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FIG. S1 Complex dynamics of growth and division processes across nutrient shifts. A) Time

trace in the (mean) 1/〈τ〉-〈αinst〉 diagram. These two quantities reach fixed points where they are

proportional to each other (by a factor of log(2), dotted line) in steady-growth conditions, but

they deviate forming a complex pattern during the shift, due to the different time scales involved.

B) Mean birth volume initially overshoots its target increased value in rich media. C) Mean cell

width relaxes slowly in the new condition. D) Mean growth rate as a function of time into the

experiment. E) Mean interdivision time as a functon of time in the experiment. Note that this

quantity has an early increasing trend, opposite to the target of the new condition (i.e., cells whose

target is to divide faster, initially divide with a slower pace) increasing trend). F) The product

of median growth rate and median interdivision time deviates from a constant value during the

shift (“non adiabatic” transition). Media shift time is indicated at vertical dotted line. Unless

otherwise stated, solid line indicates observable mean, dashed line indicates median, and shaded

regions indicate SD for all time series.
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FIG. S2 Near-adder behaviour throughout the shift is preserved through compensation of division

timing control and growth-rate control despite complex dynamics between growth and division

processes. Media shift indicated at dotted vertical line. A) The size-growth plot measuring mul-

tiplicative growth vs logarithmic initial size quantifies size corrections with the slope λ (=1 for

sizer, 0 for timer, 1/2 for adder) and can be split into inter-division time and growht-rate contri-

butions (1). B) Equivalent to these slopes, one can measure the slope of the added size or final

size vs initial size (1; 2). C and D) Dynamics of size correction across the shift. The slope of the

size-growth plot λ remains constant, and timing/growth control variables compensate to maintain

near-adder correlations.
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FIG. S3 GFP production rate from the ribosomal and constitutive promoters used in this study

is proportional to cell volume. The data shown here come from measurements of GFP expression

from the P5 and P1 and promoters in different chromosomal locations (different panels) in slow

(M9 + 0.4% glucose, green diamonds) and fast (M9 + 0.4% glucose + 0.5% casamino acids,

red squares) steady growth conditions. Points on the y axis are averages of discrete derivatives

of fluorescence-versus-time tracks dF (t)/dt, correlated to measured volume (x axis). Error bars

indicate the standard deviations on binned averages.
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FIG. S4 The estimated threshold for an accumulator model is similar across conditions for all

tested promoters. Assuming the accumulator model described in the main text, the plot evaluates

a running average of the quantity r
αcc

∆, which, at steady state, corresponds to the theoretical

prediction of the threshold value N∗ of the accumulator model (see Eq. (2) of the main text). The

data are compatible with a threshold that remains roughly constant across the two conditions. The

production rate r = 1/V dF/dt is averaged over cell cycles, and the growth rate αcc comes from

exponential fits of the volume vs time data of the same cell cycle. Both variables are associated to

the division time of a cell.
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FIG. S5 Both data and model fulfill the expected constraint 〈eG(1−λ)/(1 + ζ)〉 = 1, where G =

log(Vf/V0), λ is the slope of the size-growth plot and ζ is the slope of the adder plot. This

constraint holds theoretically beyond steady state, and the data confirm this prediction. The

constraint can be derived from the definition ζ = d∆/dV0 noting that, if q = log(V0), by chain rule

d∆/dq = (d∆/dV0)(dV0/dq) = ζeq, and equally, since ∆ = Vf − V0, d∆/dq = eqeG(1 + λ). The

verification of this constraint provides a useful consistency check for our analysis.
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FIG. S6 Results of the divisor protein model using as input the measured volume-specific produc-

tion rate r from the P5 constitutive promoter inserted close to the replication origin. All panels as

in Figure 4 of the main text.
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FIG. S7 Results of the divisor protein model using as input the measured volume-specific produc-

tion rate r from the P1 ribosomal promoter inserted close to the replication origin. All panels as

in Figure 4 of the main text.
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FIG. S8 Results of the divisor protein model using as input the measured volume-specific produc-

tion rate r from the P1 ribosomal promoter inserted close to the replication terminus. All panels

as in Figure 4 of the main text.

8



time (h)

r r
e
v
e
rs
e

=
N

*

4 3 2 1 0 1 2 3 4 5 6 7 8

0.10

0.15

0.20

p1ori strain

4 3 2 1 0 1 2 3 4 5 6 7 8
0.01

0.02

0.03

0.04

0.05

p1ter strain

4 3 2 1 0 1 2 3 4 5 6 7 8
0.01

0.02

0.03

0.04

p5ter strain

4 3 2 1 0 1 2 3 4 5 6 7 8
0.00

0.02

0.04

0.06

0.08

0.10

p5ori strain

(~
m
in

1
/
m

3
)

reverse model 

4 3 2 1 0 1 2 3 4 5 6 7 8

0.00

0.02

0.04

data p5ter
(constitutive promoter)

r
(~

m
in

1
/
m

3
)

FIG. S9 The theoretical volume-specific production rate of the adder molecule derived from data

on growth rate and added size transiently decreases after the shift, before reaching a higher plateau.

The top panel is the measured volume-specific rate of GFP from the p5ter promoter shown in Fig. 4

of the main text. The other plots are binned averages of rreverse(t) = αccN∗
∆(t) , shown in the different

panels to be robust across shift experiments with strains carrying different promoters. The reverse

argument assumes that N∗ is constant after the shift. In these plots, N∗ is set to the value of

2 (in arbitrary units, taken from Supplementary Figure S4) before and after the shift, in order

to make the model match the data also quantitatively. The average uses experimental values of

∆ = Vf − V0 and of the growth rate αcc comes from exponential fits of the volume vs time data of

each cell cycle, and the variables are associated to the division time of a cell.
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FIG. S10 Results of the divisor protein model using the reverse production rate rreverse(t) inferred

as described in Fig. S9 using the strain carrying the P5 constitutive promoter close to the replication

terminus. All panels as in Figure 4 of the main text.
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FIG. S11 Results of the divisor protein model using the reverse production rate rreverse(t) for an

experiment at 30oC using the strain carrying the P1 ribosomal promoter close to the replication

origin. All panels as in Figure 4 of the main text, except for panel A, which also includes the

growth rate for this different experiment.
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FIG. S12 Cell-division behavior by generation from/to the nutrient shift. The generation index is

set to 0 for the cells that see the shift during their cell cycle. The plots compare data (circles) with

the forward model (top) using P5ter promoter production (see Fig. 4 in the main text) and with

the reverse model (bottom, see Fig. S9 andS10). Both interdivision time (left panels) and added

size (right panels) show overshoots (equivalent to the ones seen in Fig. 2 of the main text) that are

reproduced by the model. Error bars are standard deviations
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FIG. S13 The behavior of the generation seeing the shifts differs from the pre- and post-shift

background in a cell-cycle dependent way. The plots report mean interdivision time (A) and added

size (B) as a function of birth time (time 0 is the shift) for “generation 0” cells, which see the

nutrient shift during their cell cycle. Control data report the same quantity for cells in the steady

pre-shift (crosses) and post-shift condition, with respect to an arbitrary reference time. Error bars

are standard errors.
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FIG. S14 The behavior of the generation seeing the shift and the one after is reproduced quali-

tatively by the accumulator model. The top panels report interdivision time (A) and added size

(B) for for “generation 0” (orange squares) cells, which see the nutrient shift during their cell cycle

and for their daughters, “generation 1” cells (orange circles). Grey squares and circels show the

equivalent results for the reverse model. C) The added size of generation 1 cells does not depend

on the cell-cycle time at which their mothers saw the shift, in both model and data. Error bars

are standard errors.
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FIG. S15 The cell-cycle pattern in division delays differs between model and data, suggesting

that the checkpoint is also related to additional processes not described by the model, such as

chromosome replication and segregation. The plots report the mean quantile of the interdivision

time for “generation 0” cells, which see the nutrient shift during their cell cycle, as a function of the

time (from birth) when they see the shift. The y axis quantifies the position of the cell cycle time

of a cell compared to the cells of its same age that do not see the shift. A quantile of 0.5 means

that the cell behaves as pre- or post-shift cells. In the model, cells that see the nutrient shift late

in their cell cycle do not modify their cycle duration compared to the pre-shift conditions, while in

the data these cells delay their division. Error bars are standard errors.
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FIG. S16 Test of filling time and delays in nutrient availability within the microfluidic device.

A) Scheme of the device with the outermost fields of view labelled in dark red and orange. B)

Experiment loading the device with fluorescent LB medium and monitoring mean fluorescence

within the channels. Side channels start seeing the new medum immediately, and completely fill in

about 4 minutes (purple shaded area) once the medium enters the main channel (t = 0). C) The

delay between growth rate changes in the experiment averaged in the outermost fields of view in

the device is small. D) Zoom of panel C showing that the delay is about 5 minutes.
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SUPPLEMENTARY INFORMATION ON THE FRAMEWORK FROM CADART

ET AL. 2018.

This appendix describes the framework from refs. (1; 2) used in Supplementary Fig. S2.

This analysis assumes a random exponential growth rate that may be dependent on a cell’s

initial size. The quantity G = log(Vf/V0) is the overall multiplicative growth. Size control

here is quantified as the linear correction to deviations from the mean logarithmic size (i.e.,

smaller-born cells grow more than larger-born ones). Three key parameters indicating the

degree of size control fall from the procedure (1; 2). The overall size control is λ = − cov(G,q)
σ2
q

,

where q = log V0. The value of λ signals the size control strategy in use. Specifically, λ = 1

corresponds to a sizer (constant target size); λ = 0 represents no control; and λ = 0.5

denotes an adder. The growth and timing components of size control are, respectively,

γ = − cov(αinst,q)
〈αinst〉σq and θ = − cov(τ,q)

〈τ〉σq . A positive value for either γ or θ indicates a homeostatic

effect while negative values mark a negative contribution to size control. for example, for

positive θ, smaller-born cells grow for longer periods of time, and for positive γ they grow at

a faster rate. Viceversa, for negative γ, growth rate contributes to variability in the initial

size. The three parameters yield a quantitative method to determine the contribution of

timing and growth-rate corrections to size homeostasis. They are mathematically related

through the expression

λ = 〈αinst〉 〈τ〉 (γ + θ) ,

which we find verified in the data (Fig. S2C). At steady state, this analysis confirms that E.

coli division control is adder-like and that this strategy is realized primarily through timing

control, while fluctuations in growth rate have little influence (Fig. S2A). This is consistent

with previous analyses (1; 2).

Departure from the steady state occurs 20 min after the shift, when the average added

volume exceeds the average birth volume. This ratio is maximized at 1.1 h after the upshift

at 1.64 : 1, equilibrating back to 1 : 1 after about 4 h (Fig. S2C). The shape of this response is

largely expected because we have an approximately closed system in the sense that nascent

cell lineages are not added to the device after the initial incubation and trapping, hence

individual birth volumes cannot increase without an increase of added volume in the previous

cell cycle. This result is not trivial though: it is conceivable that a perturbation could briefly

arrest cells that were smaller than average at birth, prompting larger cells to overtake the

dividing population and thereby increasing birth volume without a preceding increase in

added volume. Despite the necessary break from the steady state 〈∆〉 / 〈V0〉 = 1, the overall

strength of size control is nearly constant during the upshift as evidenced by λ, which

exhibits only a moderate monotonic decrease from 0.638 ± 0.046 in slow growth media to

0.516 ± 0.033 in fast media (Supplementary Fig. S2CD). Thus, although there is a change

in the overall added volume, cells demonstrate near-adder behaviour that is uninterrupted

by the environmental shift.
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This persistence is effected by complementary dynamics between the timing- and growth-

related components of size control. The nutritional upshift induces a brief but dramatic

decrease in the normalized growth-related contribution 〈αinst〉 〈τ〉 γ, which pulses downwards

from a negligible −0.019 ± 0.101 in the first steady state to a minimum of −0.466 ± 0.298

after 1.6 h in the second media (Supplementary Fig. S2CD). Growth-related control then

returns to a comparatively small equilibrium value of −0.176± 0.090. Control from timing,

〈αinst〉 〈τ〉 θ, responds in an opposing manner, increasing considerably from 0.551 ± 0.335

preshift to a 1.107 ± 0.679 maximum 1.5 h into the upshift (Supplementary Fig. S2CD). It

too equilibrates after about 3 h, settling to 0.665 ± 0.310. Therefore, although growth and

timing processes are thrust out of their respective equilibria by the media shift, the balanced

interplay of their contributions to cell size ultimately conserves near-adder behaviour in this

dynamic environment (Supplementary Fig. S2D). It should be noted that λ = 0.5 strictly

coincides with a perfect adder provided it is at steady state 〈∆〉 / 〈V0〉 = 1. Generally, the

birth size-independent addition of an arbitrary volume during the cell cycle that defines an

adder can present a range of λ values: e.g. if the added volume is between 0.5 and 2 times

the average birth volume, λ would be in the range [0.33,0.67]. Nevertheless, E. coli is well

within the adder regime at all time points.

18



SUPPLEMENTARY INFORMATION ON THE BUGPIPE SEGMENTATION/-

TRACKING ALGORITHM

Bugpipe is the custom-coded MATLAB-based package that was used to segment, track,

and analyse the resultant cell data presented in this work. The following contains a sum-

mary of the algorithms developed. The package and its full documentation is available at

https://github.com/panlilio/bugpipe.

RAW IMAGES USED

Raw data consisted of 16-bit images at 512 x 512 pixel resolution. Three images were

taken per field of view, per time point: one fluorescence; one brightfield; and one dark

frame for background subtraction, i.e. an image acquired under the same exposure time but

without illumination (Fig. S17). Images were obtained every 5-6 min for each field of view,

with the number of fields chosen for continuous acquisition. This translated to a total of

35-40 fields of view, each spanning up to 8 microchannels. The chip was aligned such that

the microchannels run approximately parallel to the image x-axis.

Fluorescence images were used for segmentation here because of the associated high

signal-to-noise ratio. In principle, high quality phase contrast images can be successfully

substituted with minor changes to the segmentation procedure. Brightfield images were

used largely for manual inspection when required.

FIG. S17 Sample brightfield (left) and fluorescence images (right).
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BUGPIPE: IMAGE SEGMENTATION

Initially, all images are segmented independent of the order in which they were acquired

by the function segmentationMP. For each background-subtracted fluorescence image the

algorithm proceeds in the following steps: 1) find regions of interest, i.e. the micropistons

trapping each cell line; 2) within each region of interest, threshold and perform morpholog-

ical operations to isolate cells in the background; 3) find cell boundaries and separate any

artifically fused cells; 4) remove artefacts based on size.

The order-independent first pass at segmentation enables parallel processing of all frames

and thereby imparts a drastic decrease in the overall characterization time. Corrections to

the initial segmentation are performed under the tracking algorithm. All programming was

done in MATLAB with built-in functions indicated by (†).

Background subtraction

Simple background subtraction is performed by subtracting the respective dark frame

from each fluorescent image. Any resulting negative intensity values are set to 0.

Microchannel detection

The regions of interest (ROI) in each image are defined by the microchannels trapping

each line of cells. The function getChannelsMP uses x- and y-cross sections of pixel intensity

to detect these regions by thresholding: namely, the Otsu threshold is used along x (parallel

to direction of growth, Fig. S18A, green) and a sliding average background subtraction

is implemented along y (perpendicular to growth, Fig. S18A, blue). The final regions

of interest are shown in Fig. S18B. The typical microchannel region delineated by this

procedure across all fields of view and replicates was around 35 x 200 pix.

Cell segmentation

Each region of interest is processed independently. The following procedure is imple-

mented by segmentationMP as outlined in Fig. S19A. First, the cropped image of the k-th

microchannel Ik is passed through a 2D median filter to remove hot pixels (medfilt2†) and

then resized using bilinear interpolation (imresize†, 3x magnification) to further smooth

intensity values before thresholding.
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FIG. S18 Microchannel identification by thresholding image cross sections of intensity A Subsam-

pled image where the x-profile ιx defines the height of all channels in a given field of view (green)

and ιy determines the width of each microchannel (blue). Regions that pass the filter but do not

contain any high intensity objects are omitted from further analysis (red). B Found microchannel

bounding boxes overlayed on image at its original resolution.

Modified Otsu threshold

The cropped greyscale image Ik is thresholded using Otsu’s method with one modifica-

tion (Fig. S19B). The standard Otsu threshold (as calculated by graythresh†) tended to

drastically undersegment the fluorescence images here: i.e. several cells or sometimes entire

microchannels were grouped into a single object, often lacking a sufficiently detailed perime-

ter from which cells might be distinguished. To overcome this, a correction term was added

equal to the standard deviation of the Otsu-determined lower intensity population. That is,

if TOtsu is the Otsu threshold and the set of low intensity values is Lk = {Ikij|Ikij < TOtsu},
the applied threshold is

TIk = TOtsu +

√
〈(Lk)2〉 − 〈Lk〉2. (S1)

All Ikij less than TIk are set to 0 and all pixels greater or equal to the threshold are set to 1.

The result is a binarized image of black 0’s and white 1’s (Fig. S19A, 3rd panel down).

The thresholded image is then morphologically dilated using a 3 pixel radius disc

(imdilate†) to compensate for the slight oversegmentation during thresholding and fur-

ther smooth object edges. The boundaries of the resulting objects are then found with

bwboundaries†.
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Curvature assessment

Each object was then assessed by the function getCellsMP according to its ordered

(x, y) boundary points, with each coordinate pair representing an edge pixel. For a single

bacterium this set typically consisted of about 120 points on the magnified image. Although

a large fraction of detected objects were indeed individual bacterium, the above procedures

did tend to artificially join multiple cells by undersegmentation. In this case, the boundary

of the joint object consistently had at least two regions of high magniture, negative curvature

near the point of contact between adjacent cells (Fig. S19C).

For a single rod-shaped cell, curvature is theoretically non-negative for the entire bound-

ary. Candidate objects for further segmentation are therefore identified as those possessing

two or more regions in which the above smoothed curvature is less than -0.03 pix−1. This

gives an allowance for some noise in the image and in practice serves as an empirical threshold

for separating emerging daughter cells during cell division.

Objects without multiple negative curvature regions were rescaled to match the original

512 x 512 pix image and assessed for area using regionprops†: to remove the rare imaging

artifact, only those objects consisting of more than 30 pix (∼ 0.034µm2) were accepted as

individual bacterium. Note that a typical bacterium has a corresponding projected area

of roughly 156 pix (∼ 1.79 µm2). The aforementioned candidates for further segmentation

were passed to the next processing step.

Boundary processing

The local minima of negative curvature regions are each designated as a “pinch point” and,

owing to the configuration of the cells, generally one pair of pinch points can be connected

to separate two adjacent cells. That is, because cells tend to stack along their major axes,

two pinch points appeared at the point of contact between two cells: one above and one

below the axes (Fig. S19C, second and third panels down). In the case of more than two

pinch points, it was neccesary to calculate each point’s nearest neighbour for correct pairing.

In many cases, only two bacteria are enclosed in the object and they are easily separated

using a pair of pinch points.

For example, consider the case of two merged bacteria. Line segments were demarcated

by pinch points. Each segment was then closed by connecting its first and last points.

This connecting line was interpolated at nc points using the first and last nc points of

each segment, assuming a third degree polynomial, where nc was the approximate number

of pixels along the straight line between the endpoints. The closed segments were then

rescaled to match the original 512 x 512 pix image and passed by the same size filter to

ensure that the area enclosed was greater than 30 pix. The final cells segmented for the

sample channel are shown in the bottom panel of Fig. S19A.
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FIG. S19 Morphological operations and object boundary processing for cell segmentation within

a microchannel. A Top to bottom: overview of the full segmentation process on a single mi-

crochannel. B Demonstration of the modified Otsu threshold: histogram of mean-normalized pixel

intensities for the channel of interest, with the red population indicating the background (i.e. low

intensity) pixels and green indicating object (high intensity) pixels according to the standard Otsu

threshold (dotted vertical line). Difference between the Otsu threshold and modified threshold is

shown in upper panel (red). C Segmentation of the large, merged object in A using boundary cur-

vature (second panel). Boundary coloured according to local curvature (third panel) with regions

of strongly negative curvature (dark blue) indicating pinch points at which to further segment cells

(black circles).

This approach based on boundary curvature turns the problem of segmentation from 2D

to 1D and minimizes the use of the repeated morphological operations often required for e.g.

watershed-based separation. Rather than smoothing cell edges by morphological opening

and/or closing, images are instead slightly overthresholded then dilated in order to retain the

regions of sharp negative curvature anticipated at the fusion points—real, during the process

of cell fission, or artifactual—between two cells. The resulting segmentation yields results

comparable to that produced by edge detection filters but avoids the more time-consuming

morphological operations.

BUGPIPE: CELL TRACKING

An order-dependent approach is blatantly necessary for frame-to-frame cell tracking. The

time series for separate fields of view are independent however and subsequently they are

processed by separate MATLAB workers (spmd† in the Parallel Computing Toolbox). The
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tracking procedure takes advantage of the geometric constraints imposed by the mother

machine’s format: in particular, that in the absence of cell divisions a cell’s rank within

a channel is conserved between frames. That is, suppose one channel has five cells in one

frame, five in the next, and there was no evidence of cell division. The first cell away from

the dead-end of the channel in one frame would be the first cell away from the dead-end

in the next frame, the second cell in one frame would be the second cell in the next frame,

and so forth. The task was thus reduced to: 1) microchannel tracking between frames, 2)

sorting cells in-channel based on distance from the dead-end, and 3) determining markers

for cell division to adjust the rank-based pairing as necessary. These operations are all

contained in the function cellTrackerMP, which takes consecutive images and the results

of their respective segmentations as input.

Microchannel matching

The location of each microchannel’s bounding box is passed through the segmentation

variables associated with each frame. Pairwise-distance calculations are perfomed for channel

tracking because of the small channel numbers: there are always fewer than 9 microchannels

under the reported magnification and camera conditions. This approach assumes sufficiently

low optical drift, specifically that any relative movement between consecutive frames is

less than the half-distance between microchannels: a criterion that was easily met by the

previously described microscopy system.

Example matched channels are shown in Fig. S20.

FIG. S20 Microchannel detection and pairing between frames. Bounding boxes identified for the

microchannels in two consecutive grayscale images (left, centre). Sample image registration of the

two frames under translational and rotational transformations using imregister†(right).
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Rank-based cell identification and flagging of division events

After locating microchannels in consecutive frames, all cells in the frame of interest f are

ranked within their respective channels: 1 being closest to the dead-end. The x-component

of each cell’s centroid is sufficient for ranking due to the orientation of the device. For the

first frame in the time series, all cells are given näıve labels with no cells designated as

daughters of a division. Cell rank, labelling, and microchannel index were then stored and

passed on to the next tracking iteration using the next frame.

For all f > 1, a rank-based comparison of cell area between frames f and f − 1 was

performed to detect division events. For two channels paired across consecutive frames,

denote r0 and r1 as rank-based indices for the cells/ranks of interest in frames f − 1 and f

respectively. Let A(r0) and A(r1) be the areas of the cells of rank r0 and r1 in their associated

frames. The procedure begins by checking the first cells in the channel: r0 = r1 = 1. The

proportional change in area φA is then calculated:

φA(r1, r0) =
A(r1)

A(r0)
. (S2)

The conditions of the experiments presented here do not anticipate any decreases in cell

area unattributable to cell division: under stable nutritional environments, both growth

media used are capable of sustaining long-term, balanced growth of all assayed strains. A

lower empirical threshold φA < 0.7 was established to mark significant area decreases as cell

divisions. Note that since healthy divisions are roughly symmetric in E. coli, the next cell

along the microchannel should also be relatively small and thus φA(r1 +1, r0) should also fall

below this threshold. The labelling procedure is demonstrated in Fig. S21); the algorithm

is explicitly described in bugpipe documentation.

CHARACTERIZATION OF SEGMENTED CELLS

Fluorescence images and the cell boundaries retrieved from segmentation are used to

measure cell size, shape, promoter expression, and the time derivatives of these quantities.

As a rod-shaped bacteria, the geometry of an E. coli cell can be approximated to a cylinder

with hemispherical caps. As shown, the cells grow in the mother machine with their long

axis parallel to the plane of observation so that their length and width can be ascertained

in addition to their cross sectional area and fluorescence intensity.

The function getCellPropsMP, called by cellTrackerMP, takes boundary coordinates

and a fluorescence intensity matrix as input to determine single cell properties using methods

summarized in Table S1 (see also Fig. S22)

Alternative ways to estimate cell volume and the overall geometry of the cell were

explored(3); the spherocylindrical model provided the greatest consistency with the vol-
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FIG. S21 Rank-based comparison of cell area to track cells and division events. A given microchan-

nel is matched between consecutive frames (top two panels). Segmented cells are ranked according

to centre of mass distance from the dead-end and changes in area are used to detect division events

(bottom two panels). Here, the sixth ranked cell shows a dramatic decrease in area between frames.

Finding the area of the next cell in line to be sufficiently small, the procedure determines that a

division has indeed occurred and that the sixth and seventh ranked cells in frame t + 1 are the

daughters of the sixth ranked cell in frame t.

ume estimated by the rotation of the boundary contour. During the shift, tapered cells

may form due to cell width dynamics (4; 5). In our experiment, these tapered cells are not

easily visible by eye, due to the limited resolution (Fig. S23A). However, we could quan-

tify their contribution by looking at the differences between measured area from segmented

perimeter and area computed by width and length measurements assuming a spherocylinder

(Fig. S23BC). Quantitatively, this phenomenon is small in our data (about 2%), and does

not affect any of our conclusions.

BUGPIPE: SCRIPT IMPLEMENTATION AND DATA MANAGEMENT

Application of the segmentation and tracking procedures is quite straightforward, as

demonstrated in the subsection below. There was, however, an additional computational
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TABLE S1 Summary of key single cell measurements

quantity notation description

area A area enclosed by boundary points, including edge pixels

length L
greatest pairwise distance between boundary points along the
first principal axis (found by pca†)

width w

width assuming the projected area is a rectangle with semi-

circular caps of radius w
2
, i.e. w =

2[L−
√
L2−(4−π)A]

4−π

surface area S S = πLw

volume V V = 4
3
π
(
w
2

)3
+ π(L− w)

(
w
2

)2

volumetric
growth rate αinst

instantaneous rate assuming exponential growth: αinst =
1
V
dV
dt

surface
synthesis rate β

instantaneous surface area growth rate assuming it is propor-
tional to volume, i.e. β = 1

V
dS
dt

cell cycle
growth rate αcc

overall volumetric growth rate assuming exponential growth,
determined from the slope of the linear fitting of log(V ) vs t
for all points of the cell cycle

interdivision
time τ

time between birth and division, estimated as the time be-
tween a cell’s first and last frames plus the time between
consecutive frames

promoter/gene
expression F

total fluorescence intensity of the segmented pixels corre-
sponding to A

protein
concentration C concentration of fluorescent protein within the cell: C = F/V

challenge following image processing and analysis: the high throughput and high spatiotem-

poral resolution nature of acquisition necessitated the development of a fast and flexible

means of data manipulation. Custom MATLAB classes were written to handle and analyse

these large, non-uniform datasets.

Sample script and directory organization

The following MATLAB script can be taken as a review of the image processing steps

described in previous sections and should act as a guide for future users of this package.

Note that the script can be easily modified to decrease processing times further by taking

advantage of MATLAB’s Parallel Computing Toolbox. Indeed, parallel loops (spmd† and

parfor†) were used to process all images pertaining to the data presented in this work.
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max width

FIG. S22 Sample cell measurements retrieved from segmentation of a single cell. A Boundary

coordinates found overlayed on the original grayscale image. B Total cross sectional area calcu-

lated as the area enclosed by the boundary, including edge pixels. C Total fluorescence intensity

associated with the enclosed area. D Principal component analysis on boundary to determine axis

of orientation. E Cell presented in principal axis space, where length is the maximum distance

between boundary points along the first axis. Along the second axis, maximum width also shown.

1 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

2 % PREAMBLE: PATHS , PARAMETERS

3 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

4

5 %Retrieve a list of all available datasets

6 D = allDataBookDirsMP;

7

8 %Select a specific replicate , get a list of all directory paths , and

delete any existing folders

9 D = D.dirList {26};

10 D = getDirsMP_SSD(D);

11 clearDirsMP(D,{’mat2Dir ’,’lineDir ’,’textDir ’});

12

13 %Get the orientation of the device , store in tracking parameters

14 dataInfo = lookupDataMP(D.baseDir);

15 P = segmentationParamsMP(dataInfo.ORIENTATION);

16

17 %Retrieve list of PNG images , including any dark frames

18 L = imListMP(D.dataDir);
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FIG. S23 Tapered cells determine minor deviations in estimated volume. A Tapered cells are not

easily visible by eye at the resolution of our experiments. B Comparison of area at birth computed

from width and length assuming a spherocylinder, and area at birth determined by perimeter

segmentation shows a different during the shift, likely due to the existence of tapered cells (5). C

The ratio of assumed to measured area deviates of at most 2% during the shift. The same analysis

shows smaller deviations (1-1.5%) if all cell areas are considered and not only area at birth.

19

20 %Directory paths for different stages of processing

21 dataDir = D.dataDir;

22 matDir = D.matDir;

23 mat2Dir = D.mat2Dir;

24 lineDir = D.lineDir;

25

26 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

27 % SEGMENTATION (FOV AND TIME -INDEPENDENT)

28 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

29

30 %Iterate through the entire list of images , order and fov -independent

31 for k = 1: numel(L.imList)

32

33 %Read in image and blank/dark frame
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34 I = imread(fullfile(dataDir ,L.imList{k}));

35 if ~isempty(L.blankList{k})

36 Iblank = imread(fullfile(dataDir ,L.blankList{k}));

37 else

38 Iblank = zeros (512);

39 end

40

41 %Background subtraction

42 I = double(I) - double(Iblank);

43 I(I<0) = 0;

44

45 %Segment

46 [CELLS ,CHANNELS] = segmentationMP(I,P);

47

48 %Record time image was acquired by camera

49 CELLS.tAcq = L.timeCreated(k);

50

51 %Save variables

52 parsave1(fullfile(matDir ,sprintf(’fov%.2d_t%.4d’ ,...

53 L.imListFOVT(k,1),L.imListFOVT(k,2))),CELLS ,CHANNELS)

54

55 kDone(k) = true;

56 end

57

58 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

59 % TRACKING (FOV -INDEPENDENT)

60 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

61

62 %Retrieve range of fields of view , times/frames

63 fovRange = L.fovRange;

64 tRange = L.tRange;

65

66 %Orientation of device

67 deadEnd = P.deadEnd;

68

69 %Iterate through each field of view

70 for f = 1: numel(L.fovRange)

71 fov = fovRange(f);
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72

73 %Initialize structure for segmentation results and zero matrix for

intensity matrix

74 C0 = {};

75 I0 = zeros (512);

76

77 %Iterate through frames

78 for t = tRange

79

80 %Load the current segmented data

81 mat1 = fullfile(matDir ,sprintf(’fov %.2 d_t %.4d.mat’,fov ,t));

82 if ~exist(mat1 ,’file’),

83 fprintf(’\tCONTINUE: No MAT found. fov = %d, t = %d \r’, fov ,t

)

84 continue

85 end

86 C1 = load(mat1);

87

88 %Skip any dropped frames

89 if isempty(C1.CELLS.boundary) || isempty(C1.CHANNELS)

90 fprintf(’\tCONTINUE: No cells segmented. fov = %d, t = %d \r’,

fov ,t)

91 continue

92 end

93

94 %Read in the current image , including blank/dark frame

95 [imname ,blankname] = L.getfilenamesFOVT(fov ,t,1); %#ok<PFBNS >

96 I1 = imread(imname);

97 if isempty(blankname)

98 Iblank = zeros(size(I1));

99 else

100 Iblank = imread(blankname);

101 end

102

103 %Background subtraction

104 I1 = double(I1) - double(Iblank);

105 I1(I1 <0) = 0;

106
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107 %Track cells

108 [C2 ,~] = cellTrackerMP(I1,I0,C1,C0,t,fov ,lineDir ,deadEnd);

109

110 %Save tracking result variables

111 CELLS = C2.CELLS;

112 CHANNELS = C2.CHANNELS;

113 parsave1(fullfile(mat2Dir ,sprintf(’fov %.2 d_t %.4d’,fov ,t)),CELLS ,

CHANNELS)

114

115 %Update for the next iteration but skip empty frames from tracking

consideration

116 if ~isempty(CELLS.boundary)

117 C0 = C2;

118 I0 = I1;

119 end

120 end

121 end

Directory structure

Variables are saved at each stage of the procedure, with the final processing step being

a conversion from MAT format to text file by the function mat2txtMP. The user can delete

intermediary variables and directories where needed. A list of the output variables in their

associated directories as laid out in the example script are presented in Table S2, with

intermediary outputs indicated by (*). More detailed information on each variable is present

in the relevant function’s description.

Data handling classes

Under the acquisition settings descibed in the main text, about 2,000 cells were imaged

every 5 minutes in a typical sample. For the usual 18 h experiment, this translates to

over 400,000 cell snapshots and 20,000 fully tracked cell cycles per replicate. Two han-

dling classes were developed to manipulate this data effectively: dataMP2, which handles

specific replicates; and dataLabMP, which manages several replicates at once. These ob-

jects allow the user to perform calculations on and retrieve statistics from different pop-

ulations: whether it be of single cell cycles, specific lineages, whole replicates, or multi-

ple datasets. The complete documentation, including example analyses, can be found on

https://github.com/panlilio/bugpipe.
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TABLE S2 Organizational structure of segmentation results

directory description file variables

\Data png image files, at least two files per field of
view per time point, one illuminated and
one dark frame

—

\Data mat* initial segmentation as output from
segmentMP

CELLS, CHANNELS

\Data mat2* labelled output of previous directory, i.e.
matched channels and tracked cells

CELLS, CHANNELS

\Data line* lineage information and tracked single cell
data files containing e.g. frames present,
pixel intensity range, parent cell identity,
area, etc.

cellData; cellLine,
cellLineFamilyMap,
cellLineFrames

\Data txt text file containing flattened single cell
data, i.e. the initial and final/pre-division
values of, e.g. acquisition time, length,
width, and fluorescence, from each cell
cycle

—

\Data txt\lineage text files with complete cell cycle data,
with one file per tracked lineage

—

\Data flat MATs containing matrices of flattened
summary data and cell cycle/lineage data,
shaped identically to \Data txt files

A (cell cycle), B

(summary)

Applied data filters

Following the highly automated cell segmentation and tracking procedures, there were a

few common data filters applied for subsequent analyses. Specifically, we required that only

cells meeting the following criteria were considered:

1. The entire life cycle was observed, i.e. both parent and daughter(s) were at least

partially tracked so that a division event was flagged both directly before and after

the cell cycle.

2. The division event terminating the cell cycle of interest must split the mother into near-

symmetrical daughters, specifically each daughter occupying 40-60% of the mother’s

final cross sectional area. This step aims to eliminate filamentous cells and segmenta-

tion artifacts.

3. The observed exponential growth rate corresponds to a doubling time that is greater

than 10 minutes but finite. Note that the physiological lower limit is 15-20 min.

33



Note that the last filter is largely unnecessary for the vast majority of datasets presented

in this work. For example, in replicate 20160325, less than 0.3% (104 out of 37,570) of

segmented cells lie outside of this reasonable growth rate interval.
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