D and E, the only remaining negative conductance is the
slow one and the model is in a purely slow excitable
mode, i.e., it produces slow oscillations without conditional
spiking on top of the slow wave.

Having related the dynamical regimes of this model to
experimentally observed behaviors, we can now show that
the allowable transitions in the reduced parameter space
of the model are predictive of the transitions seen experi-
mentally. Importantly, these transitions are compatible
with continuous paths in the reduced parameter chart that
capture the two global perturbations—temperature and
pH—that we subjected the preparations to.

Fig. 7 shows a projection of two continuous modulatory
paths onto the same reduced parameter space as Fig. 6, cen-
ter right, corresponding to modulation of the fast (bf) and
slow (bs) current-voltage relations. The two paths depart
from the unperturbed, bursting behavior (region A) via
two transverse routes. One path (red) undergoes a transition
marked by a loss of slow excitability leading to tonic spiking
(regions A to B), followed by loss of fast excitability/spiking
(regions B to C). This sequence of transitions is seen in pH
perturbations. The other path (blue) is characterized by a
relative change in slow and fast excitable thresholds, leading
to slow oscillations with spontaneous/isolated spikes (re-
gions A to D). Further movement in this direction leaves
lower amplitude slow oscillations as fast excitability is
removed at the transition from region D to region E.
This alternative path from the same starting point corre-
sponds to the qualitative transitions seen in temperature
perturbations.

These two distinct paths correspond to transverse move-
ments in the reduced parameter space and, strikingly, cap-
ture completely the qualitative transitions observed in
experiments. It is important to remark that the transition
lines between distinct behavioral regimes in the reduced
parameter space map smoothly to (formally, are embedded
into) hypersurfaces in the high-dimensional biophysical
parameter space. Similarly, the reduced pH and temperature
perturbation paths map to a whole family of paths in
the high-dimensional biophysical parameter space. This
observation explains how the large quantitative variability
observed in experiments is compatible with consistent qual-
itative physiological behavior of this circuit across animals
and preparations. Taken together, our results suggest a parsi-
monious, universal model of excitability that describes the
core dynamics in this neuronal oscillator.
DISCUSSION

Many biological oscillators, such as those found in the heart
and nervous system, depend on the orderly activation and
inactivation of many voltage- and time-dependent currents
(47–51). Because the temperature and pH dependencies of
each ion channel are different, this poses an immediate
problem for finding solutions that are robust against these
Biophysical Journal 120, 1454–1468, April 20, 2021 1465
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perturbations (15). Indeed, random searches of parameter
regimes demonstrate that oscillator models that are resilient
to large changes in temperature are difficult to find (8,9,14).
Compounding this problem is that in the STG, stable
behavior of the full pyloric rhythm and its central oscillator
are remarkably robust to temperature and pH changes
(12,33). This is despite the fact that each cell and
circuit conductance vary across animal by �2- to 6-fold
(4,5,16–18,52–56).

This suggests that despite animal-to-animal variability,
the circuit has found parameters that allow detuning of ionic
currents and synaptic properties to occur but nonetheless
ensure a stable rhythmic output. The oscillators studied
here, although variable across preparations, are resilient
over a wide range of temperature. Moreover, for the oscil-
lator to remain robust to temperature and pH perturbations
that cause parameters to change significantly, it is clear
that the biological mechanisms that tune circuit properties
do so in a way that ensures specific functional organization
between physiological parameters amid a large degree of
variability (15).

Consistent with underlying parameter variability, we find
that pH and temperature cause the oscillator to fail at critical
values of temperature and pH that vary significantly across
animals. Importantly, the modes of failure correspond to
reversible transitions to distinct activity regimes, from
bursting to tonic spiking and then silence in the case of a
pH ramp and from bursting to silence in the case of a tem-
perature ramp. In agreement with general theory of critical
transitions in dynamical systems, we detect an increase in
the intrinsic variability of the oscillator close to the critical
point at which the oscillation fails (35,36,38,39). The con-
sistency of these qualitative transitions between prepara-
tions is strong evidence that the pyloric oscillator operates
with a consistent type of oscillatory dynamics. Together,
these findings show that although large variability is indeed
present in the physiological properties of the STG, the
mechanisms that organize physiological parameters place
the oscillator in a highly robust regime with consistent qual-
itative behavior. This suggests that the oscillator achieves
the same qualitative type of oscillation despite large vari-
ability in underlying physiological variables.

Despite the surprising robustness we have characterized
in this circuit, there is clear evidence of underlying param-
eter variability. Although most preparations undergo the
same transitions between different activity patterns as pH
and temperature are varied, the precise values at which these
transitions occur is variable. On the other hand, the transi-
tions between different activity patterns were remarkably
reliable; temperature elevation consistently resulted in a
transition from bursting to silence, whereas in most prepara-
tions, a decrease in pH resulted in a sequence of transitions
from bursting to tonic spiking, then from tonic spiking to
silence. Together, these findings illustrate that collective
ensemble properties can be highly consistent, even if quan-
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titative, low-level parameters are not. A plausible explana-
tion for how such consistency arises is that cellular
components such as ion channels are regulated in a collec-
tive, modular fashion, with multiple channel types coregu-
lated by the same molecular pathway (15,18,55,57).

We provided a general geometrical model of excitability
that explains the consistency of qualitative changes induced
by temperature and pH perturbations across animals and
preparations. The defining equations of our model are sim-
ple cubic polynomials and thus independent of specific bio-
physical details. Despite their simplicity, they were derived
via singularity theory methods that provably capture all the
possible qualitative reshaping of neuronal I/V curves at
different timescales, as induced by perturbations or modula-
tions (22). The presence of temperature- and pH-like pertur-
bation paths in the reduced parameter space of the model is
therefore consistent with a general, qualitative oscillator dy-
namics that is independent of specific quantitative properties
of different animals and preparations, such as maximal
conductance density or Q10s. Conversely, the measured
variability in those biophysical properties is exactly what
drives quantitative variability in the perturbation critical
points across animals and preparations without clashing
with the existence of such a general qualitative mechanism.

More classical reduced modeling approaches to perturba-
tion and modulation (13,21,40,50) usually work by selecting
a specific subset of biophysical properties of interest, imple-
menting them in a heuristically simplified computational
model, and performing a bifurcation analysis of the resulting
equations. The model specificity of such an approach is use-
ful to address specific questions (e.g., the role of Q10s in
shaping response variability to perturbations) but can fall
short in proving the existence of general mechanisms shared
across animals and preparations that are independent of var-
iable and largely unknown biophysical details.

What general lessons can we learn from this work? We
can view the pyloric oscillator preparation as a vastly
simplified biological model of a nervous system that is sub-
ject to particular failure modes. Other, more complex ner-
vous systems such as the brains of vertebrate species
exhibit many more components and kinds of behavior, but
they also show stereotyped failure modes such as seizures.
Our findings illustrate just how difficult it is to predict the
onset of failure, even with what might be considered ideal
biological replicates of the same system. We found that at
the population level, increases in oscillatory variance were
indicative of the proximity to a transition out of the rhythm.
This is consistent with recent theory (36,38,39) and experi-
mental attempts to predict catastrophic events in complex
natural systems (35). However, in our data, the trend in vari-
ance is far from predictive at the individual level, a problem
amplified by biological variability and differential suscepti-
bility near distinct transitions.

Our main motivation for studying combined global
perturbations to a neural circuit was to assess whether
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robustness to one kind of perturbation implied sensitivity to
other kinds of perturbations. For pH and temperature pertur-
bations in the STG oscillator, we find a surprisingly modest
interaction in the robustness of the pacemaker rhythm. This
suggests that the circuit may have evolved to exhibit toler-
ance to both (and likely other) external insults. This com-
bined tolerance places additional constraints on the
expression and regulation of the underlying membrane cur-
rents and synaptic connections (15) and may even favor spe-
cific kinds of circuit architectures over others.

We found that the pyloric pacemaker circuit is remark-
ably robust to acute pH variations. This robustness is some-
what dependent on temperature, indicating that both kinds
of robustness impose constraints on channel expression.
However, the interaction between robustness to temperature
and pH robustness was surprisingly small, consistent with
recent work on the entire pyloric circuit (D. Hampton and
E.M., unpublished data). This implies that the pyloric circuit
and its governing oscillator occupy a region of physiological
parameter space that allows temperature and pH robustness
be satisfied without a severe tradeoff, as well as allowing
large internal variability in ionic current expression. In
line with existing hypotheses (57), we suggest that such
robustness to variability and global perturbations explains
the tremendous diversity of ionic currents observed in
even relatively simple circuits, including the core oscillator
we studied here.
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Supplemental Figure 1: Recovery of isolated oscillator in physiological pH. A) Intracellular 
recording from the PD neuron during recovery in physiological pH saline. Insets i. and ii. 
correspond to the same periods in left and right panels. B) pH recorded simultaneously with A. 
C) Intracellular recording from the PD neuron after 30 minutes in physiological saline. 
 
 
Code for generating Figures 6 and 7 
 

1. # MirroredFHN_interactive_tempH.jl 
2.  
3. using Plots, DifferentialEquations, Interact, Blink, LaTeXStrings 
4.   
5. # Run lines 1-85 to open an interactive window where you can 
6. # play around with parameters and simulate the resulting behavior 
7.   
8. include("MirroredFHN_function.jl") 
9.   
10. x0=zeros(3) 
11.   
12. T=20000. 
13. tspan=(0,T) 
14.   
15. ε=0.01 
16. εz=0.0001 
17.   
18. ui = @manipulate for γ=-1.99:0.01:1.0, βf=-0.5:0.001:1.0, βs=-

0.5:0.001:1.0, 
19.     dIapp=-0.5:0.001:0.5 
20.   
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21.     #βfmin=-2.:0.01:2., βfmax=-2.:0.01:2., 
22.     #βsmin=-2.:0.01:2., βsmax=-2.:0.01:2., 
23.   
24.     βfmin=βf-0.2; 
25.     βfmax=βf+0.2; 
26.     βsmin=βs-0.1; 
27.     βsmax=βs+0.1; 
28.   
29.   
30.     βfvec=range(βfmin,βfmax,length=10001); 
31.   
32.     p1=plot(βfvec,lambdaTC.(γ,xTCm.(γ,βfvec)),label="TC variety",lw=2) 
33.     p1=plot!(βfvec,lambdaTC.(γ,xTCp.(γ,βfvec)),label="TC 

variety",lw=2) 
34.     p1=plot!(βfvec,lambdaHY.(βfvec,γ,xHY.(γ)),label="HY variety",lw=2) 
35.     p1=plot!(βfvec,lambdaHYf.(βfvec,γ,xHYf.(γ)),label="fast HY 

variety", lw=2, legend=false, 
36.         ylims=(βsmin,βsmax),grid=false) 
37.         #xticks = βfmin:(βfmax+0.0001-βfmin)/20:βfmax+0.0001, 

xtickfont = font(5), 
38.         #yticks = βsmin:(βsmax+0.0001-βsmin)/40:βsmax+0.0001, 
39.         #ytickfont = font(5),dpi=150) 
40.     p1=scatter!([βf],[βs],xlabel=L"\beta_f",ylabel=L"\beta_s") 
41.   
42.     xvec=range(-1.5,1.5,length=250) 
43.   
44.     p2=plot(xvec,-Ifast.(xvec,βf,βs,γ),lc=:black,label=L"I_{fast}") 
45.     p2=plot!(xvec,-Islow.(xvec,βf,βs,γ),ylims=(-

0.2,0.2),grid=false,lc=:gray,label=L"I_{slow}", 
46.     legend=false,xlabel=L"V",) 
47.   
48.     ITC=I_TC(βf,γ) 
49.     if isnan(ITC) 
50.         ITC=0.0 
51.     end 
52.   
53.     Iapp=ITC+dIapp 
54.   
55.     p=(βf,γ,βs,Iapp,ε,εz) 
56.   
57.     prob = ODEProblem(MirroredFHN_ODE!,x0,tspan,p) 
58.   
59.     sol = solve(prob,BS3(),reltol=1e-3,abstol=1e-6); 
60.   
61.     tt=minimum(findall(t->t>T/2,sol.t)) 
62.     p3=plot(sol.t[tt:length(sol.t)],sol[1,tt:length(sol.t)], 
63.     legend=false,grid=false,ylims=(-1.33,1.0)) 
64.   
65.     xnullcline(x,y)= -x^3 + βf*x - 1/2*γ*x^2 - γ*βs*x - (y+βs)^2 - 

1/2*γ*y^2 
66.     ynullcline(x,y)= -y + x 
67.   
68.     xvec=range(-1.1,1.0,length=250) 
69.     yvec=range(-1.1,0.35,length=250) 
70.   
71.     p4=contour(xvec,yvec,xnullcline,levels=[-ITC],lc=:red) 
72.     p4=contour!(xvec,yvec,ynullcline,levels=[0],colorbar=false) 



73.   
74.     l = @layout [ 
75.         [a{0.5w} b{0.5w} 
76.         c{1.0w,0.75h}] d{0.5w} 
77.     ] 
78.   
79.     vbox( 
80.     plot(p1,p2,p3,p4,layout=l,size=(1400,500)) 
81.     ) 
82.   
83. end 
84.   
85. w = Window() 
86. body!(w, ui) 
87.   
88.   
89.   
90. ## Static Drawing - In this part you can generate the static 
91. # figures used to produce Figures 6 and 7 
92. # uncomment the various parts of the code to define parameters 
93. # as in figure 6 and being able to generate all the behaviors 
94. # in that figure 
95.   
96. include("MirroredFHN_function.jl") 
97.   
98. γ=-0.1 
99.   
100. βfmin=-0.1 
101. βfmax=0.5 
102. βsmin=0.1 
103. βsmax=0.5 
104.   
105. ## perturbation paths 
106. # Starting point (A) 
107. # βf=0.3 
108. # βs=0.15 
109. # ITC=I_TC(βf,γ) 
110. # if isnan(ITC) 
111. #     ITC=0.0 
112. # end 
113. # Iapp=ITC-0.4 
114.   
115. # Interm ph (B) 
116. # βf=0.25 
117. # βs=0.285 
118. # ITC=I_TC(βf,γ) 
119. # if isnan(ITC) 
120. #     ITC=0.0 
121. # end 
122. # Iapp=ITC-0.25 
123.   
124. # Interm ph 3 (C) 
125. # βf=-0.05 
126. # βs=0.35 
127. # ITC=I_TC(βf,γ) 
128. # if isnan(ITC) 
129. #     ITC=0.0 



130. # end 
131. # Iapp=ITC-0.0 
132.   
133.   
134. # Interm Temp 2 (D) 
135. # βf=0.05 
136. # βs=0.145 
137. # ITC=I_TC(βf,γ) 
138. # if isnan(ITC) 
139. #     ITC=0.0 
140. # end 
141. # Iapp=ITC-0.3975 
142.   
143. # Final temp (E) 
144. βf=-0.033 
145. βs=0.11 
146. ITC=I_TC(βf,γ) 
147. if isnan(ITC) 
148.     ITC=0.0 
149. end 
150. Iapp=ITC-0.366 
151.   
152. D=0.001 
153. T=40000. 
154. tspan=(0,T) 
155.   
156. p1,p2,p3,p4,p5=plot_pchart(γ,βfmin,βfmax,βsmin,βsmax,βf,βs,Iapp,D,T,ts

pan) 
157. #p1: parameter chart 
158. #p2: IV curves 
159. #p3: solution over time 
160. #p4: phase plane 
161. #p5: composite figure 
162. plot(p3) 

1. # MirroredFHN_function.jl  
2.   
3. function MirroredFHN_ODE!(du,u,p,t) 
4.   
5.     βf = p[1] 
6.     γ = p[2] 
7.     βs = p[3] 
8.     Iapp = p[4] 
9.     ε = p[5] 
10.     εz = p[6] 
11.   
12.     x = @view u[1] 
13.     y = @view u[2] 
14.     z = @view u[3] 
15.   
16.     dx = @view du[1] 
17.     dy = @view du[2] 
18.     dz = @view du[3] 
19.   
20.     @. dx = -x^3 + βf*x - 1/2*γ*x^2 - γ*βs*x - (y+βs)^2 - 1/2*γ*y^2 - 

z + Iapp 



21.     @. dy = ε*(-y+x) 
22.     @. dz = εz*(-z+x) 
23.   
24. end 
25.   
26. function MirroredFHN_σ(du,u,p,t) 
27.     D=p[7] 
28.     du[1]=0.0 
29.     du[2]=D 
30.     du[3]=0.0 
31. end 
32.   
33. ## IV curves 
34.   
35. Ifast(x,βf,βs,γ) = -x^3 + βf*x - 1/2*γ*x^2 - γ*βs*x 
36. Islow(x,βf,βs,γ) = -x^3 + βf*x - 1/2*γ*x^2 - γ*βs*x - (x+βs)^2 - 

1/2*γ*x^2 
37. Iuslow(x,βf,βs,γ) = -x^3 + βf*x - 1/2*γ*x^2 - γ*βs*x - (x+βs)^2 - 

1/2*γ*x^2 - x 
38.   
39. ## Transition varieties 
40.   
41. function xTCm(gamma,beta) 
42.     if gamma^4 + 48*beta>0 
43.         f=( gamma^2 - (gamma^4 + 48*beta)^(1/2) )/( 12 ) 
44.     else 
45.         f=NaN 
46.     end 
47.     return f 
48. end 
49.   
50. function xTCp(gamma,beta) 
51.     if gamma^4 + 48*beta>0 
52.         f=( gamma^2 + (gamma^4 + 48*beta)^(1/2) )/( 12 ) 
53.     else 
54.         f=NaN 
55.     end 
56.     return f 
57. end 
58.   
59. lambdaTC(gamma,x)=-(x*(2+gamma))/2 
60.   
61. xHY(gamma)=-(1+gamma)/3 
62. lambdaHY(beta,gamma,x)=(beta-3*x^2-x*(2+2*gamma))/(2+gamma) 
63.   
64. xHYf(gamma)=-gamma/6 
65. lambdaHYf(beta,gamma,x)=(beta-gamma*x-3*x^2)/gamma 
66.   
67. I_TC(beta,gamma)=-(-xTCm(gamma,beta)^3+beta*xTCm(gamma,beta)- 
68.     (xTCm(gamma,beta)+lambdaTC(gamma,xTCm(gamma,beta)))^2-

gamma*xTCm(gamma,beta)*(xTCm(gamma,beta)+lambdaTC(gamma,xTCm(gamma,beta
)))) 

69. I_Hy(beta,gamma)=-(-xHY(gamma)^3+beta*xHY(gamma)-
(xHY(gamma)+lambdaHY(beta,gamma,xHY(gamma)))^2) 

70.   
71. ## Plotting 
72.   



73. function plot_pchart(γ,βfmin,βfmax,βsmin,βsmax,βf,βs,Iapp,D,T,tspan) 
74.   
75.     βfvec=range(βfmin,βfmax,length=1000); 
76.   
77.     p1=plot(βfvec,lambdaTC.(γ,xTCm.(γ,βfvec)),label="TC variety",lw=2) 
78.     p1=plot!(βfvec,lambdaTC.(γ,xTCp.(γ,βfvec)),label="TC 

variety",lw=2) 
79.     p1=plot!(βfvec,lambdaHY.(βfvec,γ,xHY.(γ)),label="HY variety",lw=2) 
80.     p1=plot!(βfvec,lambdaHYf.(βfvec,γ,xHYf.(γ)),label="fast HY 

variety", lw=2, legend=false, 
81.         ylims=(βsmin,βsmax),grid=false) 
82.         #xticks = βfmin:(βfmax+0.0001-βfmin)/20:βfmax+0.0001, 

xtickfont = font(5), 
83.         #yticks = βsmin:(βsmax+0.0001-βsmin)/40:βsmax+0.0001, 
84.         #ytickfont = font(5),dpi=150) 
85.     p1=scatter!([βf],[βs],xlabel=L"\beta_f",ylabel=L"\beta_s") 
86.   
87.     xvec=range(-1.5,1.5,length=250) 
88.   
89.     p2=plot(xvec,-Ifast.(xvec,βf,βs,γ),lc=:black,label=L"I_{fast}") 
90.     p2=plot!(xvec,-Islow.(xvec,βf,βs,γ),ylims=(-

0.2,0.2),grid=false,lc=:gray,label=L"I_{slow}", 
91.     legend=false,xlabel=L"V",) 
92.   
93.     p=(βf,γ,βs,Iapp,ε,εz,D) 
94.   
95.     #prob = ODEProblem(MirroredFHN_ODE!,x0,tspan,p) 
96.     #sol = solve(prob,BS3(),reltol=1e-3,abstol=1e-6); 
97.     x0=zeros(3) 
98.     prob = SDEProblem(MirroredFHN_ODE!,MirroredFHN_σ,x0,tspan,p) 
99.     sol = solve(prob,saveat=10); 
100.   
101.     #tt=minimum(findall(t->t>T/2,sol.t)) 
102.     p3=plot(sol.t[1:length(sol.t)],sol[1,1:length(sol.t)], 
103.     legend=false,grid=false,ylims=(-1.1,1.0),xlims=(20000,40000)) 
104.   
105.     xnullcline(x,y)= -x^3 + βf*x - 1/2*γ*x^2 - γ*βs*x - (y+βs)^2 - 

1/2*γ*y^2 
106.     ynullcline(x,y)= -y + x 
107.   
108.     xvec=range(-1.0,1.0,length=250) 
109.     yvec=range(-1.1,0.35,length=250) 
110.   
111.     p4=contour(xvec,yvec,xnullcline,levels=[-ITC+0*0.004],lc=:red) 
112.     p4=contour!(xvec,yvec,ynullcline,levels=[0],colorbar=false) 
113.   
114.     l = @layout [ 
115.         [a{0.5w} b{0.5w} 
116.         c{1.0w,0.75h}] d{0.5w} 
117.     ] 
118.   
119.     p5=plot(p1,p2,p3,p4,layout=l,size=(1400,500)) 
120.   
121.     return p1,p2,p3,p4,p5 
122.   
123. end 
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