

Supplementary Information for:

An Intracellular Nanobody Targeting T4SS Effector Inhibits Ehrlichia Infection

Wenqing Zhang¹, Mingqun Lin¹, Qi Yan¹, Khemraj Budachetri¹, Libo Hou¹, Ashweta Sahni², Hongyan Liu¹, Nien-Ching Han³, Jeffrey Lakritz⁴, Dehua Pei² and Yasuko Rikihisa^{1,3*}

 ¹ Department of Veterinary Biosciences, ² Department of Chemistry and Biochemistry,
³ Department of Microbiology, ⁴ Department of Veterinary Preventive Medicine, The Ohio State University, Columbus, OH 43210

* Corresponding author: Yasuko Rikihisa Email: <u>rikihisa.1@osu.edu</u>

This PDF file includes:

Tables S1 to S2 Figures S1 to S5

Supplementary Tables

Species	NCBI accession	Similarity (% aa)	E-Value
Ehrlichia species ¹		(); (u)	
<i>E. muris</i> subsp. <i>muris</i> AS145	WP_024071892.1	79	1E ⁻¹⁶⁶
<i>E. muris</i> subsp. <i>eauclairensis</i> Wisconsin	WP_045804476.1	76	1E ⁻¹³⁰
<i>Ehrlichia</i> sp. HF	WP_044195177.1	77	2E ⁻¹⁵⁵
E. minasensis UFMG-EV	WP_045170612.1	75	1E ⁻¹⁵⁹
<i>E. canis</i> Jake	WP_102574816.1	74	7E ⁻¹⁵⁷
E. ruminantium Welgevonden	WP_065433648.1	63	4E ⁻¹⁰⁰
Anaplasma species ²			
A. platys Mili1	WP_169193309.1	52	1E ⁻⁵⁶
A. centrale Israel	WP_012880860.1	57	4E ⁻³⁶
A. ovis Haibei	WP_075138831.1	55	1E ⁻³¹
A. marginale Florida	WP_010269731.1	56	3E ⁻³¹

Table S1.	Etf-1	homologs	in members	of the genera	a <i>Ehrlichia</i> and	Anaplasma

¹ *E. chaffeensis* Arkansas Etf-1 protein (WP_011452831.1, 380 aa) was used to perform a BLASTP search against the NCBI RefSeq protein database among representative *Ehrlichia* species.

 ² Anaplasma phagocytophilum encodes Ats-1 protein (ABD43383.2, 376 aa), which is 41% similar to *E. chaffeensis* Arkansas Etf-1 protein (E-value: 6E⁻¹³) and was used to perform a BLASTP search against the NCBI RefSeq protein database among representative *Anaplasma* species.

Table S2. Primer sequences	for cloning truncated	and mutated Etf-1 and Nbs ¹
----------------------------	-----------------------	--

Etf-1 AA Residues	Primer sequence (5′–3′)	
Cloning truncations of Etf-1 into pET33b(+) for expression in <i>E. coli</i> BL21(DE3)		
1–380	F: GGAATTC <u>CATATG</u> GAAAACCTGTATTTTCAGGGCATGCTTACTTTCTTAAAG R: CGC <u>GGATCC</u> TTATTCATGCCATTCAATTTTCTGCGCTTCAAAAATATCGTTCA GGCCTCTTGCATGTAC	
26–380	F: GGAATTC <u>CATATG</u> GAAAACCTGTATTTTCAGGGCCATCAAGAAAGCGTAGGT R: CGC <u>GGATCC</u> TTATTCATGCCATTCAATTTTCTGCGCTTCAAAAATATCGTTCA GGCCTCTTGCATGTAC	
51–380	F: GGAATTC <u>CATATG</u> GAAAACCTGTATTTTCAGGGCAAACACTTTGACTTAAGA R: CGC <u>GGATCC</u> TTATTCATGCCATTCAATTTTCTGCGCTTCAAAAATATCGTTCA GGCCTCTTGCATGTAC	
80–380	F: GGAATTC <u>CATATG</u> GAAAACCTGTATTTTCAGGGCGAAGTAGCTCTGAAAGTA R: CGC <u>GGATCC</u> TTATTCATGCCATTCAATTTTCTGCGCTTCAAAAATATCGTTC AGGCCTCTTGCATGTAC	
113–380	F: GGAATTC <u>CATATG</u> GAAAACCTGTATTTTCAGGGCACTAAAAAAGATACCTTA R: CGC <u>GGATCC</u> TTATTCATGCCATTCAATTTTCTGCGCTTCAAAAATATCGTTCA GGCCTCTTGCATGTAC	
Cloning truncations and point-mutations of codon-optimized Etf-1 into pEGFP-N1 for expression in mammalian cells		
1–380	F: AGT <u>GCTAGCCGCCACCATGG</u> TGCTGACCTTCCTGAAG R: CAA <u>GAATTC</u> GTCTGGCATGCACCTTTCC	
1–306	F: AGT <u>GCTAGCCGCCACCATGG</u> TGCTGACCTTCCTGA R: CAA <u>GAATTC</u> GGGTCCGAGAATAAGGCATA	
ΔCoil1 ²	Etf-1-Opt-F: AGT <u>GCTAGC</u> CGCCACCATGGTGCTGACCTTCCTGAAG ∆Coil1-R: CCGGGAGTGCTGTTCACTGT GAACTCCTGGGTGGCTGACA; ∆Coil1-F: TGTCAGCCACCCAGGAGTTC ACAGTGAACAGCACTCCCGG Etf-1-Opt-R: CAA <u>GAATTC</u> GTCTGGCATGCACCTTTCC	
1–380 (K6,7A)	F: AGT <u>GCTAGCCGCCACCATGG</u> TGCTGACCTTCCTG GCCGCT GGCGCCAACG R: CAA <u>GAATTC</u> GTCTGGCATGCACCTTTCC	
21–380	F: AGT <u>GCTAGCCGCCACCATGG</u> TGACCACAAGCAAGCTGCCTC R: CAA <u>GAATTC</u> GTCTGGCATGCACCTTTCC	
21–380 (K23A)	F: AGT <u>GCTAGCCGCCACCATGG</u> TGACCACAAGC GC7 CTGCCTC R: CAA <u>GAATTC</u> GTCTGGCATGCACCTTTCC	
23–380	F: AGT <u>GCTAGCCGCCACCATGG</u> TGAAGCTGCCTCACCAGGAGTC R: CAA <u>GAATTC</u> GTCTGGCATGCACCTTTCC	
25–380	F: AGT <u>GCTAGCCGCCACCATGG</u> TGCCTCACCAGGAGTCCGTG R: CAA <u>GAATTC</u> GTCTGGCATGCACCTTTCC	

¹ F, forward primer; R, reverse primer; underlined, restriction enzyme sites; bold, Kozak sequences for mammalian cell expression; bold and italicized, point mutations.

² The first-step PCR amplification used primer pairs Etf-1-Opt-F/∆Coil-1R and ∆Coil-1F/Etf-1-Opt-R, and both first-step PCR products were combined and further amplified by the second-step PCR using primer pairs Etf-1-Opt-F and Etf-1-Opt-R.

Cloning anti–Etf-1 Nbs into pEGFP-C1 for expression in mammalian cells		
Full length	F: CTA <u>GCTAGC</u> GCTACCGGT CGCCACCATGG CCCAGGTGCAGCTGCAG R: CCG <u>GAATTC</u> TTATCAGGAACCGTAGTCCGGAAC	

FIG S1. Llama immunization with rEtf-1. (A) The recombinant full-length Etf-1 protein (rEtf-1, 380 aa) was purified by gel filtration. The indicated peak fractions (fractions 9 and 10) were analyzed by SDS-PAGE and Coomassie blue staining. (B) Etf-1-specific antibody response of pre- and post-immune serum was analyzed by ELISA, and BSA was used as a negative control. Sera samples were prepared as four-fold serial dilutions. (C) Western blot analysis of the llama pre- and post-immune sera against recombinant and native Etf-1. *Ech*, cell lysate of *E. chaffeensis*-infected THP-1 cells at 3 dpi; THP-1, uninfected THP-1 cell lysates to reduce non-specific interacting bands.

FIG S2. Cloning of anti–Etf-1 Nbs from the Ilama immune library. (A) Agarose gel electrophoresis of total RNA purified from PBLs of the Etf-1 protein–immunized llama. M, molecular weight marker (GeneRuler 1 kb Plus DNA Ladder). (B) Agarose gel electrophoresis of the variable domains of all immunoglobulin heavy chains (VHs and VHHs) amplified from cDNA (VH + VHH, left), and Nb-encoding genes re-amplified from the gel-purified VH + VHH PCR products (VHH, right). (C) Library size determination by serial dilutions shown as colonies on LB-agar plates (290 clones at 10⁻⁶ dilution). (D) Colony PCR for assessing the percentage of clones in the library with the proper insert. Twenty-four isolated colonies were randomly picked from the transformants, and DNA was extracted from each. The amplicon size for clones with a Nb gene insert is ~700 bp. Transformants without a Nb gene insert have a smaller amplicon size (~350 bp).

FIG S3. K23 within the Nterminal 24 aa of Etf-1 is critical for mitochondrial targeting. Immunofluorescence labeling of RF/6A cells transfected with truncated, internal deletion, or point mutations of Etf-1-GFP (as described in Fig. 3). Cells were labeled with mouse monoclonal anti-cytochrome c (CytoC; red). Representative images show the presence (full-length, 1-380 aa; K6,7A; and \triangle Coil1) and absence (21-380/K23A and 25-380 aa) of Etf-1 colocalization with mitochondria. Colocalization was quantified and is presented in Fig. 3. Scale bars: 15 µm.

FIG S4. K23 within the N-terminal 24 aa of Etf-1 is critical for inhibition of etoposide-induced apoptosis.

(A) RF/6A cells were transfected with plasmids expressing Etf-1-GFP (full length, 1-380 aa), Etf-1(21-380/K23A)-GFP, or Etf-1(25-380)-GFP. At 28 h pt, cells were treated with 100 μ M etoposide for 41 h. Cells were fixed by 4% PFA, and the host cell nuclei were stained with DAPI. Immunofluorescence labeling of RF/6A cells. DIC, differential interference contrast; arrows: apoptotic nuclei; open arrow: normal nuclei. Scale bar, 10 μ m. (B) Quantification of apoptosis (nuclear fragmentation) in 100 cells expressing transfected genes. Data are represented as the mean ± standard deviation (n = 3). * *P* < 0.05 by one-way ANOVA.

Fig. S5. CPP-Nbs have high intracellular uptake efficiency without any cytotoxicity. (A) Flow cytometry histograms showing intracellular levels of CPP-Nbs and of Nbs alone. There was a substantial increase in the fluorescence of cells incubated with CPP-Nb as compared with that of cells incubated with Nb or PBS with/without secondary antibody labeling. (B) Cytotoxicity of CPP-Nbs, Nbs, and PBS was measured using the MTT assay. Values are represented as the mean \pm standard deviation (*n* = 3).